#include "wifi.h"
#include "core.h"
#include "pci.h"
#include "base.h"
#include "ps.h"
#include "efuse.h"
#include <linux/interrupt.h>
#include <linux/export.h>
#include <linux/module.h>
MODULE_AUTHOR("lizhaoming <chaoming_li@realsil.com.cn>");
MODULE_AUTHOR("Realtek WlanFAE <wlanfae@realtek.com>");
MODULE_AUTHOR("Larry Finger <Larry.FInger@lwfinger.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("PCI basic driver for rtlwifi");
static const u16 pcibridge_vendors[PCI_BRIDGE_VENDOR_MAX] = {
INTEL_VENDOR_ID,
ATI_VENDOR_ID,
AMD_VENDOR_ID,
SIS_VENDOR_ID
};
static const u8 ac_to_hwq[] = {
VO_QUEUE,
VI_QUEUE,
BE_QUEUE,
BK_QUEUE
};
static u8 _rtl_mac_to_hwqueue(struct ieee80211_hw *hw, struct sk_buff *skb)
{
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
__le16 fc = rtl_get_fc(skb);
u8 queue_index = skb_get_queue_mapping(skb);
struct ieee80211_hdr *hdr;
if (unlikely(ieee80211_is_beacon(fc)))
return BEACON_QUEUE;
if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc))
return MGNT_QUEUE;
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE)
if (ieee80211_is_nullfunc(fc))
return HIGH_QUEUE;
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) {
hdr = rtl_get_hdr(skb);
if (is_multicast_ether_addr(hdr->addr1) ||
is_broadcast_ether_addr(hdr->addr1))
return HIGH_QUEUE;
}
return ac_to_hwq[queue_index];
}
static void _rtl_pci_update_default_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
u8 init_aspm;
ppsc->reg_rfps_level = 0;
ppsc->support_aspm = false;
ppsc->const_amdpci_aspm = rtlpci->const_amdpci_aspm;
switch (rtlpci->const_pci_aspm) {
case 0:
break;
case 1:
ppsc->reg_rfps_level |= RT_RF_LPS_LEVEL_ASPM;
break;
case 2:
ppsc->reg_rfps_level |= (RT_RF_LPS_LEVEL_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
break;
case 3:
ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM);
ppsc->reg_rfps_level |= (RT_RF_PS_LEVEL_ALWAYS_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
break;
case 4:
ppsc->reg_rfps_level &= ~(RT_RF_LPS_LEVEL_ASPM |
RT_RF_OFF_LEVL_CLK_REQ);
ppsc->reg_rfps_level |= RT_RF_PS_LEVEL_ALWAYS_ASPM;
break;
}
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
switch (rtlpci->const_hwsw_rfoff_d3) {
case 1:
if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
break;
case 2:
if (ppsc->reg_rfps_level & RT_RF_LPS_LEVEL_ASPM)
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_ASPM;
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_HALT_NIC;
break;
case 3:
ppsc->reg_rfps_level |= RT_RF_OFF_LEVL_PCI_D3;
break;
}
switch (rtlpci->const_support_pciaspm) {
case 0:
ppsc->support_aspm = false;
break;
case 1:
ppsc->support_aspm = true;
ppsc->support_backdoor = true;
break;
case 2:
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
ppsc->support_aspm = true;
break;
default:
pr_err("switch case %#x not processed\n",
rtlpci->const_support_pciaspm);
break;
}
pci_read_config_byte(rtlpci->pdev, 0x80, &init_aspm);
if (rtlpriv->rtlhal.hw_type == HARDWARE_TYPE_RTL8192SE &&
init_aspm == 0x43)
ppsc->support_aspm = false;
}
static bool _rtl_pci_platform_switch_device_pci_aspm(
struct ieee80211_hw *hw,
u8 value)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)
value |= 0x40;
pci_write_config_byte(rtlpci->pdev, 0x80, value);
return false;
}
static void _rtl_pci_switch_clk_req(struct ieee80211_hw *hw, u8 value)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
pci_write_config_byte(rtlpci->pdev, 0x81, value);
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE)
udelay(100);
}
static void rtl_pci_disable_aspm(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
u8 linkctrl_reg = pcipriv->ndis_adapter.linkctrl_reg;
u16 pcibridge_linkctrlreg = pcipriv->ndis_adapter.
