#include "../wifi.h"
#include "../pci.h"
#include "../ps.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "../rtl8723com/phy_common.h"
#include "rf.h"
#include "dm.h"
#include "../rtl8723com/dm_common.h"
#include "table.h"
#include "trx.h"
#include <linux/kernel.h>
static bool _rtl8723be_phy_bb8723b_config_parafile(struct ieee80211_hw *hw);
static bool _rtl8723be_phy_config_mac_with_headerfile(struct ieee80211_hw *hw);
static bool _rtl8723be_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype);
static bool _rtl8723be_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
u8 configtype);
static bool _rtl8723be_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
u8 channel, u8 *stage,
u8 *step, u32 *delay);
static void rtl8723be_phy_set_rf_on(struct ieee80211_hw *hw);
static void rtl8723be_phy_set_io(struct ieee80211_hw *hw);
u32 rtl8723be_phy_query_rf_reg(struct ieee80211_hw *hw, enum radio_path rfpath,
u32 regaddr, u32 bitmask)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, readback_value, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
regaddr, rfpath, bitmask);
spin_lock(&rtlpriv->locks.rf_lock);
original_value = rtl8723_phy_rf_serial_read(hw, rfpath, regaddr);
bitshift = rtl8723_phy_calculate_bit_shift(bitmask);
readback_value = (original_value & bitmask) >> bitshift;
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
regaddr, rfpath, bitmask, original_value);
return readback_value;
}
void rtl8723be_phy_set_rf_reg(struct ieee80211_hw *hw, enum radio_path path,
u32 regaddr, u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u32 original_value, bitshift;
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, path);
spin_lock(&rtlpriv->locks.rf_lock);
if (bitmask != RFREG_OFFSET_MASK) {
original_value = rtl8723_phy_rf_serial_read(hw, path,
regaddr);
bitshift = rtl8723_phy_calculate_bit_shift(bitmask);
data = ((original_value & (~bitmask)) |
(data << bitshift));
}
rtl8723_phy_rf_serial_write(hw, path, regaddr, data);
spin_unlock(&rtlpriv->locks.rf_lock);
rtl_dbg(rtlpriv, COMP_RF, DBG_TRACE,
"regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
regaddr, bitmask, data, path);
}
bool rtl8723be_phy_mac_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool rtstatus = _rtl8723be_phy_config_mac_with_headerfile(hw);
rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
return rtstatus;
}
bool rtl8723be_phy_bb_config(struct ieee80211_hw *hw)
{
bool rtstatus = true;
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 regval;
u8 b_reg_hwparafile = 1;
u32 tmp;
u8 crystalcap = rtlpriv->efuse.crystalcap;
rtl8723_phy_init_bb_rf_reg_def(hw);
regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
regval | BIT(13) | BIT(0) | BIT(1));
rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
FEN_BB_GLB_RSTN | FEN_BBRSTB);
tmp = rtl_read_dword(rtlpriv, 0x4c);
rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL + 1, 0x80);
if (b_reg_hwparafile == 1)
rtstatus = _rtl8723be_phy_bb8723b_config_parafile(hw);
crystalcap = crystalcap & 0x3F;
rtl_set_bbreg(hw, REG_MAC_PHY_CTRL, 0xFFF000,
(crystalcap | crystalcap << 6));
return rtstatus;
}
bool rtl8723be_phy_rf_config(struct ieee80211_hw *hw)
{
return rtl8723be_phy_rf6052_config(hw);
}
static bool _rtl8723be_check_positive(struct ieee80211_hw *hw,
const u32 condition1,
const u32 condition2)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u32 cut_ver = ((rtlhal->version & CHIP_VER_RTL_MASK)
>> CHIP_VER_RTL_SHIFT);
u32 intf = (rtlhal->interface == INTF_USB ? BIT(1) : BIT(0));
u8 board_type = ((rtlhal->board_type & BIT(4)) >> 4) << 0 |
((rtlhal->board_type & BIT(3)) >> 3) << 1 |
((rtlhal->board_type & BIT(7)) >> 7) << 2 |
((rtlhal->board_type & BIT(6)) >> 6) << 3 |
((rtlhal->board_type & BIT(2)) >> 2) << 4;
u32 cond1 = condition1, cond2 = condition2;
u32 driver1 = cut_ver << 24 |
0 << 20 |
0x04 << 16 |
rtlhal->package_type << 12 |
intf << 8 |
board_type;
u32 driver2 = rtlhal->type_glna << 0 |
rtlhal->type_gpa << 8 |
rtlhal->type_alna << 16 |
rtlhal->type_apa << 24;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"===> [8812A] CheckPositive (cond1, cond2) = (0x%X 0x%X)\n",
cond1, cond2);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"===> [8812A] CheckPositive (driver1, driver2) = (0x%X 0x%X)\n",
driver1, driver2);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"(Platform, Interface) = (0x%X, 0x%X)\n", 0x04, intf);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"(Board, Package) = (0x%X, 0x%X)\n",
rtlhal->board_type, rtlhal->package_type);
if (((cond1 & 0x0000F000) != 0) && ((cond1 & 0x0000F000) !=
(driver1 & 0x0000F000)))
return false;
if (((cond1 & 0x0F000000) != 0) && ((cond1 & 0x0F000000) !=
(driver1 & 0x0F000000)))
return false;
cond1 &= 0x00FF0FFF;
driver1 &= 0x00FF0FFF;
if ((cond1 & driver1) == cond1) {
u32 mask = 0;
if ((cond1 & 0x0F) == 0)
return true;
if ((cond1 & BIT(0)) != 0)
mask |= 0x000000FF;
if ((cond1 & BIT(1)) != 0)
mask |= 0x0000FF00;
if ((cond1 & BIT(2)) != 0)
mask |= 0x00FF0000;
if ((cond1 & BIT(3)) != 0)
mask |= 0xFF000000;
if ((cond2 & mask) == (driver2 & mask))
return true;
else
return false;
}
return false;
}
static void _rtl8723be_config_rf_reg(struct ieee80211_hw *hw, u32 addr,
u32 data, enum radio_path rfpath,
u32 regaddr)
{
if (addr == 0xfe || addr == 0xffe) {
mdelay(50);
} else {
rtl_set_rfreg(hw, rfpath, regaddr, RFREG_OFFSET_MASK, data);
udelay(1);
}
}
static void _rtl8723be_config_rf_radio_a(struct ieee80211_hw *hw,
u32 addr, u32 data)
{
u32 content = 0x1000;
u32 maskforphyset = (u32)(content & 0xE000);
_rtl8723be_config_rf_reg(hw, addr, data, RF90_PATH_A,
addr | maskforphyset);
}
static void _rtl8723be_phy_init_tx_power_by_rate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 band, path, txnum, section;
for (band = BAND_ON_2_4G; band <= BAND_ON_5G; ++band)
for (path = 0; path < TX_PWR_BY_RATE_NUM_RF; ++path)
for (txnum = 0; txnum < TX_PWR_BY_RATE_NUM_RF; ++txnum)
for (section = 0;
section < TX_PWR_BY_RATE_NUM_SECTION;
++section)
rtlphy->tx_power_by_rate_offset
[band][path][txnum][section] = 0;
}
static void _rtl8723be_config_bb_reg(struct ieee80211_hw *hw,
u32 addr, u32 data)
{
if (addr == 0xfe) {
mdelay(50);
} else if (addr == 0xfd) {
mdelay(5);
} else if (addr == 0xfc) {
mdelay(1);
} else if (addr == 0xfb) {
udelay(50);
} else if (addr == 0xfa) {
udelay(5);
} else if (addr == 0xf9) {
udelay(1);
} else {
rtl_set_bbreg(hw, addr, MASKDWORD, data);
udelay(1);
}
}
static void _rtl8723be_phy_set_txpower_by_rate_base(struct ieee80211_hw *hw,
u8 band,
u8 path, u8 rate_section,
u8 txnum, u8 value)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
if (path > RF90_PATH_D) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid Rf Path %d in phy_SetTxPowerByRatBase()\n",
path);
return;
}
if (band == BAND_ON_2_4G) {
switch (rate_section) {
case CCK:
rtlphy->txpwr_by_rate_base_24g[path][txnum][0] = value;
break;
case OFDM:
rtlphy->txpwr_by_rate_base_24g[path][txnum][1] = value;
break;
case HT_MCS0_MCS7:
