#include <linux/thread_info.h>
#include <linux/capability.h>
#include <linux/miscdevice.h>
#include <linux/ratelimit.h>
#include <linux/rcupdate.h>
#include <linux/kobject.h>
#include <linux/uaccess.h>
#include <linux/kdebug.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/syscore_ops.h>
#include <linux/delay.h>
#include <linux/ctype.h>
#include <linux/sched.h>
#include <linux/sysfs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kmod.h>
#include <linux/poll.h>
#include <linux/nmi.h>
#include <linux/cpu.h>
#include <linux/ras.h>
#include <linux/smp.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/debugfs.h>
#include <linux/irq_work.h>
#include <linux/export.h>
#include <linux/set_memory.h>
#include <linux/sync_core.h>
#include <linux/task_work.h>
#include <linux/hardirq.h>
#include <asm/intel-family.h>
#include <asm/processor.h>
#include <asm/traps.h>
#include <asm/tlbflush.h>
#include <asm/mce.h>
#include <asm/msr.h>
#include <asm/reboot.h>
#include "internal.h"
static DEFINE_MUTEX(mce_sysfs_mutex);
#define CREATE_TRACE_POINTS
#include <trace/events/mce.h>
#define SPINUNIT 100 /* 100ns */
DEFINE_PER_CPU(unsigned, mce_exception_count);
DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
#define ATTR_LEN 16
struct mce_bank_dev {
struct device_attribute attr;
char attrname[ATTR_LEN];
u8 bank;
};
static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
struct mce_vendor_flags mce_flags __read_mostly;
struct mca_config mca_cfg __read_mostly = {
.bootlog = -1,
.monarch_timeout = -1
};
static DEFINE_PER_CPU(struct mce, mces_seen);
static unsigned long mce_need_notify;
DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
};
mce_banks_t mce_banks_ce_disabled;
static struct work_struct mce_work;
static struct irq_work mce_irq_work;
BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
void mce_setup(struct mce *m)
{
memset(m, 0, sizeof(struct mce));
m->cpu = m->extcpu = smp_processor_id();
m->time = __ktime_get_real_seconds();
m->cpuvendor = boot_cpu_data.x86_vendor;
m->cpuid = cpuid_eax(1);
m->socketid = cpu_data(m->extcpu).phys_proc_id;
m->apicid = cpu_data(m->extcpu).initial_apicid;
m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
m->ppin = cpu_data(m->extcpu).ppin;
m->microcode = boot_cpu_data.microcode;
}
DEFINE_PER_CPU(struct mce, injectm);
EXPORT_PER_CPU_SYMBOL_GPL(injectm);
void mce_log(struct mce *m)
{
if (!mce_gen_pool_add(m))
irq_work_queue(&mce_irq_work);
}
EXPORT_SYMBOL_GPL(mce_log);
void mce_register_decode_chain(struct notifier_block *nb)
{
if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
nb->priority > MCE_PRIO_HIGHEST))
return;
blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
}
EXPORT_SYMBOL_GPL(mce_register_decode_chain);
void mce_unregister_decode_chain(struct notifier_block *nb)
{
blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
}
EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
static void __print_mce(struct mce *m)
{
pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
m->extcpu,
(m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
m->mcgstatus, m->bank, m->status);
if (m->ip) {
pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
m->cs, m->ip);
if (m->cs == __KERNEL_CS)
pr_cont("{%pS}", (void *)(unsigned long)m->ip);
pr_cont("\n");
}
pr_emerg(HW_ERR "TSC %llx ", m->tsc);
if (m->addr)
pr_cont("ADDR %llx ", m->addr);
if (m->misc)
pr_cont("MISC %llx ", m->misc);
if (m->ppin)
pr_cont("PPIN %llx ", m->ppin);
if (mce_flags.smca) {
if (m->synd)
pr_cont("SYND %llx ", m->synd);
if (m->ipid)
pr_cont("IPID %llx ", m->ipid);
}
pr_cont("\n");
pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
m->microcode);
}
static void print_mce(struct mce *m)
{
__print_mce(m);
if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
}
#define PANIC_TIMEOUT 5 /* 5 seconds */
static atomic_t mce_panicked;
static int fake_panic;
static atomic_t mce_fake_panicked;
static void wait_for_panic(void)
{
long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
preempt_disable();
local_irq_enable();
while (timeout-- > 0)
udelay(1);
if (panic_timeout == 0)
panic_timeout = mca_cfg.panic_timeout;
panic("Panicing machine check CPU died");
}
static noinstr void mce_panic(const char *msg, struct mce *final, char *exp)
{
struct llist_node *pending;
struct mce_evt_llist *l;
int apei_err = 0;
instrumentation_begin();
if (!fake_panic) {
if (atomic_inc_return(&mce_panicked) > 1)
wait_for_panic();
barrier();
bust_spinlocks(1);
console_verbose();
} else {
if (atomic_inc_return(&mce_fake_panicked) > 1)
goto out;
}
pending = mce_gen_pool_prepare_records();
llist_for_each_entry(l, pending, llnode) {
struct mce *m = &l->mce;
if (!(m->status & MCI_STATUS_UC)) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
llist_for_each_entry(l, pending, llnode) {
struct mce *m = &l->mce;
if (!(m->status & MCI_STATUS_UC))
continue;
if (!final || mce_cmp(m, final)) {
print_mce(m);
if (!apei_err)
apei_err = apei_write_mce(m);
}
}
if (final) {
print_mce(final);
if (!apei_err)
apei_err = apei_write_mce(final);
}
if (exp)
pr_emerg(HW_ERR "Machine check: %s\n", exp);
if (!fake_panic) {
if (panic_timeout == 0)
panic_timeout = mca_cfg.panic_timeout;
panic(msg);
} else
pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
out:
instrumentation_end();
}
static int msr_to_offset(u32 msr)
{
unsigned bank = __this_cpu_read(injectm.bank);
if (msr == mca_cfg.rip_msr)
return offsetof(struct mce, ip);
if (msr == mca_msr_reg(bank, MCA_STATUS))
return offsetof(struct mce, status);
if (msr == mca_msr_reg(bank, MCA_ADDR))
return offsetof(struct mce, addr);
if (msr == mca_msr_reg(bank, MCA_MISC))
return offsetof(struct mce, misc);
if (msr == MSR_IA32_MCG_STATUS)
return offsetof(struct mce, mcgstatus);
return -1;
}
void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
{
if (wrmsr) {
pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
regs->ip, (void *)regs->ip);
} else {
pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
(unsigned int)regs->cx, regs->ip, (void *)regs->ip);
}
show_stack_regs(regs);
panic("MCA architectural violation!\n");
while (true)
cpu_relax();
}
noinstr u64 mce_rdmsrl(u32 msr)
{
DECLARE_ARGS(val, low, high);
if (__this_cpu_read(injectm.finished)) {
int offset;
u64 ret;
instrumentation_begin();
offset = msr_to_offset(msr);
if (offset < 0)
ret = 0;
else
ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
instrumentation_end();
return ret;
}
asm volatile("1: rdmsr\n"
"2:\n"
_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
: EAX_EDX_RET(val, low, high) : "c" (msr));
return EAX_EDX_VAL(val, low, high);
}
static noinstr void mce_wrmsrl(u32 msr, u64 v)
{
u32 low, high;
if (__this_cpu_read(injectm.finished)) {
int offset;
instrumentation_begin();
offset = msr_to_offset(msr);
if (offset >= 0)
*(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
instrumentation_end();
return;
}
low = (u32)v;
high = (u32)(v >> 32);
asm volatile("1: wrmsr\n"
"2:\n"
_ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
: : "c" (msr), "a"(low), "d" (high) : "memory");
}
static noinstr void mce_gather_info(struct mce *m, struct pt_regs *regs)
{
instrumentation_begin();
mce_setup(m);
instrumentation_end();
m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
if (regs) {
if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
m->ip = regs->ip;
m->cs = regs->cs;
if (v8086_mode(regs))
m->cs |= 3;
}
if (mca_cfg.rip_msr)
m->ip = mce_rdmsrl(mca_cfg.rip_msr);
}
}
int mce_available(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return 0;
return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
}
static void mce_schedule_work(void)
{
if (!mce_gen_pool_empty())
schedule_work(&mce_work);
}
static void mce_irq_work_cb(struct irq_work *entry)
{
mce_schedule_work();
}
int mce_usable_address(struct mce *m)
{
if (!(m->status & MCI_STATUS_ADDRV))
return 0;
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
return 1;
if (!(m->status & MCI_STATUS_MISCV))
return 0;
if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
return 0;
if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
return 0;
return 1;
}
EXPORT_SYMBOL_GPL(mce_usable_address);
bool mce_is_memory_error(struct mce *m)
{
switch (m->cpuvendor) {
case X86_VENDOR_AMD:
case X86_VENDOR_HYGON:
return amd_mce_is_memory_error(m);
case X86_VENDOR_INTEL:
case X86_VENDOR_ZHAOXIN:
return (m->status & 0xef80) == BIT(7) ||
(m->status & 0xef00) == BIT(8) ||
(m->status & 0xeffc) == 0xc;
default:
return false;
}
}
EXPORT_SYMBOL_GPL(mce_is_memory_error);
static bool whole_page(struct mce *m)
{
if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
return true;
return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
}
bool mce_is_correctable(struct mce *m)
{
if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
return false;
if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
return false;
if (m->status & MCI_STATUS_UC)
return false;
return true;
}
EXPORT_SYMBOL_GPL(mce_is_correctable);
static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *m = (struct mce *)data;
if (!m)
return NOTIFY_DONE;
trace_mce_record(m);
set_bit(0, &mce_need_notify);
mce_notify_irq();
return NOTIFY_DONE;
}
static struct notifier_block early_nb = {
.notifier_call = mce_early_notifier,
.priority = MCE_PRIO_EARLY,
};
static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *mce = (struct mce *)data;
unsigned long pfn;
if (!mce || !mce_usable_address(mce))
return NOTIFY_DONE;
if (mce->severity != MCE_AO_SEVERITY &&
mce->severity != MCE_DEFERRED_SEVERITY)
return NOTIFY_DONE;
pfn = (mce->addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
if (!memory_failure(pfn, 0)) {
set_mce_nospec(pfn);
mce->kflags |= MCE_HANDLED_UC;
}
return NOTIFY_OK;
}
static struct notifier_block mce_uc_nb = {
.notifier_call = uc_decode_notifier,
.priority = MCE_PRIO_UC,
};
static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
void *data)
{
struct mce *m = (struct mce *)data;
if (!m)
return NOTIFY_DONE;
if (mca_cfg.print_all || !m->kflags)
__print_mce(m);
return NOTIFY_DONE;
}
static struct notifier_block mce_default_nb = {
.notifier_call = mce_default_notifier,
.priority = MCE_PRIO_LOWEST,
};
static noinstr void mce_read_aux(struct mce *m, int i)
{
if (m->status & MCI_STATUS_MISCV)
m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
if (m->status & MCI_STATUS_ADDRV) {
m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
u8 shift = MCI_MISC_ADDR_LSB(m->misc);
m->addr >>= shift;
m->addr <<= shift;
}
smca_extract_err_addr(m);
}
if (mce_flags.smca) {