pcibridge_linkctrlreg;
u16 aspmlevel = 0;
u8 tmp_u1b = 0;
if (!ppsc->support_aspm)
return;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE,
"PCI(Bridge) UNKNOWN\n");
return;
}
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
_rtl_pci_switch_clk_req(hw, 0x0);
}
pci_read_config_byte(rtlpci->pdev, 0x80, &tmp_u1b);
aspmlevel |= BIT(0) | BIT(1);
linkctrl_reg &= ~aspmlevel;
pcibridge_linkctrlreg &= ~(BIT(0) | BIT(1));
_rtl_pci_platform_switch_device_pci_aspm(hw, linkctrl_reg);
udelay(50);
pci_write_config_byte(rtlpci->pdev, (num4bytes << 2),
pcibridge_linkctrlreg);
udelay(50);
}
static void rtl_pci_enable_aspm(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 pcibridge_vendor = pcipriv->ndis_adapter.pcibridge_vendor;
u8 num4bytes = pcipriv->ndis_adapter.num4bytes;
u16 aspmlevel;
u8 u_pcibridge_aspmsetting;
u8 u_device_aspmsetting;
if (!ppsc->support_aspm)
return;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_UNKNOWN) {
rtl_dbg(rtlpriv, COMP_POWER, DBG_TRACE,
"PCI(Bridge) UNKNOWN\n");
return;
}
u_pcibridge_aspmsetting =
pcipriv->ndis_adapter.pcibridge_linkctrlreg |
rtlpci->const_hostpci_aspm_setting;
if (pcibridge_vendor == PCI_BRIDGE_VENDOR_INTEL)
u_pcibridge_aspmsetting &= ~BIT(0);
pci_write_config_byte(rtlpci->pdev, (num4bytes << 2),
u_pcibridge_aspmsetting);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"PlatformEnableASPM(): Write reg[%x] = %x\n",
(pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10),
u_pcibridge_aspmsetting);
udelay(50);
aspmlevel = rtlpci->const_devicepci_aspm_setting;
u_device_aspmsetting = pcipriv->ndis_adapter.linkctrl_reg;
u_device_aspmsetting |= aspmlevel;
_rtl_pci_platform_switch_device_pci_aspm(hw, u_device_aspmsetting);
if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_CLK_REQ) {
_rtl_pci_switch_clk_req(hw, (ppsc->reg_rfps_level &
RT_RF_OFF_LEVL_CLK_REQ) ? 1 : 0);
RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_CLK_REQ);
}
udelay(100);
}
static bool rtl_pci_get_amd_l1_patch(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
bool status = false;
u8 offset_e0;
unsigned int offset_e4;
pci_write_config_byte(rtlpci->pdev, 0xe0, 0xa0);
pci_read_config_byte(rtlpci->pdev, 0xe0, &offset_e0);
if (offset_e0 == 0xA0) {
pci_read_config_dword(rtlpci->pdev, 0xe4, &offset_e4);
if (offset_e4 & BIT(23))
status = true;
}
return status;
}
static bool rtl_pci_check_buddy_priv(struct ieee80211_hw *hw,
struct rtl_priv **buddy_priv)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_priv *tpriv = NULL, *iter;
struct rtl_pci_priv *tpcipriv = NULL;
if (!list_empty(&rtlpriv->glb_var->glb_priv_list)) {
list_for_each_entry(iter, &rtlpriv->glb_var->glb_priv_list,
list) {
tpcipriv = (struct rtl_pci_priv *)iter->priv;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"pcipriv->ndis_adapter.funcnumber %x\n",
pcipriv->ndis_adapter.funcnumber);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"tpcipriv->ndis_adapter.funcnumber %x\n",
tpcipriv->ndis_adapter.funcnumber);
if (pcipriv->ndis_adapter.busnumber ==
tpcipriv->ndis_adapter.busnumber &&
pcipriv->ndis_adapter.devnumber ==
tpcipriv->ndis_adapter.devnumber &&
pcipriv->ndis_adapter.funcnumber !=
tpcipriv->ndis_adapter.funcnumber) {
tpriv = iter;
break;
}
}
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"find_buddy_priv %d\n", tpriv != NULL);
if (tpriv)
*buddy_priv = tpriv;
return tpriv != NULL;
}
static void rtl_pci_get_linkcontrol_field(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
u8 capabilityoffset = pcipriv->ndis_adapter.pcibridge_pciehdr_offset;