rtlphy->txpwr_by_rate_base_24g[path][txnum][2] = value;
break;
case HT_MCS8_MCS15:
rtlphy->txpwr_by_rate_base_24g[path][txnum][3] = value;
break;
default:
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_SetTxPowerByRateBase()\n",
rate_section, path, txnum);
break;
}
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid Band %d in PHY_SetTxPowerByRateBase()\n",
band);
}
}
static u8 _rtl8723be_phy_get_txpower_by_rate_base(struct ieee80211_hw *hw,
u8 band, u8 path, u8 txnum,
u8 rate_section)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 value = 0;
if (path > RF90_PATH_D) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid Rf Path %d in PHY_GetTxPowerByRateBase()\n",
path);
return 0;
}
if (band == BAND_ON_2_4G) {
switch (rate_section) {
case CCK:
value = rtlphy->txpwr_by_rate_base_24g[path][txnum][0];
break;
case OFDM:
value = rtlphy->txpwr_by_rate_base_24g[path][txnum][1];
break;
case HT_MCS0_MCS7:
value = rtlphy->txpwr_by_rate_base_24g[path][txnum][2];
break;
case HT_MCS8_MCS15:
value = rtlphy->txpwr_by_rate_base_24g[path][txnum][3];
break;
default:
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid RateSection %d in Band 2.4G, Rf Path %d, %dTx in PHY_GetTxPowerByRateBase()\n",
rate_section, path, txnum);
break;
}
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Invalid Band %d in PHY_GetTxPowerByRateBase()\n",
band);
}
return value;
}
static void _rtl8723be_phy_store_txpower_by_rate_base(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u16 rawvalue = 0;
u8 base = 0, path = 0;
for (path = RF90_PATH_A; path <= RF90_PATH_B; ++path) {
if (path == RF90_PATH_A) {
rawvalue = (u16)(rtlphy->tx_power_by_rate_offset
[BAND_ON_2_4G][path][RF_1TX][3] >> 24) & 0xFF;
base = (rawvalue >> 4) * 10 + (rawvalue & 0xF);
_rtl8723be_phy_set_txpower_by_rate_base(hw,
BAND_ON_2_4G, path, CCK, RF_1TX, base);
} else if (path == RF90_PATH_B) {
rawvalue = (u16)(rtlphy->tx_power_by_rate_offset
[BAND_ON_2_4G][path][RF_1TX][3] >> 0) & 0xFF;
base = (rawvalue >> 4) * 10 + (rawvalue & 0xF);
_rtl8723be_phy_set_txpower_by_rate_base(hw,
BAND_ON_2_4G,
path, CCK,
RF_1TX, base);
}
rawvalue = (u16)(rtlphy->tx_power_by_rate_offset
[BAND_ON_2_4G][path][RF_1TX][1] >> 24) & 0xFF;
base = (rawvalue >> 4) * 10 + (rawvalue & 0xF);
_rtl8723be_phy_set_txpower_by_rate_base(hw, BAND_ON_2_4G,
path, OFDM, RF_1TX,
base);
rawvalue = (u16)(rtlphy->tx_power_by_rate_offset
[BAND_ON_2_4G][path][RF_1TX][5] >> 24) & 0xFF;
base = (rawvalue >> 4) * 10 + (rawvalue & 0xF);
_rtl8723be_phy_set_txpower_by_rate_base(hw, BAND_ON_2_4G,
path, HT_MCS0_MCS7,
RF_1TX, base);
rawvalue = (u16)(rtlphy->tx_power_by_rate_offset
[BAND_ON_2_4G][path][RF_2TX][7] >> 24) & 0xFF;
base = (rawvalue >> 4) * 10 + (rawvalue & 0xF);
_rtl8723be_phy_set_txpower_by_rate_base(hw, BAND_ON_2_4G,
path, HT_MCS8_MCS15,
RF_2TX, base);
}
}
static void _phy_convert_txpower_dbm_to_relative_value(u32 *data, u8 start,
u8 end, u8 base_val)
{
s8 i = 0;
u8 temp_value = 0;
u32 temp_data = 0;
for (i = 3; i >= 0; --i) {
if (i >= start && i <= end) {
temp_value = (u8)(*data >> (i * 8)) & 0xF;
temp_value += ((u8)((*data >> (i*8 + 4)) & 0xF)) * 10;
temp_value = (temp_value > base_val) ?
temp_value - base_val :
base_val - temp_value;
} else {
temp_value = (u8)(*data >> (i * 8)) & 0xFF;
}
temp_data <<= 8;
temp_data |= temp_value;
}
*data = temp_data;
}
static void _rtl8723be_phy_convert_txpower_dbm_to_relative_value(
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 base = 0, rfpath = RF90_PATH_A;
base = _rtl8723be_phy_get_txpower_by_rate_base(hw,
BAND_ON_2_4G, rfpath, RF_1TX, CCK);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][2],
1, 1, base);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][3],
1, 3, base);
base = _rtl8723be_phy_get_txpower_by_rate_base(hw, BAND_ON_2_4G, rfpath,
RF_1TX, OFDM);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][0],
0, 3, base);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][1],
0, 3, base);
base = _rtl8723be_phy_get_txpower_by_rate_base(hw, BAND_ON_2_4G,
rfpath, RF_1TX, HT_MCS0_MCS7);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][4],
0, 3, base);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_1TX][5],
0, 3, base);
base = _rtl8723be_phy_get_txpower_by_rate_base(hw, BAND_ON_2_4G,
rfpath, RF_2TX,
HT_MCS8_MCS15);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_2TX][6],
0, 3, base);
_phy_convert_txpower_dbm_to_relative_value(
&rtlphy->tx_power_by_rate_offset[BAND_ON_2_4G][rfpath][RF_2TX][7],
0, 3, base);
rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE,
"<===%s\n", __func__);
}
static void phy_txpower_by_rate_config(struct ieee80211_hw *hw)
{
_rtl8723be_phy_store_txpower_by_rate_base(hw);
_rtl8723be_phy_convert_txpower_dbm_to_relative_value(hw);
}
static bool _rtl8723be_phy_bb8723b_config_parafile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
bool rtstatus;
if (rtlpriv->rtlhal.interface == INTF_USB) {
rtl_write_dword(rtlpriv, 0x948, 0x0);
} else {
if (rtlpriv->btcoexist.btc_info.single_ant_path == 0)
rtl_write_dword(rtlpriv, 0x948, 0x280);
else
rtl_write_dword(rtlpriv, 0x948, 0x0);
}
rtstatus = _rtl8723be_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_PHY_REG);
if (!rtstatus) {
pr_err("Write BB Reg Fail!!\n");
return false;
}
_rtl8723be_phy_init_tx_power_by_rate(hw);
if (!rtlefuse->autoload_failflag) {
rtlphy->pwrgroup_cnt = 0;
rtstatus = _rtl8723be_phy_config_bb_with_pgheaderfile(hw,
BASEBAND_CONFIG_PHY_REG);
}
phy_txpower_by_rate_config(hw);
if (!rtstatus) {
pr_err("BB_PG Reg Fail!!\n");
return false;
}
rtstatus = _rtl8723be_phy_config_bb_with_headerfile(hw,
BASEBAND_CONFIG_AGC_TAB);
if (!rtstatus) {
pr_err("AGC Table Fail\n");
return false;
}
rtlphy->cck_high_power = (bool)(rtl_get_bbreg(hw,
RFPGA0_XA_HSSIPARAMETER2,
0x200));
return true;
}
static bool rtl8723be_phy_config_with_headerfile(struct ieee80211_hw *hw,
u32 *array_table,
u16 arraylen,
void (*set_reg)(struct ieee80211_hw *hw, u32 regaddr, u32 data))
{
#define COND_ELSE 2
#define COND_ENDIF 3
int i = 0;
u8 cond;
bool matched = true, skipped = false;
while ((i + 1) < arraylen) {
u32 v1 = array_table[i];
u32 v2 = array_table[i + 1];
if (v1 & (BIT(31) | BIT(30))) {
if (v1 & BIT(31)) {
cond = (u8)((v1 & (BIT(29) | BIT(28))) >> 28);
if (cond == COND_ENDIF) {
matched = true;
skipped = false;
} else if (cond == COND_ELSE) {
matched = skipped ? false : true;
} else {
if (skipped) {
matched = false;
} else {
if (_rtl8723be_check_positive(
hw, v1, v2)) {
matched = true;
skipped = true;
} else {
matched = false;
skipped = false;
}
}
}
} else if (v1 & BIT(30)) {
}
} else {
if (matched)
set_reg(hw, v1, v2);
}
i = i + 2;
}
return true;
}
static bool _rtl8723be_phy_config_mac_with_headerfile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Read rtl8723beMACPHY_Array\n");
return rtl8723be_phy_config_with_headerfile(hw,
RTL8723BEMAC_1T_ARRAY, RTL8723BEMAC_1T_ARRAYLEN,
rtl_write_byte_with_val32);
}
static bool _rtl8723be_phy_config_bb_with_headerfile(struct ieee80211_hw *hw,