m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
if (m->status & MCI_STATUS_SYNDV)
m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
}
}
DEFINE_PER_CPU(unsigned, mce_poll_count);
bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
bool error_seen = false;
struct mce m;
int i;
this_cpu_inc(mce_poll_count);
mce_gather_info(&m, NULL);
if (flags & MCP_TIMESTAMP)
m.tsc = rdtsc();
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
if (!mce_banks[i].ctl || !test_bit(i, *b))
continue;
m.misc = 0;
m.addr = 0;
m.bank = i;
barrier();
m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
if (!(m.status & MCI_STATUS_VAL))
continue;
if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
goto log_it;
if (!mca_cfg.ser) {
if (m.status & MCI_STATUS_UC)
continue;
goto log_it;
}
if (!(m.status & MCI_STATUS_EN))
goto log_it;
if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
goto log_it;
continue;
log_it:
error_seen = true;
if (flags & MCP_DONTLOG)
goto clear_it;
mce_read_aux(&m, i);
m.severity = mce_severity(&m, NULL, NULL, false);
if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
goto clear_it;
if (flags & MCP_QUEUE_LOG)
mce_gen_pool_add(&m);
else
mce_log(&m);
clear_it:
mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
sync_core();
return error_seen;
}
EXPORT_SYMBOL_GPL(machine_check_poll);
static __always_inline void
quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
{
if (bank != 0)
return;
if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
return;
if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
MCACOD)) !=
(MCI_STATUS_UC|MCI_STATUS_EN|
MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
MCI_STATUS_AR|MCACOD_INSTR))
return;
m->mcgstatus |= MCG_STATUS_EIPV;
m->ip = regs->ip;
m->cs = regs->cs;
}
static noinstr bool quirk_skylake_repmov(void)
{
u64 mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
u64 misc_enable = mce_rdmsrl(MSR_IA32_MISC_ENABLE);
u64 mc1_status;
if (!(mcgstatus & MCG_STATUS_LMCES) ||
!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING))
return false;
mc1_status = mce_rdmsrl(MSR_IA32_MCx_STATUS(1));
if ((mc1_status &
(MCI_STATUS_VAL | MCI_STATUS_OVER | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_ADDRV | MCI_STATUS_MISCV | MCI_STATUS_PCC |
MCI_STATUS_AR | MCI_STATUS_S)) ==
(MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_ADDRV | MCI_STATUS_MISCV |
MCI_STATUS_AR | MCI_STATUS_S)) {
misc_enable &= ~MSR_IA32_MISC_ENABLE_FAST_STRING;
mce_wrmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
mce_wrmsrl(MSR_IA32_MCx_STATUS(1), 0);
instrumentation_begin();
pr_err_once("Erratum detected, disable fast string copy instructions.\n");
instrumentation_end();
return true;
}
return false;
}
static __always_inline void quirk_zen_ifu(int bank, struct mce *m, struct pt_regs *regs)
{
if (bank != 1)
return;
if (!(m->status & MCI_STATUS_POISON))
return;
m->cs = regs->cs;
}
static __always_inline int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
struct pt_regs *regs)
{
char *tmp = *msg;
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
if (!(m->status & MCI_STATUS_VAL))
continue;
arch___set_bit(i, validp);
if (mce_flags.snb_ifu_quirk)
quirk_sandybridge_ifu(i, m, regs);
if (mce_flags.zen_ifu_quirk)
quirk_zen_ifu(i, m, regs);
m->bank = i;
if (mce_severity(m, regs, &tmp, true) >= MCE_PANIC_SEVERITY) {
mce_read_aux(m, i);
*msg = tmp;
return 1;
}
}
return 0;
}
static atomic_t mce_executing;
static atomic_t mce_callin;
static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
static noinstr int mce_timed_out(u64 *t, const char *msg)
{
int ret = 0;
instrumentation_begin();
rmb();
if (atomic_read(&mce_panicked))
wait_for_panic();
if (!mca_cfg.monarch_timeout)
goto out;
if ((s64)*t < SPINUNIT) {
if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
cpumask_pr_args(&mce_missing_cpus));
mce_panic(msg, NULL, NULL);
ret = 1;
goto out;
}
*t -= SPINUNIT;
out:
touch_nmi_watchdog();
instrumentation_end();
return ret;
}
static void mce_reign(void)
{
int cpu;
struct mce *m = NULL;
int global_worst = 0;
char *msg = NULL;
for_each_possible_cpu(cpu) {
struct mce *mtmp = &per_cpu(mces_seen, cpu);
if (mtmp->severity > global_worst) {
global_worst = mtmp->severity;
m = &per_cpu(mces_seen, cpu);
}
}
if (m && global_worst >= MCE_PANIC_SEVERITY) {
mce_severity(m, NULL, &msg, true);
mce_panic("Fatal machine check", m, msg);
}
if (global_worst <= MCE_KEEP_SEVERITY)
mce_panic("Fatal machine check from unknown source", NULL, NULL);
for_each_possible_cpu(cpu)
memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
}
static atomic_t global_nwo;
static noinstr int mce_start(int *no_way_out)
{
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
int order, ret = -1;
if (!timeout)
return ret;
raw_atomic_add(*no_way_out, &global_nwo);
order = raw_atomic_inc_return(&mce_callin);
arch_cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
instrumentation_begin();
while (raw_atomic_read(&mce_callin) != num_online_cpus()) {
if (mce_timed_out(&timeout,
"Timeout: Not all CPUs entered broadcast exception handler")) {
raw_atomic_set(&global_nwo, 0);
goto out;
}
ndelay(SPINUNIT);
}
smp_rmb();
if (order == 1) {
raw_atomic_set(&mce_executing, 1);
} else {
while (raw_atomic_read(&mce_executing) < order) {
if (mce_timed_out(&timeout,
