// SPDX-License-Identifier: GPL-2.0-or-later /* * cx18 ADEC audio functions * * Derived from cx25840-audio.c * * Copyright (C) 2007 Hans Verkuil <hverkuil@xs4all.nl> * Copyright (C) 2008 Andy Walls <awalls@md.metrocast.net> */ #include "cx18-driver.h" static int set_audclk_freq(struct cx18 *cx, u32 freq) { struct cx18_av_state *state = &cx->av_state; if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; /* * The PLL parameters are based on the external crystal frequency that * would ideally be: * * NTSC Color subcarrier freq * 8 = * 4.5 MHz/286 * 455/2 * 8 = 28.63636363... MHz * * The accidents of history and rationale that explain from where this * combination of magic numbers originate can be found in: * * [1] Abrahams, I. C., "Choice of Chrominance Subcarrier Frequency in * the NTSC Standards", Proceedings of the I-R-E, January 1954, pp 79-80 * * [2] Abrahams, I. C., "The 'Frequency Interleaving' Principle in the * NTSC Standards", Proceedings of the I-R-E, January 1954, pp 81-83 * * As Mike Bradley has rightly pointed out, it's not the exact crystal * frequency that matters, only that all parts of the driver and * firmware are using the same value (close to the ideal value). * * Since I have a strong suspicion that, if the firmware ever assumes a * crystal value at all, it will assume 28.636360 MHz, the crystal * freq used in calculations in this driver will be: * * xtal_freq = 28.636360 MHz * * an error of less than 0.13 ppm which is way, way better than any off * the shelf crystal will have for accuracy anyway. * * Below I aim to run the PLLs' VCOs near 400 MHz to minimize error. * * Many thanks to Jeff Campbell and Mike Bradley for their extensive * investigation, experimentation, testing, and suggested solutions of * audio/video sync problems with SVideo and CVBS captures. */ if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 */ cx18_av_write4(cx, 0x108, 0x200d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x20 = 32000 * 384: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src3/4/6_ctl */ /* 0x1.f77f = (4 * xtal/8*2/455) / 32000 */ cx18_av_write4(cx, 0x900, 0x0801f77f); cx18_av_write4(cx, 0x904, 0x0801f77f); cx18_av_write4(cx, 0x90c, 0x0801f77f); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ cx18_av_write(cx, 0x127, 0x60); /* AUD_COUNT = 0x2fff = 8 samples * 4 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11202fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x18 */ cx18_av_write4(cx, 0x108, 0x180e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x062a1f2 */ /* xtal * 0xe.3150f90/0x18 = 44100 * 384: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src3/4/6_ctl */ /* 0x1.6d59 = (4 * xtal/8*2/455) / 44100 */ cx18_av_write4(cx, 0x900, 0x08016d59); cx18_av_write4(cx, 0x904, 0x08016d59); cx18_av_write4(cx, 0x90c, 0x08016d59); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x18 */ cx18_av_write(cx, 0x127, 0x58); /* AUD_COUNT = 0x92ff = 49 samples * 2 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x112092ff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x16 */ cx18_av_write4(cx, 0x108, 0x160e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x05227ad */ /* xtal * 0xe.2913d68/0x16 = 48000 * 384: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x005227ad); /* src3/4/6_ctl */ /* 0x1.4faa = (4 * xtal/8*2/455) / 48000 */ cx18_av_write4(cx, 0x900, 0x08014faa); cx18_av_write4(cx, 0x904, 0x08014faa); cx18_av_write4(cx, 0x90c, 0x08014faa); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x16 */ cx18_av_write(cx, 0x127, 0x56); /* AUD_COUNT = 0x5fff = 4 samples * 16 * 384 - 1 */ cx18_av_write4(cx, 0x12c, 0x11205fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } else { switch (freq) { case 32000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x30 */ cx18_av_write4(cx, 0x108, 0x300d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x30 = 32000 * 256: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.0000 = 32000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08010000); /* src3/4/6_ctl */ /* 0x2.0000 = 2 * (32000/32000) */ cx18_av_write4(cx, 0x900, 0x08020000); cx18_av_write4(cx, 0x904, 0x08020000); cx18_av_write4(cx, 0x90c, 0x08020000); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x30 */ cx18_av_write(cx, 0x127, 0x70); /* AUD_COUNT = 0x1fff = 8 samples * 4 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11201fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x0d2ef8 = 107999.000 * 8 = * ((8 samples/32,000) * (13,500,000 * 8) * 4 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa00d2ef8); break; case 44100: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0e, AUX PLL Post Divider = 0x24 */ cx18_av_write4(cx, 0x108, 0x240e040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x062a1f2 */ /* xtal * 0xe.3150f90/0x24 = 44100 * 256: 406 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0062a1f2); /* src1_ctl */ /* 0x1.60cd = 44100/32000 */ cx18_av_write4(cx, 0x8f8, 0x080160cd); /* src3/4/6_ctl */ /* 0x1.7385 = 2 * (32000/44100) */ cx18_av_write4(cx, 0x900, 0x08017385); cx18_av_write4(cx, 0x904, 0x08017385); cx18_av_write4(cx, 0x90c, 0x08017385); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x24 */ cx18_av_write(cx, 0x127, 0x64); /* AUD_COUNT = 0x61ff = 49 samples * 2 