u8 configtype)
{
if (configtype == BASEBAND_CONFIG_PHY_REG)
return rtl8723be_phy_config_with_headerfile(hw,
RTL8723BEPHY_REG_1TARRAY,
RTL8723BEPHY_REG_1TARRAYLEN,
_rtl8723be_config_bb_reg);
else if (configtype == BASEBAND_CONFIG_AGC_TAB)
return rtl8723be_phy_config_with_headerfile(hw,
RTL8723BEAGCTAB_1TARRAY,
RTL8723BEAGCTAB_1TARRAYLEN,
rtl_set_bbreg_with_dwmask);
return false;
}
static u8 _rtl8723be_get_rate_section_index(u32 regaddr)
{
u8 index = 0;
switch (regaddr) {
case RTXAGC_A_RATE18_06:
index = 0;
break;
case RTXAGC_A_RATE54_24:
index = 1;
break;
case RTXAGC_A_CCK1_MCS32:
index = 2;
break;
case RTXAGC_B_CCK11_A_CCK2_11:
index = 3;
break;
case RTXAGC_A_MCS03_MCS00:
index = 4;
break;
case RTXAGC_A_MCS07_MCS04:
index = 5;
break;
case RTXAGC_A_MCS11_MCS08:
index = 6;
break;
case RTXAGC_A_MCS15_MCS12:
index = 7;
break;
case RTXAGC_B_RATE18_06:
index = 0;
break;
case RTXAGC_B_RATE54_24:
index = 1;
break;
case RTXAGC_B_CCK1_55_MCS32:
index = 2;
break;
case RTXAGC_B_MCS03_MCS00:
index = 4;
break;
case RTXAGC_B_MCS07_MCS04:
index = 5;
break;
case RTXAGC_B_MCS11_MCS08:
index = 6;
break;
case RTXAGC_B_MCS15_MCS12:
index = 7;
break;
default:
regaddr &= 0xFFF;
if (regaddr >= 0xC20 && regaddr <= 0xC4C)
index = (u8)((regaddr - 0xC20) / 4);
else if (regaddr >= 0xE20 && regaddr <= 0xE4C)
index = (u8)((regaddr - 0xE20) / 4);
break;
}
return index;
}
static void _rtl8723be_store_tx_power_by_rate(struct ieee80211_hw *hw,
u32 band, u32 rfpath,
u32 txnum, u32 regaddr,
u32 bitmask, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 rate_section = _rtl8723be_get_rate_section_index(regaddr);
if (band != BAND_ON_2_4G && band != BAND_ON_5G) {
rtl_dbg(rtlpriv, FPHY, PHY_TXPWR, "Invalid Band %d\n", band);
return;
}
if (rfpath > MAX_RF_PATH - 1) {
rtl_dbg(rtlpriv, FPHY, PHY_TXPWR,
"Invalid RfPath %d\n", rfpath);
return;
}
if (txnum > MAX_RF_PATH - 1) {
rtl_dbg(rtlpriv, FPHY, PHY_TXPWR, "Invalid TxNum %d\n", txnum);
return;
}
rtlphy->tx_power_by_rate_offset[band][rfpath][txnum][rate_section] =
data;
}
static bool _rtl8723be_phy_config_bb_with_pgheaderfile(struct ieee80211_hw *hw,
u8 configtype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
u32 *phy_regarray_table_pg;
u16 phy_regarray_pg_len;
u32 v1 = 0, v2 = 0, v3 = 0, v4 = 0, v5 = 0, v6 = 0;
phy_regarray_pg_len = RTL8723BEPHY_REG_ARRAY_PGLEN;
phy_regarray_table_pg = RTL8723BEPHY_REG_ARRAY_PG;
if (configtype == BASEBAND_CONFIG_PHY_REG) {
for (i = 0; i < phy_regarray_pg_len; i = i + 6) {
v1 = phy_regarray_table_pg[i];
v2 = phy_regarray_table_pg[i+1];
v3 = phy_regarray_table_pg[i+2];
v4 = phy_regarray_table_pg[i+3];
v5 = phy_regarray_table_pg[i+4];
v6 = phy_regarray_table_pg[i+5];
if (v1 < 0xcdcdcdcd) {
if (phy_regarray_table_pg[i] == 0xfe ||
phy_regarray_table_pg[i] == 0xffe)
mdelay(50);
else
_rtl8723be_store_tx_power_by_rate(hw,
v1, v2, v3, v4, v5, v6);
continue;
}
}
} else {
rtl_dbg(rtlpriv, COMP_SEND, DBG_TRACE,
"configtype != BaseBand_Config_PHY_REG\n");
}
return true;
}
bool rtl8723be_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
enum radio_path rfpath)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
bool ret = true;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
switch (rfpath) {
case RF90_PATH_A:
ret = rtl8723be_phy_config_with_headerfile(hw,
RTL8723BE_RADIOA_1TARRAY,
RTL8723BE_RADIOA_1TARRAYLEN,
_rtl8723be_config_rf_radio_a);
if (rtlhal->oem_id == RT_CID_819X_HP)
_rtl8723be_config_rf_radio_a(hw, 0x52, 0x7E4BD);
break;
case RF90_PATH_B:
case RF90_PATH_C:
break;
case RF90_PATH_D:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", rfpath);
break;
}
return ret;
}
void rtl8723be_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
rtlphy->default_initialgain[0] =
(u8)rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[1] =
(u8)rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[2] =
(u8)rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1, MASKBYTE0);
rtlphy->default_initialgain[3] =
(u8)rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1, MASKBYTE0);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Default initial gain (c50=0x%x, c58=0x%x, c60=0x%x, c68=0x%x\n",
rtlphy->default_initialgain[0],
rtlphy->default_initialgain[1],
rtlphy->default_initialgain[2],
rtlphy->default_initialgain[3]);
rtlphy->framesync = (u8)rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
MASKBYTE0);
rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
MASKDWORD);
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Default framesync (0x%x) = 0x%x\n",
ROFDM0_RXDETECTOR3, rtlphy->framesync);
}
static u8 _rtl8723be_phy_get_ratesection_intxpower_byrate(enum radio_path path,
u8 rate)
{
u8 rate_section = 0;
switch (rate) {
case DESC92C_RATE1M:
rate_section = 2;
break;
case DESC92C_RATE2M:
case DESC92C_RATE5_5M:
if (path == RF90_PATH_A)
rate_section = 3;
else if (path == RF90_PATH_B)
rate_section = 2;
break;
case DESC92C_RATE11M:
rate_section = 3;
break;
case DESC92C_RATE6M:
case DESC92C_RATE9M:
case DESC92C_RATE12M:
case DESC92C_RATE18M:
rate_section = 0;
break;
case DESC92C_RATE24M:
case DESC92C_RATE36M:
case DESC92C_RATE48M:
case DESC92C_RATE54M:
rate_section = 1;
break;
case DESC92C_RATEMCS0:
case DESC92C_RATEMCS1:
case DESC92C_RATEMCS2:
case DESC92C_RATEMCS3:
rate_section = 4;
break;
case DESC92C_RATEMCS4:
case DESC92C_RATEMCS5:
case DESC92C_RATEMCS6:
case DESC92C_RATEMCS7:
rate_section = 5;
break;
case DESC92C_RATEMCS8:
case DESC92C_RATEMCS9:
case DESC92C_RATEMCS10:
case DESC92C_RATEMCS11:
rate_section = 6;
break;
case DESC92C_RATEMCS12:
case DESC92C_RATEMCS13:
case DESC92C_RATEMCS14:
case DESC92C_RATEMCS15:
rate_section = 7;
break;
default:
WARN_ONCE(true, "rtl8723be: Rate_Section is Illegal\n");
break;
}
return rate_section;
}
static u8 _rtl8723be_get_txpower_by_rate(struct ieee80211_hw *hw,
enum band_type band,
enum radio_path rfpath, u8 rate)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u8 shift = 0, rate_section, tx_num;
s8 tx_pwr_diff = 0;
rate_section = _rtl8723be_phy_get_ratesection_intxpower_byrate(rfpath,
rate);
tx_num = RF_TX_NUM_NONIMPLEMENT;
if (tx_num == RF_TX_NUM_NONIMPLEMENT) {
if (rate >= DESC92C_RATEMCS8 && rate <= DESC92C_RATEMCS15)
tx_num = RF_2TX;
else
tx_num = RF_1TX;
}
switch (rate) {
case DESC92C_RATE6M:
case DESC92C_RATE24M:
case DESC92C_RATEMCS0:
case DESC92C_RATEMCS4:
case DESC92C_RATEMCS8:
case DESC92C_RATEMCS12:
shift = 0;
break;
case DESC92C_RATE1M:
case DESC92C_RATE2M:
case DESC92C_RATE9M:
case DESC92C_RATE36M:
case DESC92C_RATEMCS1:
case DESC92C_RATEMCS5:
case DESC92C_RATEMCS9:
case DESC92C_RATEMCS13:
shift = 8;
break;
case DESC92C_RATE5_5M:
case DESC92C_RATE12M:
case DESC92C_RATE48M:
case DESC92C_RATEMCS2:
case DESC92C_RATEMCS6:
case DESC92C_RATEMCS10:
case DESC92C_RATEMCS14:
shift = 16;
break;
case DESC92C_RATE11M:
case DESC92C_RATE18M:
case DESC92C_RATE54M:
case DESC92C_RATEMCS3:
case DESC92C_RATEMCS7:
case DESC92C_RATEMCS11:
case DESC92C_RATEMCS15:
shift = 24;
break;
default:
WARN_ONCE(true, "rtl8723be: Rate_Section is Illegal\n");
break;
}
tx_pwr_diff = (u8)(rtlphy->tx_power_by_rate_offset[band][rfpath][tx_num]
[rate_section] >> shift) & 0xff;
return tx_pwr_diff;
}
static u8 _rtl8723be_get_txpower_index(struct ieee80211_hw *hw, u8 path,
u8 rate, u8 bandwidth, u8 channel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 index = (channel - 1);
u8 txpower = 0;
u8 power_diff_byrate = 0;
if (channel > 14 || channel < 1) {
index = 0;
rtl_dbg(rtlpriv, COMP_POWER_TRACKING, DBG_LOUD,
"Illegal channel!\n");
}
if (RX_HAL_IS_CCK_RATE(rate))
txpower = rtlefuse->txpwrlevel_cck[path][index];
else if (DESC92C_RATE6M <= rate)
txpower = rtlefuse->txpwrlevel_ht40_1s[path][index];
else
rtl_dbg(rtlpriv, COMP_POWER_TRACKING, DBG_LOUD,
"invalid rate\n");
if (DESC92C_RATE6M <= rate && rate <= DESC92C_RATE54M &&
!RX_HAL_IS_CCK_RATE(rate))
txpower += rtlefuse->txpwr_legacyhtdiff[0][TX_1S];
if (bandwidth == HT_CHANNEL_WIDTH_20) {
if (DESC92C_RATEMCS0 <= rate && rate <= DESC92C_RATEMCS15)
txpower += rtlefuse->txpwr_ht20diff[0][TX_1S];
if (DESC92C_RATEMCS8 <= rate && rate <= DESC92C_RATEMCS15)
txpower += rtlefuse->txpwr_ht20diff[0][TX_2S];
} else if (bandwidth == HT_CHANNEL_WIDTH_20_40) {
if (DESC92C_RATEMCS0 <= rate && rate <= DESC92C_RATEMCS15)
txpower += rtlefuse->txpwr_ht40diff[0][TX_1S];
if (DESC92C_RATEMCS8 <= rate && rate <= DESC92C_RATEMCS15)
txpower += rtlefuse->txpwr_ht40diff[0][TX_2S];
}
if (rtlefuse->eeprom_regulatory != 2)
power_diff_byrate = _rtl8723be_get_txpower_by_rate(hw,
BAND_ON_2_4G,
path, rate);
txpower += power_diff_byrate;
if (txpower > MAX_POWER_INDEX)
txpower = MAX_POWER_INDEX;
return txpower;
}
static void _rtl8723be_phy_set_txpower_index(struct ieee80211_hw *hw,
u8 power_index, u8 path, u8 rate)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
if (path == RF90_PATH_A) {
switch (rate) {
case DESC92C_RATE1M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_CCK1_MCS32,
MASKBYTE1, power_index);
break;
case DESC92C_RATE2M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_B_CCK11_A_CCK2_11,
MASKBYTE1, power_index);
break;
case DESC92C_RATE5_5M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_B_CCK11_A_CCK2_11,
MASKBYTE2, power_index);
break;
case DESC92C_RATE11M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_B_CCK11_A_CCK2_11,
MASKBYTE3, power_index);
break;
case DESC92C_RATE6M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE18_06,
MASKBYTE0, power_index);
break;
case DESC92C_RATE9M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE18_06,
MASKBYTE1, power_index);
break;
case DESC92C_RATE12M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE18_06,
MASKBYTE2, power_index);
break;
case DESC92C_RATE18M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE18_06,
MASKBYTE3, power_index);
break;
case DESC92C_RATE24M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE54_24,
MASKBYTE0, power_index);
break;
case DESC92C_RATE36M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE54_24,
MASKBYTE1, power_index);
break;
case DESC92C_RATE48M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE54_24,
MASKBYTE2, power_index);
break;
case DESC92C_RATE54M:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_RATE54_24,
MASKBYTE3, power_index);
break;
case DESC92C_RATEMCS0:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS03_MCS00,
MASKBYTE0, power_index);
break;
case DESC92C_RATEMCS1:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS03_MCS00,
MASKBYTE1, power_index);
break;
case DESC92C_RATEMCS2:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS03_MCS00,
MASKBYTE2, power_index);
break;
case DESC92C_RATEMCS3:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS03_MCS00,
MASKBYTE3, power_index);
break;
case DESC92C_RATEMCS4:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS07_MCS04,
MASKBYTE0, power_index);
break;
case DESC92C_RATEMCS5:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS07_MCS04,
MASKBYTE1, power_index);
break;
case DESC92C_RATEMCS6:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS07_MCS04,
MASKBYTE2, power_index);
break;
case DESC92C_RATEMCS7:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS07_MCS04,
MASKBYTE3, power_index);
break;
case DESC92C_RATEMCS8:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS11_MCS08,
MASKBYTE0, power_index);
break;
case DESC92C_RATEMCS9:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS11_MCS08,
MASKBYTE1, power_index);
break;
case DESC92C_RATEMCS10:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS11_MCS08,
MASKBYTE2, power_index);
break;
case DESC92C_RATEMCS11:
rtl8723_phy_set_bb_reg(hw, RTXAGC_A_MCS11_MCS08,
MASKBYTE3, power_index);
break;
default:
rtl_dbg(rtlpriv, COMP_POWER, DBG_LOUD, "Invalid Rate!!\n");
break;
}
} else {
rtl_dbg(rtlpriv, COMP_POWER, DBG_LOUD, "Invalid RFPath!!\n");
}
}
void rtl8723be_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
{
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 cck_rates[] = {DESC92C_RATE1M, DESC92C_RATE2M,
DESC92C_RATE5_5M, DESC92C_RATE11M};
u8 ofdm_rates[] = {DESC92C_RATE6M, DESC92C_RATE9M,
DESC92C_RATE12M, DESC92C_RATE18M,
DESC92C_RATE24M, DESC92C_RATE36M,
DESC92C_RATE48M, DESC92C_RATE54M};
u8 ht_rates_1t[] = {DESC92C_RATEMCS0, DESC92C_RATEMCS1,
DESC92C_RATEMCS2, DESC92C_RATEMCS3,
DESC92C_RATEMCS4, DESC92C_RATEMCS5,
DESC92C_RATEMCS6, DESC92C_RATEMCS7};
u8 i;
u8 power_index;
if (!rtlefuse->txpwr_fromeprom)
return;
for (i = 0; i < ARRAY_SIZE(cck_rates); i++) {
power_index = _rtl8723be_get_txpower_index(hw, RF90_PATH_A,
cck_rates[i],
rtl_priv(hw)->phy.current_chan_bw,
channel);
_rtl8723be_phy_set_txpower_index(hw, power_index, RF90_PATH_A,
cck_rates[i]);
}
for (i = 0; i < ARRAY_SIZE(ofdm_rates); i++) {
power_index = _rtl8723be_get_txpower_index(hw, RF90_PATH_A,
ofdm_rates[i],
rtl_priv(hw)->phy.current_chan_bw,
channel);
_rtl8723be_phy_set_txpower_index(hw, power_index, RF90_PATH_A,
ofdm_rates[i]);
}
for (i = 0; i < ARRAY_SIZE(ht_rates_1t); i++) {
power_index = _rtl8723be_get_txpower_index(hw, RF90_PATH_A,
ht_rates_1t[i],
rtl_priv(hw)->phy.current_chan_bw,
channel);
_rtl8723be_phy_set_txpower_index(hw, power_index, RF90_PATH_A,
ht_rates_1t[i]);
}
}
void rtl8723be_phy_scan_operation_backup(struct ieee80211_hw *hw, u8 operation)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
enum io_type iotype;
if (!is_hal_stop(rtlhal)) {
switch (operation) {
case SCAN_OPT_BACKUP_BAND0:
iotype = IO_CMD_PAUSE_BAND0_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
case SCAN_OPT_RESTORE:
iotype = IO_CMD_RESUME_DM_BY_SCAN;
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_IO_CMD,
(u8 *)&iotype);
break;
default:
pr_err("Unknown Scan Backup operation.\n");
break;
}
}
}
void rtl8723be_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u8 reg_bw_opmode;
u8 reg_prsr_rsc;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
"Switch to %s bandwidth\n",
rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
"20MHz" : "40MHz");