"Timeout: Subject CPUs unable to finish machine check processing")) {
raw_atomic_set(&global_nwo, 0);
goto out;
}
ndelay(SPINUNIT);
}
}
*no_way_out = raw_atomic_read(&global_nwo);
ret = order;
out:
instrumentation_end();
return ret;
}
static noinstr int mce_end(int order)
{
u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
int ret = -1;
instrumentation_begin();
if (!timeout)
goto reset;
if (order < 0)
goto reset;
atomic_inc(&mce_executing);
if (order == 1) {
while (atomic_read(&mce_executing) <= num_online_cpus()) {
if (mce_timed_out(&timeout,
"Timeout: Monarch CPU unable to finish machine check processing"))
goto reset;
ndelay(SPINUNIT);
}
mce_reign();
barrier();
ret = 0;
} else {
while (atomic_read(&mce_executing) != 0) {
if (mce_timed_out(&timeout,
"Timeout: Monarch CPU did not finish machine check processing"))
goto reset;
ndelay(SPINUNIT);
}
ret = 0;
goto out;
}
reset:
atomic_set(&global_nwo, 0);
atomic_set(&mce_callin, 0);
cpumask_setall(&mce_missing_cpus);
barrier();
atomic_set(&mce_executing, 0);
out:
instrumentation_end();
return ret;
}
static __always_inline void mce_clear_state(unsigned long *toclear)
{
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
if (arch_test_bit(i, toclear))
mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
}
static noinstr bool mce_check_crashing_cpu(void)
{
unsigned int cpu = smp_processor_id();
if (arch_cpu_is_offline(cpu) ||
(crashing_cpu != -1 && crashing_cpu != cpu)) {
u64 mcgstatus;
mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
if (mcgstatus & MCG_STATUS_LMCES)
return false;
}
if (mcgstatus & MCG_STATUS_RIPV) {
__wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
return true;
}
}
return false;
}
static __always_inline int
__mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
unsigned long *toclear, unsigned long *valid_banks, int no_way_out,
int *worst)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
struct mca_config *cfg = &mca_cfg;
int severity, i, taint = 0;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
arch___clear_bit(i, toclear);
if (!arch_test_bit(i, valid_banks))
continue;
if (!mce_banks[i].ctl)
continue;
m->misc = 0;
m->addr = 0;
m->bank = i;
m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
if (!(m->status & MCI_STATUS_VAL))
continue;
if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
!no_way_out)
continue;
taint++;
severity = mce_severity(m, regs, NULL, true);
if ((severity == MCE_KEEP_SEVERITY ||
severity == MCE_UCNA_SEVERITY) && !no_way_out)
continue;
arch___set_bit(i, toclear);
if (severity == MCE_NO_SEVERITY)
continue;
mce_read_aux(m, i);
m->severity = severity;
instrumentation_begin();
mce_log(m);
instrumentation_end();
if (severity > *worst) {
*final = *m;
*worst = severity;
}
}
*m = *final;
return taint;
}
static void kill_me_now(struct callback_head *ch)
{
struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
p->mce_count = 0;
force_sig(SIGBUS);
}
static void kill_me_maybe(struct callback_head *cb)
{
struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
int flags = MF_ACTION_REQUIRED;
unsigned long pfn;
int ret;
p->mce_count = 0;
pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
if (!p->mce_ripv)
flags |= MF_MUST_KILL;
pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
ret = memory_failure(pfn, flags);
if (!ret) {
set_mce_nospec(pfn);
sync_core();
return;
}
if (ret == -EHWPOISON || ret == -EOPNOTSUPP)
return;
pr_err("Memory error not recovered");
kill_me_now(cb);
}
static void kill_me_never(struct callback_head *cb)
{
struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
unsigned long pfn;
p->mce_count = 0;
pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
pfn = (p->mce_addr & MCI_ADDR_PHYSADDR) >> PAGE_SHIFT;
if (!memory_failure(pfn, 0))
set_mce_nospec(pfn);
}
static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
{
int count = ++current->mce_count;
if (count == 1) {
current->mce_addr = m->addr;
current->mce_kflags = m->kflags;
current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
current->mce_whole_page = whole_page(m);
current->mce_kill_me.func = func;
}
if (count > 10)
mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
mce_panic("Consecutive machine checks to different user pages", m, msg);
if (count > 1)
return;
task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
}
static noinstr void unexpected_machine_check(struct pt_regs *regs)
{
instrumentation_begin();
pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
smp_processor_id());
instrumentation_end();
}
noinstr void do_machine_check(struct pt_regs *regs)
{
int worst = 0, order, no_way_out, kill_current_task, lmce, taint = 0;
DECLARE_BITMAP(valid_banks, MAX_NR_BANKS) = { 0 };
DECLARE_BITMAP(toclear, MAX_NR_BANKS) = { 0 };
struct mce m, *final;
char *msg = NULL;
if (unlikely(mce_flags.p5))
return pentium_machine_check(regs);
else if (unlikely(mce_flags.winchip))
return winchip_machine_check(regs);
else if (unlikely(!mca_cfg.initialized))
return unexpected_machine_check(regs);
if (mce_flags.skx_repmov_quirk && quirk_skylake_repmov())
goto clear;
order = -1;
no_way_out = 0;
kill_current_task = 0;
lmce = 1;
this_cpu_inc(mce_exception_count);
mce_gather_info(&m, regs);
m.tsc = rdtsc();
final = this_cpu_ptr(&mces_seen);