u8 linkctrl_reg;
u8 num4bbytes;
num4bbytes = (capabilityoffset + 0x10) / 4;
pci_read_config_byte(rtlpci->pdev, (num4bbytes << 2), &linkctrl_reg);
pcipriv->ndis_adapter.pcibridge_linkctrlreg = linkctrl_reg;
}
static void rtl_pci_parse_configuration(struct pci_dev *pdev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
u8 tmp;
u16 linkctrl_reg;
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &linkctrl_reg);
pcipriv->ndis_adapter.linkctrl_reg = (u8)linkctrl_reg;
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE, "Link Control Register =%x\n",
pcipriv->ndis_adapter.linkctrl_reg);
pci_read_config_byte(pdev, 0x98, &tmp);
tmp |= BIT(4);
pci_write_config_byte(pdev, 0x98, tmp);
tmp = 0x17;
pci_write_config_byte(pdev, 0x70f, tmp);
}
static void rtl_pci_init_aspm(struct ieee80211_hw *hw)
{
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
_rtl_pci_update_default_setting(hw);
if (ppsc->reg_rfps_level & RT_RF_PS_LEVEL_ALWAYS_ASPM) {
rtl_pci_enable_aspm(hw);
RT_SET_PS_LEVEL(ppsc, RT_RF_PS_LEVEL_ALWAYS_ASPM);
}
}
static void _rtl_pci_io_handler_init(struct device *dev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->io.dev = dev;
rtlpriv->io.write8_async = pci_write8_async;
rtlpriv->io.write16_async = pci_write16_async;
rtlpriv->io.write32_async = pci_write32_async;
rtlpriv->io.read8_sync = pci_read8_sync;
rtlpriv->io.read16_sync = pci_read16_sync;
rtlpriv->io.read32_sync = pci_read32_sync;
}
static bool _rtl_update_earlymode_info(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct rtl_tcb_desc *tcb_desc, u8 tid)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct sk_buff *next_skb;
u8 additionlen = FCS_LEN;
if (info->control.hw_key)
additionlen += info->control.hw_key->icv_len;
tcb_desc->empkt_num = 0;
spin_lock_bh(&rtlpriv->locks.waitq_lock);
skb_queue_walk(&rtlpriv->mac80211.skb_waitq[tid], next_skb) {
struct ieee80211_tx_info *next_info;
next_info = IEEE80211_SKB_CB(next_skb);
if (next_info->flags & IEEE80211_TX_CTL_AMPDU) {
tcb_desc->empkt_len[tcb_desc->empkt_num] =
next_skb->len + additionlen;
tcb_desc->empkt_num++;
} else {
break;
}
if (skb_queue_is_last(&rtlpriv->mac80211.skb_waitq[tid],
next_skb))
break;
if (tcb_desc->empkt_num >= rtlhal->max_earlymode_num)
break;
}
spin_unlock_bh(&rtlpriv->locks.waitq_lock);
return true;
}
static void _rtl_pci_tx_chk_waitq(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct sk_buff *skb = NULL;
struct ieee80211_tx_info *info = NULL;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
int tid;
if (!rtlpriv->rtlhal.earlymode_enable)
return;
for (tid = 7; tid >= 0; tid--) {
u8 hw_queue = ac_to_hwq[rtl_tid_to_ac(tid)];
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[hw_queue];
while (!mac->act_scanning &&
rtlpriv->psc.rfpwr_state == ERFON) {
struct rtl_tcb_desc tcb_desc;
memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
spin_lock(&rtlpriv->locks.waitq_lock);
if (!skb_queue_empty(&mac->skb_waitq[tid]) &&
(ring->entries - skb_queue_len(&ring->queue) >
rtlhal->max_earlymode_num)) {
skb = skb_dequeue(&mac->skb_waitq[tid]);
} else {
spin_unlock(&rtlpriv->locks.waitq_lock);
break;
}
spin_unlock(&rtlpriv->locks.waitq_lock);
info = IEEE80211_SKB_CB(skb);
if (info->flags & IEEE80211_TX_CTL_AMPDU)
_rtl_update_earlymode_info(hw, skb,
&tcb_desc, tid);
rtlpriv->intf_ops->adapter_tx(hw, NULL, skb, &tcb_desc);
}
}
}
static void _rtl_pci_tx_isr(struct ieee80211_hw *hw, int prio)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
struct sk_buff *skb;