if (is_hal_stop(rtlhal)) {
rtlphy->set_bwmode_inprogress = false;
return;
}
reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
reg_bw_opmode |= BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
break;
case HT_CHANNEL_WIDTH_20_40:
reg_bw_opmode &= ~BW_OPMODE_20MHZ;
rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
reg_prsr_rsc = (reg_prsr_rsc & 0x90) |
(mac->cur_40_prime_sc << 5);
rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
break;
default:
pr_err("unknown bandwidth: %#X\n",
rtlphy->current_chan_bw);
break;
}
switch (rtlphy->current_chan_bw) {
case HT_CHANNEL_WIDTH_20:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
(mac->cur_40_prime_sc >> 1));
rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
(mac->cur_40_prime_sc ==
HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
pr_err("unknown bandwidth: %#X\n",
rtlphy->current_chan_bw);
break;
}
rtl8723be_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
rtlphy->set_bwmode_inprogress = false;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
}
void rtl8723be_phy_set_bw_mode(struct ieee80211_hw *hw,
enum nl80211_channel_type ch_type)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 tmp_bw = rtlphy->current_chan_bw;
if (rtlphy->set_bwmode_inprogress)
return;
rtlphy->set_bwmode_inprogress = true;
if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
rtl8723be_phy_set_bw_mode_callback(hw);
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"false driver sleep or unload\n");
rtlphy->set_bwmode_inprogress = false;
rtlphy->current_chan_bw = tmp_bw;
}
}
void rtl8723be_phy_sw_chnl_callback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_phy *rtlphy = &rtlpriv->phy;
u32 delay = 0;
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE,
"switch to channel%d\n", rtlphy->current_channel);
if (is_hal_stop(rtlhal))
return;
do {
if (!rtlphy->sw_chnl_inprogress)
break;
if (!_rtl8723be_phy_sw_chnl_step_by_step(hw,
rtlphy->current_channel,
&rtlphy->sw_chnl_stage,
&rtlphy->sw_chnl_step,
&delay)) {
if (delay > 0)
mdelay(delay);
else
continue;
} else {
rtlphy->sw_chnl_inprogress = false;
}
break;
} while (true);
rtl_dbg(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
}
u8 rtl8723be_phy_sw_chnl(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (rtlphy->sw_chnl_inprogress)
return 0;
if (rtlphy->set_bwmode_inprogress)
return 0;
WARN_ONCE((rtlphy->current_channel > 14),
"rtl8723be: WIRELESS_MODE_G but channel>14");
rtlphy->sw_chnl_inprogress = true;
rtlphy->sw_chnl_stage = 0;
rtlphy->sw_chnl_step = 0;
if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
rtl8723be_phy_sw_chnl_callback(hw);
rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
"sw_chnl_inprogress false schedule workitem current channel %d\n",
rtlphy->current_channel);
rtlphy->sw_chnl_inprogress = false;
} else {
rtl_dbg(rtlpriv, COMP_CHAN, DBG_LOUD,
"sw_chnl_inprogress false driver sleep or unload\n");
rtlphy->sw_chnl_inprogress = false;
}
return 1;
}
static bool _rtl8723be_phy_sw_chnl_step_by_step(struct ieee80211_hw *hw,
u8 channel, u8 *stage,
u8 *step, u32 *delay)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
u32 precommoncmdcnt;
struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
u32 postcommoncmdcnt;
struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
u32 rfdependcmdcnt;
struct swchnlcmd *currentcmd = NULL;
u8 rfpath;
u8 num_total_rfpath = rtlphy->num_total_rfpath;
precommoncmdcnt = 0;
rtl8723_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT,
CMDID_SET_TXPOWEROWER_LEVEL,
0, 0, 0);
rtl8723_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
postcommoncmdcnt = 0;
rtl8723_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
MAX_POSTCMD_CNT, CMDID_END,
0, 0, 0);
rfdependcmdcnt = 0;
WARN_ONCE((channel < 1 || channel > 14),
"rtl8723be: illegal channel for Zebra: %d\n", channel);
rtl8723_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT,
CMDID_RF_WRITEREG,
RF_CHNLBW, channel, 10);
rtl8723_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
MAX_RFDEPENDCMD_CNT,
CMDID_END, 0, 0, 0);
do {
switch (*stage) {
case 0:
currentcmd = &precommoncmd[*step];
break;
case 1:
currentcmd = &rfdependcmd[*step];
break;
case 2:
currentcmd = &postcommoncmd[*step];
break;
default:
pr_err("Invalid 'stage' = %d, Check it!\n",
*stage);
return true;
}
if (currentcmd->cmdid == CMDID_END) {
if ((*stage) == 2) {
return true;
} else {
(*stage)++;
(*step) = 0;
continue;
}
}
switch (currentcmd->cmdid) {
case CMDID_SET_TXPOWEROWER_LEVEL:
rtl8723be_phy_set_txpower_level(hw, channel);
break;
case CMDID_WRITEPORT_ULONG:
rtl_write_dword(rtlpriv, currentcmd->para1,
currentcmd->para2);
break;
case CMDID_WRITEPORT_USHORT:
rtl_write_word(rtlpriv, currentcmd->para1,
(u16)currentcmd->para2);
break;
case CMDID_WRITEPORT_UCHAR:
rtl_write_byte(rtlpriv, currentcmd->para1,
(u8)currentcmd->para2);
break;
case CMDID_RF_WRITEREG:
for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
rtlphy->rfreg_chnlval[rfpath] =
((rtlphy->rfreg_chnlval[rfpath] &
0xfffffc00) | currentcmd->para2);
rtl_set_rfreg(hw, (enum radio_path)rfpath,
currentcmd->para1,
RFREG_OFFSET_MASK,
rtlphy->rfreg_chnlval[rfpath]);
}
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n",
currentcmd->cmdid);
break;
}
break;
} while (true);
(*delay) = currentcmd->msdelay;
(*step)++;
return false;
}
static u8 _rtl8723be_phy_path_a_iqk(struct ieee80211_hw *hw)
{
u32 reg_eac, reg_e94, reg_e9c, tmp;
u8 result = 0x00;
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_bbreg(hw, 0x948, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x20000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0003f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xc7f87);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x821403ea);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x00462911);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
tmp = (reg_e9c & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_e94 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x01;
else
return result;
return result;
}
static u8 _rtl8723be_phy_path_a_rx_iqk(struct ieee80211_hw *hw)
{
u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32tmp, tmp;
u8 result = 0x00;
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_bbreg(hw, 0x948, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, 0x80000, 0x1);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0001f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7fb7);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160ff0);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
tmp = (reg_e9c & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_e94 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x01;
else
return result;
u32tmp = 0x80007C00 | (reg_e94 & 0x3FF0000) |
((reg_e9c & 0x3FF0000) >> 16);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32tmp);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, 0x80000, 0x1);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0001f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7d77);