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x112061ff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1d4bf8 = 239999.000 * 8 = * ((49 samples/44,100) * (13,500,000 * 8) * 2 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01d4bf8); break; case 48000: /* * VID_PLL Integer = 0x0f, VID_PLL Post Divider = 0x04 * AUX_PLL Integer = 0x0d, AUX PLL Post Divider = 0x20 */ cx18_av_write4(cx, 0x108, 0x200d040f); /* VID_PLL Fraction = 0x2be2fe */ /* xtal * 0xf.15f17f0/4 = 108 MHz: 432 MHz pre-postdiv*/ cx18_av_write4(cx, 0x10c, 0x002be2fe); /* AUX_PLL Fraction = 0x176740c */ /* xtal * 0xd.bb3a060/0x20 = 48000 * 256: 393 MHz p-pd*/ cx18_av_write4(cx, 0x110, 0x0176740c); /* src1_ctl */ /* 0x1.8000 = 48000/32000 */ cx18_av_write4(cx, 0x8f8, 0x08018000); /* src3/4/6_ctl */ /* 0x1.5555 = 2 * (32000/48000) */ cx18_av_write4(cx, 0x900, 0x08015555); cx18_av_write4(cx, 0x904, 0x08015555); cx18_av_write4(cx, 0x90c, 0x08015555); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x20 */ cx18_av_write(cx, 0x127, 0x60); /* AUD_COUNT = 0x3fff = 4 samples * 16 * 256 - 1 */ cx18_av_write4(cx, 0x12c, 0x11203fff); /* * EN_AV_LOCK = 0 * VID_COUNT = 0x1193f8 = 143999.000 * 8 = * ((4 samples/48,000) * (13,500,000 * 8) * 16 - 1) * 8 */ cx18_av_write4(cx, 0x128, 0xa01193f8); break; } } state->audclk_freq = freq; return 0; } void cx18_av_audio_set_path(struct cx18 *cx) { struct cx18_av_state *state = &cx->av_state; u8 v; /* stop microcontroller */ v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); /* assert soft reset */ v = cx18_av_read(cx, 0x810) | 0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); /* Mute everything to prevent the PFFT! */ cx18_av_write(cx, 0x8d3, 0x1f); if (state->aud_input <= CX18_AV_AUDIO_SERIAL2) { /* Set Path1 to Serial Audio Input */ cx18_av_write4(cx, 0x8d0, 0x01011012); /* The microcontroller should not be started for the * non-tuner inputs: autodetection is specific for * TV audio. */ } else { /* Set Path1 to Analog Demod Main Channel */ cx18_av_write4(cx, 0x8d0, 0x1f063870); } set_audclk_freq(cx, state->audclk_freq); /* deassert soft reset */ v = cx18_av_read(cx, 0x810) & ~0x01; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* When the microcontroller detects the * audio format, it will unmute the lines */ v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } static void set_volume(struct cx18 *cx, int volume) { /* First convert the volume to msp3400 values (0-127) */ int vol = volume >> 9; /* now scale it up to cx18_av values * -114dB to -96dB maps to 0 * this should be 19, but in my testing that was 4dB too loud */ if (vol <= 23) vol = 0; else vol -= 23; /* PATH1_VOLUME */ cx18_av_write(cx, 0x8d4, 228 - (vol * 2)); } static void set_bass(struct cx18 *cx, int bass) { /* PATH1_EQ_BASS_VOL */ cx18_av_and_or(cx, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); } static void set_treble(struct cx18 *cx, int treble) { /* PATH1_EQ_TREBLE_VOL */ cx18_av_and_or(cx, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); } static void set_balance(struct cx18 *cx, int balance) { int bal = balance >> 8; if (bal > 0x80) { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x80); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, bal & 0x7f); } else { /* PATH1_BAL_LEFT */ cx18_av_and_or(cx, 0x8d5, 0x7f, 0x00); /* PATH1_BAL_LEVEL */ cx18_av_and_or(cx, 0x8d5, ~0x7f, 0x80 - bal); } } static void set_mute(struct cx18 *cx, int mute) { struct cx18_av_state *state = &cx->av_state; u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { /* Must turn off microcontroller in order to mute sound. * Not sure if this is the best method, but it does work. * If the microcontroller is running, then it will undo any * changes to the mute register. */ v = cx18_av_read(cx, 0x803); if (mute) { /* disable microcontroller */ v &= ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } else { /* enable microcontroller */ v |= 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } } else { /* SRC1_MUTE_EN */ cx18_av_and_or(cx, 0x8d3, ~0x2, mute ? 0x02 : 0x00); } } int cx18_av_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { struct cx18 *cx = v4l2_get_subdevdata(sd); struct cx18_av_state *state = &cx->av_state; int retval; u8 v; if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) & ~0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); cx18_av_write(cx, 0x8d3, 0x1f); } v = cx18_av_read(cx, 0x810) | 0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); retval = set_audclk_freq(cx, freq); v = cx18_av_read(cx, 0x810) & ~0x1; cx18_av_write_expect(cx, 0x810, v, v, 0x0f); if (state->aud_input > CX18_AV_AUDIO_SERIAL2) { v = cx18_av_read(cx, 0x803) | 0x10; cx18_av_write_expect(cx, 0x803, v, v, 0x1f); } return retval; } static int cx18_av_audio_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct cx18 *cx = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: set_volume(cx, ctrl->val); break; case V4L2_CID_AUDIO_BASS: set_bass(cx, ctrl->val); break; case V4L2_CID_AUDIO_TREBLE: set_treble(cx, ctrl->val); break; case V4L2_CID_AUDIO_BALANCE: set_balance(cx, ctrl->val); break; case V4L2_CID_AUDIO_MUTE: set_mute(cx, ctrl->val); break; default: return -EINVAL; } return 0; } const struct v4l2_ctrl_ops cx18_av_audio_ctrl_ops = { .s_ctrl = cx18_av_audio_s_ctrl, }