struct ieee80211_tx_info *info;
__le16 fc;
u8 tid;
u8 *entry;
if (rtlpriv->use_new_trx_flow)
entry = (u8 *)(&ring->buffer_desc[ring->idx]);
else
entry = (u8 *)(&ring->desc[ring->idx]);
if (!rtlpriv->cfg->ops->is_tx_desc_closed(hw, prio, ring->idx))
return;
ring->idx = (ring->idx + 1) % ring->entries;
skb = __skb_dequeue(&ring->queue);
dma_unmap_single(&rtlpci->pdev->dev,
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
true, HW_DESC_TXBUFF_ADDR),
skb->len, DMA_TO_DEVICE);
if (rtlpriv->rtlhal.earlymode_enable)
skb_pull(skb, EM_HDR_LEN);
rtl_dbg(rtlpriv, (COMP_INTR | COMP_SEND), DBG_TRACE,
"new ring->idx:%d, free: skb_queue_len:%d, free: seq:%x\n",
ring->idx,
skb_queue_len(&ring->queue),
*(u16 *)(skb->data + 22));
if (prio == TXCMD_QUEUE) {
dev_kfree_skb(skb);
goto tx_status_ok;
}
fc = rtl_get_fc(skb);
if (ieee80211_is_nullfunc(fc)) {
if (ieee80211_has_pm(fc)) {
rtlpriv->mac80211.offchan_delay = true;
rtlpriv->psc.state_inap = true;
} else {
rtlpriv->psc.state_inap = false;
}
}
if (ieee80211_is_action(fc)) {
struct ieee80211_mgmt *action_frame =
(struct ieee80211_mgmt *)skb->data;
if (action_frame->u.action.u.ht_smps.action ==
WLAN_HT_ACTION_SMPS) {
dev_kfree_skb(skb);
goto tx_status_ok;
}
}
tid = rtl_get_tid(skb);
if (tid <= 7)
rtlpriv->link_info.tidtx_inperiod[tid]++;
info = IEEE80211_SKB_CB(skb);
if (likely(!ieee80211_is_nullfunc(fc))) {
ieee80211_tx_info_clear_status(info);
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status_irqsafe(hw, skb);
} else {
rtl_tx_ackqueue(hw, skb);
}
if ((ring->entries - skb_queue_len(&ring->queue)) <= 4) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_DMESG,
"more desc left, wake skb_queue@%d, ring->idx = %d, skb_queue_len = 0x%x\n",
prio, ring->idx,
skb_queue_len(&ring->queue));
ieee80211_wake_queue(hw, skb_get_queue_mapping(skb));
}
tx_status_ok:
skb = NULL;
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
rtlpriv->link_info.num_rx_inperiod > 2)
rtl_lps_leave(hw, false);
}
static int _rtl_pci_init_one_rxdesc(struct ieee80211_hw *hw,
struct sk_buff *new_skb, u8 *entry,
int rxring_idx, int desc_idx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u32 bufferaddress;
u8 tmp_one = 1;
struct sk_buff *skb;
if (likely(new_skb)) {
skb = new_skb;
goto remap;
}
skb = dev_alloc_skb(rtlpci->rxbuffersize);
if (!skb)
return 0;
remap:
*((dma_addr_t *)skb->cb) =
dma_map_single(&rtlpci->pdev->dev, skb_tail_pointer(skb),
rtlpci->rxbuffersize, DMA_FROM_DEVICE);
bufferaddress = *((dma_addr_t *)skb->cb);
if (dma_mapping_error(&rtlpci->pdev->dev, bufferaddress))
return 0;
rtlpci->rx_ring[rxring_idx].rx_buf[desc_idx] = skb;
if (rtlpriv->use_new_trx_flow) {
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RX_PREPARE,
(u8 *)(dma_addr_t *)skb->cb);
} else {
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RXBUFF_ADDR,
(u8 *)&bufferaddress);
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RXPKT_LEN,
(u8 *)&rtlpci->rxbuffersize);
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RXOWN,
(u8 *)&tmp_one);
}
return 1;
}
static void _rtl_pci_rx_to_mac80211(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct ieee80211_rx_status rx_status)
{
if (unlikely(!rtl_action_proc(hw, skb, false))) {
dev_kfree_skb_any(skb);
} else {
struct sk_buff *uskb = NULL;
uskb = dev_alloc_skb(skb->len + 128);
if (likely(uskb)) {
memcpy(IEEE80211_SKB_RXCB(uskb), &rx_status,
sizeof(rx_status));
skb_put_data(uskb, skb->data, skb->len);
dev_kfree_skb_any(skb);
ieee80211_rx_irqsafe(hw, uskb);
} else {