rtl_set_rfreg(hw, RF90_PATH_A, 0xdf, RFREG_OFFSET_MASK, 0xf80);
rtl_set_rfreg(hw, RF90_PATH_A, 0x55, RFREG_OFFSET_MASK, 0x4021f);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x2816001f);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a8d1);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, 0xdf, RFREG_OFFSET_MASK, 0x780);
tmp = (reg_eac & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(27)) &&
(((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
(((reg_eac & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
else if (!(reg_eac & BIT(27)) &&
(((reg_ea4 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_ea4 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x02;
return result;
}
static u8 _rtl8723be_phy_path_b_iqk(struct ieee80211_hw *hw)
{
u32 reg_eac, reg_e94, reg_e9c, tmp;
u8 result = 0x00;
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_bbreg(hw, 0x948, MASKDWORD, 0x00000280);
rtl_set_rfreg(hw, RF90_PATH_A, 0xed, RFREG_OFFSET_MASK, 0x00020);
rtl_set_rfreg(hw, RF90_PATH_A, 0x43, RFREG_OFFSET_MASK, 0x40fc1);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x821403ea);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x00462911);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
tmp = (reg_e9c & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_e94 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x01;
else
return result;
return result;
}
static u8 _rtl8723be_phy_path_b_rx_iqk(struct ieee80211_hw *hw)
{
u32 reg_e94, reg_e9c, reg_ea4, reg_eac, u32tmp, tmp;
u8 result = 0x00;
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_bbreg(hw, 0x948, MASKDWORD, 0x00000280);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0001f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ff7);
rtl_set_rfreg(hw, RF90_PATH_A, 0xed, RFREG_OFFSET_MASK, 0x00020);
rtl_set_rfreg(hw, RF90_PATH_A, 0x43, RFREG_OFFSET_MASK, 0x60fed);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160ff0);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
(((reg_e9c & 0x03FF0000) >> 16) != 0x42))
result |= 0x01;
else
return result;
tmp = (reg_e9c & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(28)) &&
(((reg_e94 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_e94 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x01;
else
return result;
u32tmp = 0x80007C00 | (reg_e94 & 0x3FF0000) |
((reg_e9c & 0x3FF0000) >> 16);
rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32tmp);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, 0x80000, 0x1);
rtl_set_rfreg(hw, RF90_PATH_A, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0001f);
rtl_set_rfreg(hw, RF90_PATH_A, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7d77);
rtl_set_rfreg(hw, RF90_PATH_A, RF_WE_LUT, 0x80000, 0x0);
rtl_set_rfreg(hw, RF90_PATH_A, 0xed, RFREG_OFFSET_MASK, 0x00020);
rtl_set_rfreg(hw, RF90_PATH_A, 0x43, RFREG_OFFSET_MASK, 0x60fbd);
rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x18008c1c);
rtl_set_bbreg(hw, RTX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RRX_IQK_TONE_B, MASKDWORD, 0x38008c1c);
rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x2816001f);
rtl_set_bbreg(hw, RTX_IQK_PI_B, MASKDWORD, 0x82110000);
rtl_set_bbreg(hw, RRX_IQK_PI_B, MASKDWORD, 0x28110000);
rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a8d1);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
mdelay(IQK_DELAY_TIME);
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
tmp = (reg_eac & 0x03FF0000) >> 16;
if ((tmp & 0x200) > 0)
tmp = 0x400 - tmp;
if (!(reg_eac & BIT(27)) &&
(((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
(((reg_eac & 0x03FF0000) >> 16) != 0x36))
result |= 0x02;
else if (!(reg_eac & BIT(27)) &&
(((reg_ea4 & 0x03FF0000) >> 16) < 0x110) &&
(((reg_ea4 & 0x03FF0000) >> 16) > 0xf0) &&
(tmp < 0xf))
result |= 0x02;
else
return result;
return result;
}
static void _rtl8723be_phy_path_b_fill_iqk_matrix(struct ieee80211_hw *hw,
bool b_iqk_ok,
long result[][8],
u8 final_candidate,
bool btxonly)
{
u32 oldval_1, x, tx1_a, reg;
long y, tx1_c;
if (final_candidate == 0xFF) {
return;
} else if (b_iqk_ok) {
oldval_1 = (rtl_get_bbreg(hw, ROFDM0_XBTXIQIMBALANCE,
MASKDWORD) >> 22) & 0x3FF;
x = result[final_candidate][4];
if ((x & 0x00000200) != 0)
x = x | 0xFFFFFC00;
tx1_a = (x * oldval_1) >> 8;
rtl_set_bbreg(hw, ROFDM0_XBTXIQIMBALANCE, 0x3FF, tx1_a);
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(27),
((x * oldval_1 >> 7) & 0x1));
y = result[final_candidate][5];
if ((y & 0x00000200) != 0)
y = y | 0xFFFFFC00;
tx1_c = (y * oldval_1) >> 8;
rtl_set_bbreg(hw, ROFDM0_XDTXAFE, 0xF0000000,
((tx1_c & 0x3C0) >> 6));
rtl_set_bbreg(hw, ROFDM0_XBTXIQIMBALANCE, 0x003F0000,
(tx1_c & 0x3F));
rtl_set_bbreg(hw, ROFDM0_ECCATHRESHOLD, BIT(25),
((y * oldval_1 >> 7) & 0x1));
if (btxonly)
return;
reg = result[final_candidate][6];
rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0x3FF, reg);
reg = result[final_candidate][7] & 0x3F;
rtl_set_bbreg(hw, ROFDM0_XBRXIQIMBALANCE, 0xFC00, reg);
reg = (result[final_candidate][7] >> 6) & 0xF;
}
}
static bool _rtl8723be_phy_simularity_compare(struct ieee80211_hw *hw,
long result[][8], u8 c1, u8 c2)
{
u32 i, j, diff, simularity_bitmap, bound = 0;
u8 final_candidate[2] = {0xFF, 0xFF};
bool bresult = true;
s32 tmp1 = 0, tmp2 = 0;
bound = 8;
simularity_bitmap = 0;
for (i = 0; i < bound; i++) {
if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) {
if ((result[c1][i] & 0x00000200) != 0)
tmp1 = result[c1][i] | 0xFFFFFC00;
else
tmp1 = result[c1][i];
if ((result[c2][i] & 0x00000200) != 0)
tmp2 = result[c2][i] | 0xFFFFFC00;
else
tmp2 = result[c2][i];
} else {
tmp1 = result[c1][i];
tmp2 = result[c2][i];
}
diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !simularity_bitmap) {
if (result[c1][i] + result[c1][i + 1] == 0)
final_candidate[(i / 4)] = c2;
else if (result[c2][i] + result[c2][i + 1] == 0)
final_candidate[(i / 4)] = c1;
else
simularity_bitmap |= (1 << i);
} else
simularity_bitmap |= (1 << i);
}
}
if (simularity_bitmap == 0) {
for (i = 0; i < (bound / 4); i++) {
if (final_candidate[i] != 0xFF) {
for (j = i * 4; j < (i + 1) * 4 - 2; j++)
result[3][j] =
result[final_candidate[i]][j];
bresult = false;
}
}
return bresult;
} else {
if (!(simularity_bitmap & 0x03)) {
for (i = 0; i < 2; i++)
result[3][i] = result[c1][i];
}
if (!(simularity_bitmap & 0x0c)) {
for (i = 2; i < 4; i++)
result[3][i] = result[c1][i];
}
if (!(simularity_bitmap & 0x30)) {
for (i = 4; i < 6; i++)
result[3][i] = result[c1][i];
}
if (!(simularity_bitmap & 0xc0)) {
for (i = 6; i < 8; i++)
result[3][i] = result[c1][i];
}
return false;
}
}
static void _rtl8723be_phy_iq_calibrate(struct ieee80211_hw *hw,
long result[][8], u8 t, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u32 i;
u8 patha_ok, pathb_ok;
u32 adda_reg[IQK_ADDA_REG_NUM] = {
0x85c, 0xe6c, 0xe70, 0xe74,
0xe78, 0xe7c, 0xe80, 0xe84,
0xe88, 0xe8c, 0xed0, 0xed4,
0xed8, 0xedc, 0xee0, 0xeec