*final = m;
no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
barrier();
if (!(m.mcgstatus & MCG_STATUS_RIPV))
kill_current_task = 1;
if (m.cpuvendor == X86_VENDOR_INTEL ||
m.cpuvendor == X86_VENDOR_ZHAOXIN)
lmce = m.mcgstatus & MCG_STATUS_LMCES;
if (lmce) {
if (no_way_out)
mce_panic("Fatal local machine check", &m, msg);
} else {
order = mce_start(&no_way_out);
}
taint = __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
if (!no_way_out)
mce_clear_state(toclear);
if (!lmce) {
if (mce_end(order) < 0) {
if (!no_way_out)
no_way_out = worst >= MCE_PANIC_SEVERITY;
if (no_way_out)
mce_panic("Fatal machine check on current CPU", &m, msg);
}
} else {
if (worst >= MCE_PANIC_SEVERITY) {
mce_severity(&m, regs, &msg, true);
mce_panic("Local fatal machine check!", &m, msg);
}
}
instrumentation_begin();
if (taint)
add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
if (worst != MCE_AR_SEVERITY && !kill_current_task)
goto out;
if ((m.cs & 3) == 3) {
BUG_ON(!on_thread_stack() || !user_mode(regs));
if (!mce_usable_address(&m))
queue_task_work(&m, msg, kill_me_now);
else
queue_task_work(&m, msg, kill_me_maybe);
} else {
if (m.kflags & MCE_IN_KERNEL_RECOV) {
if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
mce_panic("Failed kernel mode recovery", &m, msg);
}
if (m.kflags & MCE_IN_KERNEL_COPYIN)
queue_task_work(&m, msg, kill_me_never);
}
out:
instrumentation_end();
clear:
mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
}
EXPORT_SYMBOL_GPL(do_machine_check);
#ifndef CONFIG_MEMORY_FAILURE
int memory_failure(unsigned long pfn, int flags)
{
BUG_ON(flags & MF_ACTION_REQUIRED);
pr_err("Uncorrected memory error in page 0x%lx ignored\n"
"Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
pfn);
return 0;
}
#endif
static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
static DEFINE_PER_CPU(unsigned long, mce_next_interval);
static DEFINE_PER_CPU(struct timer_list, mce_timer);
static unsigned long mce_adjust_timer_default(unsigned long interval)
{
return interval;
}
static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
static void __start_timer(struct timer_list *t, unsigned long interval)
{
unsigned long when = jiffies + interval;
unsigned long flags;
local_irq_save(flags);
if (!timer_pending(t) || time_before(when, t->expires))
mod_timer(t, round_jiffies(when));
local_irq_restore(flags);
}
static void mc_poll_banks_default(void)
{
machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
}
void (*mc_poll_banks)(void) = mc_poll_banks_default;
static void mce_timer_fn(struct timer_list *t)
{
struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
unsigned long iv;
WARN_ON(cpu_t != t);
iv = __this_cpu_read(mce_next_interval);
if (mce_available(this_cpu_ptr(&cpu_info))) {
mc_poll_banks();
if (mce_intel_cmci_poll()) {
iv = mce_adjust_timer(iv);
goto done;
}
}
if (mce_notify_irq())
iv = max(iv / 2, (unsigned long) HZ/100);
else
iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
done:
__this_cpu_write(mce_next_interval, iv);
__start_timer(t, iv);
}
void mce_timer_kick(unsigned long interval)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
unsigned long iv = __this_cpu_read(mce_next_interval);
__start_timer(t, interval);
if (interval < iv)
__this_cpu_write(mce_next_interval, interval);
}
static void mce_timer_delete_all(void)
{
int cpu;
for_each_online_cpu(cpu)
del_timer_sync(&per_cpu(mce_timer, cpu));
}
int mce_notify_irq(void)
{
static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
if (test_and_clear_bit(0, &mce_need_notify)) {
mce_work_trigger();
if (__ratelimit(&ratelimit))
pr_info(HW_ERR "Machine check events logged\n");
return 1;
}
return 0;
}
EXPORT_SYMBOL_GPL(mce_notify_irq);
static void __mcheck_cpu_mce_banks_init(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
u8 n_banks = this_cpu_read(mce_num_banks);
int i;
for (i = 0; i < n_banks; i++) {
struct mce_bank *b = &mce_banks[i];
b->ctl = -1ULL;
b->init = true;
}
}
static void __mcheck_cpu_cap_init(void)
{
u64 cap;
u8 b;
rdmsrl(MSR_IA32_MCG_CAP, cap);
b = cap & MCG_BANKCNT_MASK;
if (b > MAX_NR_BANKS) {
pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
smp_processor_id(), MAX_NR_BANKS, b);
b = MAX_NR_BANKS;
}
this_cpu_write(mce_num_banks, b);
__mcheck_cpu_mce_banks_init();
if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
if (cap & MCG_SER_P)
mca_cfg.ser = 1;
}
static void __mcheck_cpu_init_generic(void)
{
enum mcp_flags m_fl = 0;
mce_banks_t all_banks;
u64 cap;
if (!mca_cfg.bootlog)
m_fl = MCP_DONTLOG;
bitmap_fill(all_banks, MAX_NR_BANKS);
machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
cr4_set_bits(X86_CR4_MCE);
rdmsrl(MSR_IA32_MCG_CAP, cap);
if (cap & MCG_CTL_P)
wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
}
static void __mcheck_cpu_init_clear_banks(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (!b->init)
continue;
wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
}
}
static void __mcheck_cpu_check_banks(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
u64 msrval;
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (!b->init)
continue;
rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
b->init = !!msrval;
}
}
static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
struct mca_config *cfg = &mca_cfg;
