######################################################################## # Implement fast SHA-256 with SSSE3 instructions. (x86_64) # # Copyright (C) 2013 Intel Corporation. # # Authors: # James Guilford <james.guilford@intel.com> # Kirk Yap <kirk.s.yap@intel.com> # Tim Chen <tim.c.chen@linux.intel.com> # # This software is available to you under a choice of one of two # licenses. You may choose to be licensed under the terms of the GNU # General Public License (GPL) Version 2, available from the file # COPYING in the main directory of this source tree, or the # OpenIB.org BSD license below: # # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # # - Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials # provided with the distribution. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # ######################################################################## # # This code is described in an Intel White-Paper: # "Fast SHA-256 Implementations on Intel Architecture Processors" # # To find it, surf to http://www.intel.com/p/en_US/embedded # and search for that title. # ######################################################################## #include <linux/linkage.h> #include <linux/cfi_types.h> ## assume buffers not aligned #define MOVDQ movdqu ################################ Define Macros # addm [mem], reg # Add reg to mem using reg-mem add and store .macro addm p1 p2 add \p1, \p2 mov \p2, \p1 .endm ################################ # COPY_XMM_AND_BSWAP xmm, [mem], byte_flip_mask # Load xmm with mem and byte swap each dword .macro COPY_XMM_AND_BSWAP p1 p2 p3 MOVDQ \p2, \p1 pshufb \p3, \p1 .endm ################################ X0 = %xmm4 X1 = %xmm5 X2 = %xmm6 X3 = %xmm7 XTMP0 = %xmm0 XTMP1 = %xmm1 XTMP2 = %xmm2 XTMP3 = %xmm3 XTMP4 = %xmm8 XFER = %xmm9 SHUF_00BA = %xmm10 # shuffle xBxA -> 00BA SHUF_DC00 = %xmm11 # shuffle xDxC -> DC00 BYTE_FLIP_MASK = %xmm12 NUM_BLKS = %rdx # 3rd arg INP = %rsi # 2nd arg CTX = %rdi # 1st arg SRND = %rsi # clobbers INP c = %ecx d = %r8d e = %edx TBL = %r12 a = %eax b = %ebx f = %r9d g = %r10d h = %r11d y0 = %r13d y1 = %r14d y2 = %r15d _INP_END_SIZE = 8 _INP_SIZE = 8 _XFER_SIZE = 16 _XMM_SAVE_SIZE = 0 _INP_END = 0 _INP = _INP_END + _INP_END_SIZE _XFER = _INP + _INP_SIZE _XMM_SAVE = _XFER + _XFER_SIZE STACK_SIZE = _XMM_SAVE + _XMM_SAVE_SIZE # rotate_Xs # Rotate values of symbols X0...X3 .macro rotate_Xs X_ = X0 X0 = X1 X1 = X2 X2 = X3 X3 = X_ .endm # ROTATE_ARGS # Rotate values of symbols a...h .macro ROTATE_ARGS TMP_ = h h = g g = f f = e e = d d = c c = b b = a a = TMP_ .endm .macro FOUR_ROUNDS_AND_SCHED ## compute s0 four at a time and s1 two at a time ## compute W[-16] + W[-7] 4 at a time movdqa X3, XTMP0 mov e, y0 # y0 = e ror $(25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a palignr $4, X2, XTMP0 # XTMP0 = W[-7] ror $(22-13), y1 # y1 = a >> (22-13) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) movdqa X1, XTMP1 xor a, y1 # y1 = a ^ (a >> (22-13) xor g, y2 # y2 = f^g paddd X0, XTMP0 # XTMP0 = W[-7] + W[-16] xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) ## compute s0 palignr $4, X0, XTMP1 # XTMP1 = W[-15] xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor g, y2 # y2 = CH = ((f^g)&e)^g movdqa XTMP1, XTMP2 # XTMP2 = W[-15] ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add y0, y2 # y2 = S1 + CH add _XFER(%rsp) , y2 # y2 = k + w + S1 + CH movdqa XTMP1, XTMP3 # XTMP3 = W[-15] mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a pslld $(32-7), XTMP1 # or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c psrld $7, XTMP2 # and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 por XTMP2, XTMP1 # XTMP1 = W[-15] ror 7 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ # ROTATE_ARGS # movdqa XTMP3, XTMP2 # XTMP2 = W[-15] mov e, y0 # y0 = e mov a, y1 # y1 = a movdqa XTMP3, XTMP4 # XTMP4 = W[-15] ror $(25-11), y0 # y0 = e >> (25-11) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f ror $(22-13), y1 # y1 = a >> (22-13) pslld $(32-18), XTMP3 # xor a, y1 # y1 = a ^ (a >> (22-13) ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) xor g, y2 # y2 = f^g psrld $18, XTMP2 # ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) pxor XTMP3, XTMP1 xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor g, y2 # y2 = CH = ((f^g)&e)^g psrld $3, XTMP4 # XTMP4 = W[-15] >> 3 add y0, y2 # y2 = S1 + CH add (1*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) pxor XTMP2, XTMP1 # XTMP1 = W[-15] ror 7 ^ W[-15] ror 18 mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a pxor XTMP4, XTMP1 # XTMP1 = s0 or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c ## compute low s1 pshufd $0b11111010, X3, XTMP2 # XTMP2 = W[-2] {BBAA} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 paddd XTMP1, XTMP0 # XTMP0 = W[-16] + W[-7] + s0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS movdqa XTMP2, XTMP3 # XTMP3 = W[-2] {BBAA} mov e, y0 # y0 = e mov a, y1 # y1 = a ror $(25-11), y0 # y0 = e >> (25-11) movdqa XTMP2, XTMP4 # XTMP4 = W[-2] {BBAA} xor e, y0 # y0 = e ^ (e >> (25-11)) ror $(22-13), y1 # y1 = a >> (22-13) mov f, y2 # y2 = f xor a, y1 # y1 = a ^ (a >> (22-13) ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) psrlq $17, XTMP2 # XTMP2 = W[-2] ror 17 {xBxA} xor g, y2 # y2 = f^g psrlq $19, XTMP3 # XTMP3 = W[-2] ror 19 {xBxA} xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) and e, y2 # y2 = (f^g)&e psrld $10, XTMP4 # XTMP4 = W[-2] >> 10 {BBAA} ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) xor g, y2 # y2 = CH = ((f^g)&e)^g ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) pxor XTMP3, XTMP2 add y0, y2 # y2 = S1 + CH ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) add (2*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH pxor XTMP2, XTMP4 # XTMP4 = s1 {xBxA} mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a pshufb SHUF_00BA, XTMP4 # XTMP4 = s1 {00BA} or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c paddd XTMP4, XTMP0 # XTMP0 = {..., ..., W[1], W[0]} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 ## compute high s1 pshufd $0b01010000, XTMP0, XTMP2 # XTMP2 = W[-2] {BBAA} or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ # ROTATE_ARGS # movdqa XTMP2, XTMP3 # XTMP3 = W[-2] {DDCC} mov e, y0 # y0 = e ror $(25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a movdqa XTMP2, X0 # X0 = W[-2] {DDCC} ror $(22-13), y1 # y1 = a >> (22-13) xor e, y0 # y0 = e ^ (e >> (25-11)) mov f, y2 # y2 = f ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) psrlq $17, XTMP2 # XTMP2 = W[-2] ror 17 {xDxC} xor a, y1 # y1 = a ^ (a >> (22-13) xor g, y2 # y2 = f^g psrlq $19, XTMP3 # XTMP3 = W[-2] ror 19 {xDxC} xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25 and e, y2 # y2 = (f^g)&e ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) psrld $10, X0 # X0 = W[-2] >> 10 {DDCC} xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22 ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>2 xor g, y2 # y2 = CH = ((f^g)&e)^g pxor XTMP3, XTMP2 # ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>2 add y0, y2 # y2 = S1 + CH add (3*4 + _XFER)(%rsp), y2 # y2 = k + w + S1 + CH pxor XTMP2, X0 # X0 = s1 {xDxC} mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a pshufb SHUF_DC00, X0 # X0 = s1 {DC00} or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c paddd XTMP0, X0 # X0 = {W[3], W[2], W[1], W[0]} and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS rotate_Xs .endm ## input is [rsp + _XFER + %1 * 4] .macro DO_ROUND round mov e, y0 # y0 = e ror $(25-11), y0 # y0 = e >> (25-11) mov a, y1 # y1 = a xor e, y0 # y0 = e ^ (e >> (25-11)) ror $(22-13), y1 # y1 = a >> (22-13) mov f, y2 # y2 = f xor a, y1 # y1 = a ^ (a >> (22-13) ror $(11-6), y0 # y0 = (e >> (11-6)) ^ (e >> (25-6)) xor g, y2 # y2 = f^g xor e, y0 # y0 = e ^ (e >> (11-6)) ^ (e >> (25-6)) ror $(13-2), y1 # y1 = (a >> (13-2)) ^ (a >> (22-2)) and e, y2 # y2 = (f^g)&e xor a, y1 # y1 = a ^ (a >> (13-2)) ^ (a >> (22-2)) ror $6, y0 # y0 = S1 = (e>>6) & (e>>11) ^ (e>>25) xor g, y2 # y2 = CH = ((f^g)&e)^g add y0, y2 # y2 = S1 + CH ror $2, y1 # y1 = S0 = (a>>2) ^ (a>>13) ^ (a>>22) offset = \round * 4 + _XFER add offset(%rsp), y2 # y2 = k + w + S1 + CH mov a, y0 # y0 = a add y2, h # h = h + S1 + CH + k + w mov a, y2 # y2 = a or c, y0 # y0 = a|c add h, d # d = d + h + S1 + CH + k + w and c, y2 # y2 = a&c and b, y0 # y0 = (a|c)&b add y1, h # h = h + S1 + CH + k + w + S0 or y2, y0 # y0 = MAJ = (a|c)&b)|(a&c) add y0, h # h = h + S1 + CH + k + w + S0 + MAJ ROTATE_ARGS .endm ######################################################################## ## void sha256_transform_ssse3(struct sha256_state *state, const u8 *data, ## int blocks); ## arg 1 : pointer to state ## (struct sha256_state is assumed to begin with u32 state[8]) ## arg 2 : pointer to input data ## arg 3 : Num blocks ######################################################################## .text SYM_TYPED_FUNC_START(sha256_transform_ssse3) pushq %rbx pushq %r12 pushq %r13 pushq %r14 pushq %r15 pushq %rbp mov %rsp, %rbp subq $STACK_SIZE, %rsp and $~15, %rsp shl $6, NUM_BLKS # convert to bytes jz .Ldone_hash add INP, NUM_BLKS mov NUM_BLKS, _INP_END(%rsp) # pointer to end of data ## load initial digest mov 4*0(CTX), a mov 4*1(CTX), b mov 4*2(CTX), c mov 4*3(CTX), d mov 4*4(CTX), e mov 4*5(CTX), f mov 4*6(CTX), g mov 4*7(CTX), h movdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK movdqa _SHUF_00BA(%rip), SHUF_00BA movdqa _SHUF_DC00(%rip), SHUF_DC00 .Lloop0: lea K256(%rip), TBL ## byte swap first 16 dwords COPY_XMM_AND_BSWAP X0, 0*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X1, 1*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X2, 2*16(INP), BYTE_FLIP_MASK COPY_XMM_AND_BSWAP X3, 3*16(INP), BYTE_FLIP_MASK mov INP, _INP(%rsp) ## schedule 48 input dwords, by doing 3 rounds of 16 each mov $3, SRND .align 16 .Lloop1: movdqa (TBL), XFER paddd X0, XFER movdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED movdqa 1*16(TBL), XFER paddd X0, XFER movdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED movdqa 2*16(TBL), XFER paddd X0, XFER movdqa XFER, _XFER(%rsp) FOUR_ROUNDS_AND_SCHED movdqa 3*16(TBL), XFER paddd X0, XFER movdqa XFER, _XFER(%rsp) add $4*16, TBL FOUR_ROUNDS_AND_SCHED sub $1, SRND jne .Lloop1 mov $2, SRND .Lloop2: paddd (TBL), X0 movdqa X0, _XFER(%rsp) DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 paddd 1*16(TBL), X1 movdqa X1, _XFER(%rsp) add $2*16, TBL DO_ROUND 0 DO_ROUND 1 DO_ROUND 2 DO_ROUND 3 movdqa X2, X0 movdqa X3, X1 sub $1, SRND jne .Lloop2 addm (4*0)(CTX),a addm (4*1)(CTX),b addm (4*2)(CTX),c addm (4*3)(CTX),d addm (4*4)(CTX),e addm (4*5)(CTX),f addm (4*6)(CTX),g addm (4*7)(CTX),h mov _INP(%rsp), INP add $64, INP cmp _INP_END(%rsp), INP jne .Lloop0 .Ldone_hash: mov %rbp, %rsp popq %rbp popq %r15 popq %r14 popq %r13 popq %r12 popq %rbx RET SYM_FUNC_END(sha256_transform_ssse3) .section .rodata.cst256.K256, "aM", @progbits, 256 .align 64 K256: .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2 .section .rodata.cst16.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 16 .align 16 PSHUFFLE_BYTE_FLIP_MASK: .octa 0x0c0d0e0f08090a0b0405060700010203 .section .rodata.cst16._SHUF_00BA, "aM", @progbits, 16 .align 16 # shuffle xBxA -> 00BA _SHUF_00BA: .octa 0xFFFFFFFFFFFFFFFF0b0a090803020100 .section .rodata.cst16._SHUF_DC00, "aM", @progbits, 16 .align 16 # shuffle xDxC -> DC00 _SHUF_DC00: .octa 0x0b0a090803020100FFFFFFFFFFFFFFFF