};
u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
0x522, 0x550, 0x551, 0x040
};
u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR,
RFPGA0_XCD_RFINTERFACESW, 0xb68, 0xb6c,
0x870, 0x860,
0x864, 0xa04
};
const u32 retrycount = 2;
u32 path_sel_bb;
u8 tmp_reg_c50, tmp_reg_c58;
tmp_reg_c50 = rtl_get_bbreg(hw, 0xc50, MASKBYTE0);
tmp_reg_c58 = rtl_get_bbreg(hw, 0xc58, MASKBYTE0);
if (t == 0) {
rtl8723_save_adda_registers(hw, adda_reg,
rtlphy->adda_backup, 16);
rtl8723_phy_save_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
rtl8723_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
}
rtl8723_phy_path_adda_on(hw, adda_reg, true, is2t);
if (t == 0) {
rtlphy->rfpi_enable = (u8)rtl_get_bbreg(hw,
RFPGA0_XA_HSSIPARAMETER1,
BIT(8));
}
path_sel_bb = rtl_get_bbreg(hw, 0x948, MASKDWORD);
rtl8723_phy_mac_setting_calibration(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
rtl_set_bbreg(hw, 0xa04, 0x0f000000, 0xf);
rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
for (i = 0; i < retrycount; i++) {
patha_ok = _rtl8723be_phy_path_a_iqk(hw);
if (patha_ok == 0x01) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Tx IQK Success!!\n");
result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
0x3FF0000) >> 16;
result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
0x3FF0000) >> 16;
break;
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Tx IQK Fail!!\n");
}
}
for (i = 0; i < retrycount; i++) {
patha_ok = _rtl8723be_phy_path_a_rx_iqk(hw);
if (patha_ok == 0x03) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Rx IQK Success!!\n");
result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
0x3FF0000) >> 16;
result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
0x3FF0000) >> 16;
break;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path A Rx IQK Fail!!\n");
}
if (0x00 == patha_ok)
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "Path A IQK Fail!!\n");
if (is2t) {
for (i = 0; i < retrycount; i++) {
pathb_ok = _rtl8723be_phy_path_b_iqk(hw);
if (pathb_ok == 0x01) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path B Tx IQK Success!!\n");
result[t][4] = (rtl_get_bbreg(hw, 0xe94,
MASKDWORD) &
0x3FF0000) >> 16;
result[t][5] = (rtl_get_bbreg(hw, 0xe9c,
MASKDWORD) &
0x3FF0000) >> 16;
break;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path B Tx IQK Fail!!\n");
}
for (i = 0; i < retrycount; i++) {
pathb_ok = _rtl8723be_phy_path_b_rx_iqk(hw);
if (pathb_ok == 0x03) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path B Rx IQK Success!!\n");
result[t][6] = (rtl_get_bbreg(hw, 0xea4,
MASKDWORD) &
0x3FF0000) >> 16;
result[t][7] = (rtl_get_bbreg(hw, 0xeac,
MASKDWORD) &
0x3FF0000) >> 16;
break;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Path B Rx IQK Fail!!\n");
}
}
rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0);
if (t != 0) {
rtl8723_phy_reload_adda_registers(hw, adda_reg,
rtlphy->adda_backup, 16);
rtl8723_phy_reload_mac_registers(hw, iqk_mac_reg,
rtlphy->iqk_mac_backup);
rtl8723_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup,
IQK_BB_REG_NUM);
rtl_set_bbreg(hw, 0x948, MASKDWORD, path_sel_bb);
rtl_set_bbreg(hw, 0xc50, MASKBYTE0, 0x50);
rtl_set_bbreg(hw, 0xc50, MASKBYTE0, tmp_reg_c50);
if (is2t) {
rtl_set_bbreg(hw, 0xc58, MASKBYTE0, 0x50);
rtl_set_bbreg(hw, 0xc58, MASKBYTE0, tmp_reg_c58);
}
rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "8723be IQK Finish!!\n");
}
static u8 _get_right_chnl_place_for_iqk(u8 chnl)
{
u8 channel_all[TARGET_CHNL_NUM_2G_5G] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 36, 38, 40, 42, 44, 46,
48, 50, 52, 54, 56, 58, 60, 62, 64,
100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122,
124, 126, 128, 130, 132, 134, 136,
138, 140, 149, 151, 153, 155, 157,
159, 161, 163, 165};
u8 place = chnl;
if (chnl > 14) {
for (place = 14; place < sizeof(channel_all); place++) {
if (channel_all[place] == chnl)
return place - 13;
}
}
return 0;
}
static void _rtl8723be_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
{
u8 tmpreg;
u32 rf_a_mode = 0, rf_b_mode = 0;
struct rtl_priv *rtlpriv = rtl_priv(hw);
tmpreg = rtl_read_byte(rtlpriv, 0xd03);
if ((tmpreg & 0x70) != 0)
rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
else
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
if ((tmpreg & 0x70) != 0) {
rf_a_mode = rtl_get_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS);
if (is2t)
rf_b_mode = rtl_get_rfreg(hw, RF90_PATH_B, 0x00,
MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS,
(rf_a_mode & 0x8FFFF) | 0x10000);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00, MASK12BITS,
(rf_b_mode & 0x8FFFF) | 0x10000);
}
rtl_get_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS);
rtl_set_rfreg(hw, RF90_PATH_A, 0xb0, RFREG_OFFSET_MASK, 0xdfbe0);
rtl_set_rfreg(hw, RF90_PATH_A, 0x18, MASK12BITS, 0x8c0a);
mdelay(50);
rtl_set_rfreg(hw, RF90_PATH_A, 0xb0, RFREG_OFFSET_MASK, 0xdffe0);
if ((tmpreg & 0x70) != 0) {
rtl_write_byte(rtlpriv, 0xd03, tmpreg);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, MASK12BITS, rf_a_mode);
if (is2t)
rtl_set_rfreg(hw, RF90_PATH_B, 0x00,
MASK12BITS, rf_b_mode);
} else {
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
}
static void _rtl8723be_phy_set_rfpath_switch(struct ieee80211_hw *hw,
bool bmain, bool is2t)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
if (bmain)
rtl_set_bbreg(hw, 0x92C, MASKDWORD, 0x1);
else
rtl_set_bbreg(hw, 0x92C, MASKDWORD, 0x2);
}
#undef IQK_ADDA_REG_NUM
#undef IQK_DELAY_TIME
void rtl8723be_phy_iq_calibrate(struct ieee80211_hw *hw, bool b_recovery)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
long result[4][8];
u8 i, final_candidate, idx;
bool b_patha_ok, b_pathb_ok;
long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_ec4;
long reg_tmp = 0;
bool is12simular, is13simular, is23simular;
u32 iqk_bb_reg[9] = {
ROFDM0_XARXIQIMBALANCE,
ROFDM0_XBRXIQIMBALANCE,
ROFDM0_ECCATHRESHOLD,
ROFDM0_AGCRSSITABLE,
ROFDM0_XATXIQIMBALANCE,
ROFDM0_XBTXIQIMBALANCE,
ROFDM0_XCTXAFE,
ROFDM0_XDTXAFE,
ROFDM0_RXIQEXTANTA
};
u32 path_sel_bb = 0;
if (rtlphy->lck_inprogress)
return;
spin_lock(&rtlpriv->locks.iqk_lock);
rtlphy->lck_inprogress = true;
spin_unlock(&rtlpriv->locks.iqk_lock);
if (b_recovery) {
rtl8723_phy_reload_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup, 9);
goto label_done;
}
path_sel_bb = rtl_get_bbreg(hw, 0x948, MASKDWORD);
for (i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
result[3][i] = 0;
}
final_candidate = 0xff;
b_patha_ok = false;
b_pathb_ok = false;
is12simular = false;
is23simular = false;
is13simular = false;
for (i = 0; i < 3; i++) {
_rtl8723be_phy_iq_calibrate(hw, result, i, true);
if (i == 1) {
is12simular = _rtl8723be_phy_simularity_compare(hw,
result,
0, 1);
if (is12simular) {
final_candidate = 0;
break;
}
}
if (i == 2) {
is13simular = _rtl8723be_phy_simularity_compare(hw,
result,
0, 2);
if (is13simular) {
final_candidate = 0;
break;
}
is23simular = _rtl8723be_phy_simularity_compare(hw,