if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
pr_info("unknown CPU type - not enabling MCE support\n");
return -EOPNOTSUPP;
}
if (c->x86_vendor == X86_VENDOR_AMD) {
if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
}
if (c->x86 < 0x11 && cfg->bootlog < 0) {
cfg->bootlog = 0;
}
if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
mce_banks[0].ctl = 0;
if (c->x86 == 0x15 && c->x86_model <= 0xf)
mce_flags.overflow_recov = 1;
if (c->x86 >= 0x17 && c->x86 <= 0x1A)
mce_flags.zen_ifu_quirk = 1;
}
if (c->x86_vendor == X86_VENDOR_INTEL) {
if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
mce_banks[0].init = false;
if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
cfg->bootlog = 0;
if (c->x86 == 6 && c->x86_model == 45)
mce_flags.snb_ifu_quirk = 1;
if (c->x86 == 6 && c->x86_model == INTEL_FAM6_SKYLAKE_X)
mce_flags.skx_repmov_quirk = 1;
}
if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
}
}
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = 0;
if (cfg->bootlog != 0)
cfg->panic_timeout = 30;
return 0;
}
static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
{
if (c->x86 != 5)
return 0;
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
intel_p5_mcheck_init(c);
mce_flags.p5 = 1;
return 1;
case X86_VENDOR_CENTAUR:
winchip_mcheck_init(c);
mce_flags.winchip = 1;
return 1;
default:
return 0;
}
return 0;
}
static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
{
if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
mce_flags.amd_threshold = 1;
}
}
static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
{
struct mca_config *cfg = &mca_cfg;
if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
c->x86 > 6) {
if (cfg->monarch_timeout < 0)
cfg->monarch_timeout = USEC_PER_SEC;
}
}
static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
if ((c->x86 == 7 && c->x86_model == 0x1b) ||
(c->x86_model == 0x19 || c->x86_model == 0x1f)) {
if (this_cpu_read(mce_num_banks) > 8)
mce_banks[8].ctl = 0;
}
intel_init_cmci();
intel_init_lmce();
mce_adjust_timer = cmci_intel_adjust_timer;
}
static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
{
intel_clear_lmce();
}
static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_init(c);
mce_adjust_timer = cmci_intel_adjust_timer;
break;
case X86_VENDOR_AMD: {
mce_amd_feature_init(c);
break;
}
case X86_VENDOR_HYGON:
mce_hygon_feature_init(c);
break;
case X86_VENDOR_CENTAUR:
mce_centaur_feature_init(c);
break;
case X86_VENDOR_ZHAOXIN:
mce_zhaoxin_feature_init(c);
break;
default:
break;
}
}
static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
{
switch (c->x86_vendor) {
case X86_VENDOR_INTEL:
mce_intel_feature_clear(c);
break;
case X86_VENDOR_ZHAOXIN:
mce_zhaoxin_feature_clear(c);
break;
default:
break;
}
}
static void mce_start_timer(struct timer_list *t)
{
unsigned long iv = check_interval * HZ;
if (mca_cfg.ignore_ce || !iv)
return;
this_cpu_write(mce_next_interval, iv);
__start_timer(t, iv);
}
static void __mcheck_cpu_setup_timer(void)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
timer_setup(t, mce_timer_fn, TIMER_PINNED);
}
static void __mcheck_cpu_init_timer(void)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
timer_setup(t, mce_timer_fn, TIMER_PINNED);
mce_start_timer(t);
}
bool filter_mce(struct mce *m)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
return amd_filter_mce(m);
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
return intel_filter_mce(m);
return false;
}
static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
{
irqentry_state_t irq_state;
WARN_ON_ONCE(user_mode(regs));
if (mca_cfg.initialized && mce_check_crashing_cpu())
return;
irq_state = irqentry_nmi_enter(regs);
do_machine_check(regs);
irqentry_nmi_exit(regs, irq_state);
}
static __always_inline void exc_machine_check_user(struct pt_regs *regs)
{
irqentry_enter_from_user_mode(regs);
do_machine_check(regs);
irqentry_exit_to_user_mode(regs);
}
#ifdef CONFIG_X86_64
DEFINE_IDTENTRY_MCE(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
exc_machine_check_kernel(regs);
local_db_restore(dr7);
}
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
exc_machine_check_user(regs);
local_db_restore(dr7);
}
#else
DEFINE_IDTENTRY_RAW(exc_machine_check)
{
unsigned long dr7;
dr7 = local_db_save();
if (user_mode(regs))
exc_machine_check_user(regs);
else
exc_machine_check_kernel(regs);
local_db_restore(dr7);
}
#endif
void mcheck_cpu_init(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return;
if (__mcheck_cpu_ancient_init(c))
return;
if (!mce_available(c))
return;
__mcheck_cpu_cap_init();
if (__mcheck_cpu_apply_quirks(c) < 0) {
mca_cfg.disabled = 1;
return;
}
if (mce_gen_pool_init()) {
mca_cfg.disabled = 1;
pr_emerg("Couldn't allocate MCE records pool!\n");
return;
}
mca_cfg.initialized = 1;
__mcheck_cpu_init_early(c);
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(c);
__mcheck_cpu_init_clear_banks();
__mcheck_cpu_check_banks();
__mcheck_cpu_setup_timer();
}
void mcheck_cpu_clear(struct cpuinfo_x86 *c)
{
if (mca_cfg.disabled)
return;
if (!mce_available(c))
return;
__mcheck_cpu_clear_vendor(c);
}
static void __mce_disable_bank(void *arg)
{
int bank = *((int *)arg);
__clear_bit(bank, this_cpu_ptr(mce_poll_banks));
cmci_disable_bank(bank);
}
void mce_disable_bank(int bank)
{
if (bank >= this_cpu_read(mce_num_banks)) {
pr_warn(FW_BUG
"Ignoring request to disable invalid MCA bank %d.\n",
bank);
return;
}
set_bit(bank, mce_banks_ce_disabled);
on_each_cpu(__mce_disable_bank, &bank, 1);
}
static int __init mcheck_enable(char *str)
{
struct mca_config *cfg = &mca_cfg;
if (*str == 0) {
enable_p5_mce();
return 1;
}
if (*str == '=')
str++;
if (!strcmp(str, "off"))
cfg->disabled = 1;
else if (!strcmp(str, "no_cmci"))
cfg->cmci_disabled = true;
else if (!strcmp(str, "no_lmce"))
cfg->lmce_disabled = 1;
else if (!strcmp(str, "dont_log_ce"))
cfg->dont_log_ce = true;
else if (!strcmp(str, "print_all"))
cfg->print_all = true;
else if (!strcmp(str, "ignore_ce"))
cfg->ignore_ce = true;
else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
cfg->bootlog = (str[0] == 'b');
else if (!strcmp(str, "bios_cmci_threshold"))
cfg->bios_cmci_threshold = 1;
else if (!strcmp(str, "recovery"))
cfg->recovery = 1;
else if (isdigit(str[0]))
get_option(&str, &(cfg->monarch_timeout));
else {
pr_info("mce argument %s ignored. Please use /sys\n", str);
return 0;
}
return 1;
}
__setup("mce", mcheck_enable);
int __init mcheck_init(void)
{
mce_register_decode_chain(&early_nb);
mce_register_decode_chain(&mce_uc_nb);
mce_register_decode_chain(&mce_default_nb);
INIT_WORK(&mce_work, mce_gen_pool_process);
init_irq_work(&mce_irq_work, mce_irq_work_cb);
return 0;
}
static void mce_disable_error_reporting(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
}
return;
}
static void vendor_disable_error_reporting(void)
{
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
return;
mce_disable_error_reporting();
}
static int mce_syscore_suspend(void)
{
vendor_disable_error_reporting();
return 0;
}
static void mce_syscore_shutdown(void)
{
vendor_disable_error_reporting();
}
static void mce_syscore_resume(void)
{
__mcheck_cpu_init_generic();
__mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
__mcheck_cpu_init_clear_banks();
}
static struct syscore_ops mce_syscore_ops = {
.suspend = mce_syscore_suspend,
.shutdown = mce_syscore_shutdown,
.resume = mce_syscore_resume,
};
static void mce_cpu_restart(void *data)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
__mcheck_cpu_init_generic();
__mcheck_cpu_init_clear_banks();
__mcheck_cpu_init_timer();
}
static void mce_restart(void)
{
mce_timer_delete_all();
on_each_cpu(mce_cpu_restart, NULL, 1);
mce_schedule_work();
}
static void mce_disable_cmci(void *data)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
cmci_clear();
}
static void mce_enable_ce(void *all)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
cmci_reenable();
cmci_recheck();
if (all)
__mcheck_cpu_init_timer();
}
static struct bus_type mce_subsys = {
.name = "machinecheck",
.dev_name = "machinecheck",
};
DEFINE_PER_CPU(struct device *, mce_device);
static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
{
return container_of(attr, struct mce_bank_dev, attr);
}
static ssize_t show_bank(struct device *s, struct device_attribute *attr,
char *buf)
{
u8 bank = attr_to_bank(attr)->bank;
struct mce_bank *b;
if (bank >= per_cpu(mce_num_banks, s->id))
return -EINVAL;
b = &per_cpu(mce_banks_array, s->id)[bank];
if (!b->init)
return -ENODEV;
return sprintf(buf, "%llx\n", b->ctl);
}
static ssize_t set_bank(struct device *s, struct device_attribute *attr,
const char *buf, size_t size)
{
u8 bank = attr_to_bank(attr)->bank;
struct mce_bank *b;
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
if (bank >= per_cpu(mce_num_banks, s->id))
return -EINVAL;
b = &per_cpu(mce_banks_array, s->id)[bank];
if (!b->init)
return -ENODEV;
b->ctl = new;
mce_restart();
return size;
}
static ssize_t set_ignore_ce(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
mutex_lock(&mce_sysfs_mutex);
if (mca_cfg.ignore_ce ^ !!new) {
if (new) {
mce_timer_delete_all();
on_each_cpu(mce_disable_cmci, NULL, 1);
mca_cfg.ignore_ce = true;
} else {
mca_cfg.ignore_ce = false;
on_each_cpu(mce_enable_ce, (void *)1, 1);
}
}
mutex_unlock(&mce_sysfs_mutex);
return size;
}
static ssize_t set_cmci_disabled(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
u64 new;
if (kstrtou64(buf, 0, &new) < 0)
return -EINVAL;
mutex_lock(&mce_sysfs_mutex);
if (mca_cfg.cmci_disabled ^ !!new) {
if (new) {
on_each_cpu(mce_disable_cmci, NULL, 1);
mca_cfg.cmci_disabled = true;
} else {
mca_cfg.cmci_disabled = false;
on_each_cpu(mce_enable_ce, NULL, 1);
}
}
mutex_unlock(&mce_sysfs_mutex);
return size;
}
static ssize_t store_int_with_restart(struct device *s,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long old_check_interval = check_interval;
ssize_t ret = device_store_ulong(s, attr, buf, size);
if (check_interval == old_check_interval)
return ret;
mutex_lock(&mce_sysfs_mutex);
mce_restart();
mutex_unlock(&mce_sysfs_mutex);
return ret;
}
static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
static struct dev_ext_attribute dev_attr_check_interval = {
__ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
&check_interval
};
static struct dev_ext_attribute dev_attr_ignore_ce = {
__ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
&mca_cfg.ignore_ce
};
static struct dev_ext_attribute dev_attr_cmci_disabled = {
__ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
&mca_cfg.cmci_disabled