result,
1, 2);
if (is23simular) {
final_candidate = 1;
} else {
for (i = 0; i < 8; i++)
reg_tmp += result[3][i];
if (reg_tmp != 0)
final_candidate = 3;
else
final_candidate = 0xFF;
}
}
}
for (i = 0; i < 4; i++) {
reg_e94 = result[i][0];
reg_e9c = result[i][1];
reg_ea4 = result[i][2];
reg_eb4 = result[i][4];
reg_ebc = result[i][5];
reg_ec4 = result[i][6];
}
if (final_candidate != 0xff) {
reg_e94 = result[final_candidate][0];
rtlphy->reg_e94 = reg_e94;
reg_e9c = result[final_candidate][1];
rtlphy->reg_e9c = reg_e9c;
reg_ea4 = result[final_candidate][2];
reg_eb4 = result[final_candidate][4];
rtlphy->reg_eb4 = reg_eb4;
reg_ebc = result[final_candidate][5];
rtlphy->reg_ebc = reg_ebc;
reg_ec4 = result[final_candidate][6];
b_patha_ok = true;
b_pathb_ok = true;
} else {
rtlphy->reg_e94 = 0x100;
rtlphy->reg_eb4 = 0x100;
rtlphy->reg_e9c = 0x0;
rtlphy->reg_ebc = 0x0;
}
if (reg_e94 != 0)
rtl8723_phy_path_a_fill_iqk_matrix(hw, b_patha_ok, result,
final_candidate,
(reg_ea4 == 0));
if (reg_eb4 != 0)
_rtl8723be_phy_path_b_fill_iqk_matrix(hw, b_pathb_ok, result,
final_candidate,
(reg_ec4 == 0));
idx = _get_right_chnl_place_for_iqk(rtlphy->current_channel);
if (final_candidate < 4) {
for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
rtlphy->iqk_matrix[idx].value[0][i] =
result[final_candidate][i];
rtlphy->iqk_matrix[idx].iqk_done = true;
}
rtl8723_save_adda_registers(hw, iqk_bb_reg,
rtlphy->iqk_bb_backup, 9);
rtl_set_bbreg(hw, 0x948, MASKDWORD, path_sel_bb);
label_done:
spin_lock(&rtlpriv->locks.iqk_lock);
rtlphy->lck_inprogress = false;
spin_unlock(&rtlpriv->locks.iqk_lock);
}
void rtl8723be_phy_lc_calibrate(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = &rtlpriv->rtlhal;
u32 timeout = 2000, timecount = 0;
while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
udelay(50);
timecount += 50;
}
rtlphy->lck_inprogress = true;
RTPRINT(rtlpriv, FINIT, INIT_IQK,
"LCK:Start!!! currentband %x delay %d ms\n",
rtlhal->current_bandtype, timecount);
_rtl8723be_phy_lc_calibrate(hw, false);
rtlphy->lck_inprogress = false;
}
void rtl8723be_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
{
_rtl8723be_phy_set_rfpath_switch(hw, bmain, true);
}
bool rtl8723be_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
bool b_postprocessing = false;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"-->IO Cmd(%#x), set_io_inprogress(%d)\n",
iotype, rtlphy->set_io_inprogress);
do {
switch (iotype) {
case IO_CMD_RESUME_DM_BY_SCAN:
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Resume DM after scan.\n");
b_postprocessing = true;
break;
case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"[IO CMD] Pause DM before scan.\n");
b_postprocessing = true;
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", iotype);
break;
}
} while (false);
if (b_postprocessing && !rtlphy->set_io_inprogress) {
rtlphy->set_io_inprogress = true;
rtlphy->current_io_type = iotype;
} else {
return false;
}
rtl8723be_phy_set_io(hw);
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
return true;
}
static void rtl8723be_phy_set_io(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
struct rtl_phy *rtlphy = &rtlpriv->phy;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"--->Cmd(%#x), set_io_inprogress(%d)\n",
rtlphy->current_io_type, rtlphy->set_io_inprogress);
switch (rtlphy->current_io_type) {
case IO_CMD_RESUME_DM_BY_SCAN:
dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
rtl8723be_phy_set_txpower_level(hw, rtlphy->current_channel);
rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
break;
case IO_CMD_PAUSE_BAND0_DM_BY_SCAN:
rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
dm_digtable->cur_igvalue = 0x17;
rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n",
rtlphy->current_io_type);
break;
}
rtlphy->set_io_inprogress = false;
rtl_dbg(rtlpriv, COMP_CMD, DBG_TRACE,
"(%#x)\n", rtlphy->current_io_type);
}
static void rtl8723be_phy_set_rf_on(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
}
static void _rtl8723be_phy_set_rf_sleep(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
rtl_set_rfreg(hw, RF90_PATH_A, 0x00, RFREG_OFFSET_MASK, 0x00);
rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
}
static bool _rtl8723be_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = true;
u8 i, queue_id;
struct rtl8192_tx_ring *ring = NULL;
switch (rfpwr_state) {
case ERFON:
if ((ppsc->rfpwr_state == ERFOFF) &&
RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
bool rtstatus;
u32 initializecount = 0;
do {
initializecount++;
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic enable\n");
rtstatus = rtl_ps_enable_nic(hw);
} while (!rtstatus && (initializecount < 10));
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
} else {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFON slept:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_sleep_jiffies));
ppsc->last_awake_jiffies = jiffies;
rtl8723be_phy_set_rf_on(hw);
}
if (mac->link_state == MAC80211_LINKED)
rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK);
else
rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK);
break;
case ERFOFF:
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (queue_id == BEACON_QUEUE ||
skb_queue_len(&ring->queue) == 0) {
queue_id++;
continue;
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
(i + 1), queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x,
queue_id,
skb_queue_len(&ring->queue));
break;
}
}
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"IPS Set eRf nic disable\n");
rtl_ps_disable_nic(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
} else {
if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_NO_LINK);
} else {
rtlpriv->cfg->ops->led_control(hw,
LED_CTL_POWER_OFF);
}
}
break;
case ERFSLEEP:
if (ppsc->rfpwr_state == ERFOFF)
break;
for (queue_id = 0, i = 0;
queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
ring = &pcipriv->dev.tx_ring[queue_id];
if (skb_queue_len(&ring->queue) == 0) {
queue_id++;
continue;
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
(i + 1), queue_id,
skb_queue_len(&ring->queue));
udelay(10);
i++;
}
if (i >= MAX_DOZE_WAITING_TIMES_9x) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
MAX_DOZE_WAITING_TIMES_9x,
queue_id,
skb_queue_len(&ring->queue));
break;
}
}
rtl_dbg(rtlpriv, COMP_RF, DBG_DMESG,
"Set ERFSLEEP awaked:%d ms\n",
jiffies_to_msecs(jiffies -
ppsc->last_awake_jiffies));
ppsc->last_sleep_jiffies = jiffies;
_rtl8723be_phy_set_rf_sleep(hw);
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"switch case %#x not processed\n", rfpwr_state);
bresult = false;
break;
}
if (bresult)
ppsc->rfpwr_state = rfpwr_state;
return bresult;
}
bool rtl8723be_phy_set_rf_power_state(struct ieee80211_hw *hw,
enum rf_pwrstate rfpwr_state)
{
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
bool bresult = false;
if (rfpwr_state == ppsc->rfpwr_state)
return bresult;
bresult = _rtl8723be_phy_set_rf_power_state(hw, rfpwr_state);
return bresult;
}