};
static struct device_attribute *mce_device_attrs[] = {
&dev_attr_check_interval.attr,
#ifdef CONFIG_X86_MCELOG_LEGACY
&dev_attr_trigger,
#endif
&dev_attr_monarch_timeout.attr,
&dev_attr_dont_log_ce.attr,
&dev_attr_print_all.attr,
&dev_attr_ignore_ce.attr,
&dev_attr_cmci_disabled.attr,
NULL
};
static cpumask_var_t mce_device_initialized;
static void mce_device_release(struct device *dev)
{
kfree(dev);
}
static int mce_device_create(unsigned int cpu)
{
struct device *dev;
int err;
int i, j;
if (!mce_available(&boot_cpu_data))
return -EIO;
dev = per_cpu(mce_device, cpu);
if (dev)
return 0;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->id = cpu;
dev->bus = &mce_subsys;
dev->release = &mce_device_release;
err = device_register(dev);
if (err) {
put_device(dev);
return err;
}
for (i = 0; mce_device_attrs[i]; i++) {
err = device_create_file(dev, mce_device_attrs[i]);
if (err)
goto error;
}
for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
err = device_create_file(dev, &mce_bank_devs[j].attr);
if (err)
goto error2;
}
cpumask_set_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = dev;
return 0;
error2:
while (--j >= 0)
device_remove_file(dev, &mce_bank_devs[j].attr);
error:
while (--i >= 0)
device_remove_file(dev, mce_device_attrs[i]);
device_unregister(dev);
return err;
}
static void mce_device_remove(unsigned int cpu)
{
struct device *dev = per_cpu(mce_device, cpu);
int i;
if (!cpumask_test_cpu(cpu, mce_device_initialized))
return;
for (i = 0; mce_device_attrs[i]; i++)
device_remove_file(dev, mce_device_attrs[i]);
for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
device_remove_file(dev, &mce_bank_devs[i].attr);
device_unregister(dev);
cpumask_clear_cpu(cpu, mce_device_initialized);
per_cpu(mce_device, cpu) = NULL;
}
static void mce_disable_cpu(void)
{
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
if (!cpuhp_tasks_frozen)
cmci_clear();
vendor_disable_error_reporting();
}
static void mce_reenable_cpu(void)
{
struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
int i;
if (!mce_available(raw_cpu_ptr(&cpu_info)))
return;
if (!cpuhp_tasks_frozen)
cmci_reenable();
for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
struct mce_bank *b = &mce_banks[i];
if (b->init)
wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
}
}
static int mce_cpu_dead(unsigned int cpu)
{
mce_intel_hcpu_update(cpu);
if (!cpuhp_tasks_frozen)
cmci_rediscover();
return 0;
}
static int mce_cpu_online(unsigned int cpu)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
int ret;
mce_device_create(cpu);
ret = mce_threshold_create_device(cpu);
if (ret) {
mce_device_remove(cpu);
return ret;
}
mce_reenable_cpu();
mce_start_timer(t);
return 0;
}
static int mce_cpu_pre_down(unsigned int cpu)
{
struct timer_list *t = this_cpu_ptr(&mce_timer);
mce_disable_cpu();
del_timer_sync(t);
mce_threshold_remove_device(cpu);
mce_device_remove(cpu);
return 0;
}
static __init void mce_init_banks(void)
{
int i;
for (i = 0; i < MAX_NR_BANKS; i++) {
struct mce_bank_dev *b = &mce_bank_devs[i];
struct device_attribute *a = &b->attr;
b->bank = i;
sysfs_attr_init(&a->attr);
a->attr.name = b->attrname;
snprintf(b->attrname, ATTR_LEN, "bank%d", i);
a->attr.mode = 0644;
a->show = show_bank;
a->store = set_bank;
}
}
static __init int mcheck_init_device(void)
{
int err;
MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
if (!mce_available(&boot_cpu_data)) {
err = -EIO;
goto err_out;
}
if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
err = -ENOMEM;
goto err_out;
}
mce_init_banks();
err = subsys_system_register(&mce_subsys, NULL);
if (err)
goto err_out_mem;
err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
mce_cpu_dead);
if (err)
goto err_out_mem;
err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
mce_cpu_online, mce_cpu_pre_down);
if (err < 0)
goto err_out_online;
register_syscore_ops(&mce_syscore_ops);
return 0;
err_out_online:
cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
err_out_mem:
free_cpumask_var(mce_device_initialized);
err_out:
pr_err("Unable to init MCE device (rc: %d)\n", err);
return err;
}
device_initcall_sync(mcheck_init_device);
static int __init mcheck_disable(char *str)
{
mca_cfg.disabled = 1;
return 1;
}
__setup("nomce", mcheck_disable);
#ifdef CONFIG_DEBUG_FS
struct dentry *mce_get_debugfs_dir(void)
{
static struct dentry *dmce;
if (!dmce)
dmce = debugfs_create_dir("mce", NULL);
return dmce;
}
static void mce_reset(void)
{
atomic_set(&mce_fake_panicked, 0);
atomic_set(&mce_executing, 0);
atomic_set(&mce_callin, 0);
atomic_set(&global_nwo, 0);
cpumask_setall(&mce_missing_cpus);
}
static int fake_panic_get(void *data, u64 *val)
{
*val = fake_panic;
return 0;
}
static int fake_panic_set(void *data, u64 val)
{
mce_reset();
fake_panic = val;
return 0;
}
DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
"%llu\n");
static void __init mcheck_debugfs_init(void)
{
struct dentry *dmce;
dmce = mce_get_debugfs_dir();
debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
&fake_panic_fops);
}
#else
static void __init mcheck_debugfs_init(void) { }
#endif
static int __init mcheck_late_init(void)
{
if (mca_cfg.recovery)
enable_copy_mc_fragile();
mcheck_debugfs_init();
mce_schedule_work();
return 0;
}
late_initcall