ieee80211_rx_irqsafe(hw, skb);
}
}
}
static void _rtl_pci_hs_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR],
rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[MAC_HSISR]) |
rtlpci->sys_irq_mask);
}
static void _rtl_pci_rx_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int rxring_idx = RTL_PCI_RX_MPDU_QUEUE;
struct ieee80211_rx_status rx_status = { 0 };
unsigned int count = rtlpci->rxringcount;
u8 own;
u8 tmp_one;
bool unicast = false;
u8 hw_queue = 0;
unsigned int rx_remained_cnt = 0;
struct rtl_stats stats = {
.signal = 0,
.rate = 0,
};
while (count--) {
struct ieee80211_hdr *hdr;
__le16 fc;
u16 len;
struct rtl_rx_buffer_desc *buffer_desc = NULL;
struct rtl_rx_desc *pdesc = NULL;
struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[
rtlpci->rx_ring[rxring_idx].idx];
struct sk_buff *new_skb;
if (rtlpriv->use_new_trx_flow) {
if (rx_remained_cnt == 0)
rx_remained_cnt =
rtlpriv->cfg->ops->rx_desc_buff_remained_cnt(hw,
hw_queue);
if (rx_remained_cnt == 0)
return;
buffer_desc = &rtlpci->rx_ring[rxring_idx].buffer_desc[
rtlpci->rx_ring[rxring_idx].idx];
pdesc = (struct rtl_rx_desc *)skb->data;
} else {
pdesc = &rtlpci->rx_ring[rxring_idx].desc[
rtlpci->rx_ring[rxring_idx].idx];
own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc,
false,
HW_DESC_OWN);
if (own)
return;
}
dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb),
rtlpci->rxbuffersize, DMA_FROM_DEVICE);
new_skb = dev_alloc_skb(rtlpci->rxbuffersize);
if (unlikely(!new_skb))
goto no_new;
memset(&rx_status, 0, sizeof(rx_status));
rtlpriv->cfg->ops->query_rx_desc(hw, &stats,
&rx_status, (u8 *)pdesc, skb);
if (rtlpriv->use_new_trx_flow)
rtlpriv->cfg->ops->rx_check_dma_ok(hw,
(u8 *)buffer_desc,
hw_queue);
len = rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc, false,
HW_DESC_RXPKT_LEN);
if (skb->end - skb->tail > len) {
skb_put(skb, len);
if (rtlpriv->use_new_trx_flow)
skb_reserve(skb, stats.rx_drvinfo_size +
stats.rx_bufshift + 24);
else
skb_reserve(skb, stats.rx_drvinfo_size +
stats.rx_bufshift);
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"skb->end - skb->tail = %d, len is %d\n",
skb->end - skb->tail, len);
dev_kfree_skb_any(skb);
goto new_trx_end;
}
if (stats.packet_report_type == C2H_PACKET) {
rtl_c2hcmd_enqueue(hw, skb);
goto new_trx_end;
}
hdr = rtl_get_hdr(skb);
fc = rtl_get_fc(skb);
if (!stats.crc && !stats.hwerror && (skb->len > FCS_LEN)) {
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status,
sizeof(rx_status));
if (is_broadcast_ether_addr(hdr->addr1)) {
;
} else if (is_multicast_ether_addr(hdr->addr1)) {
;
} else {
unicast = true;
rtlpriv->stats.rxbytesunicast += skb->len;
}
rtl_is_special_data(hw, skb, false, true);
if (ieee80211_is_data(fc)) {
rtlpriv->cfg->ops->led_control(hw, LED_CTL_RX);
if (unicast)
rtlpriv->link_info.num_rx_inperiod++;
}
rtl_collect_scan_list(hw, skb);
rtl_beacon_statistic(hw, skb);
rtl_p2p_info(hw, (void *)skb->data, skb->len);
rtl_swlps_beacon(hw, (void *)skb->data, skb->len);
rtl_recognize_peer(hw, (void *)skb->data, skb->len);
if (rtlpriv->mac80211.opmode == NL80211_IFTYPE_AP &&
rtlpriv->rtlhal.current_bandtype == BAND_ON_2_4G &&
(ieee80211_is_beacon(fc) ||
ieee80211_is_probe_resp(fc))) {
dev_kfree_skb_any(skb);
} else {
_rtl_pci_rx_to_mac80211(hw, skb, rx_status);
}
} else {
dev_kfree_skb_any(skb);
}
new_trx_end:
if (rtlpriv->use_new_trx_flow) {
rtlpci->rx_ring[hw_queue].next_rx_rp += 1;
rtlpci->rx_ring[hw_queue].next_rx_rp %=
RTL_PCI_MAX_RX_COUNT;
rx_remained_cnt--;
rtl_write_word(rtlpriv, 0x3B4,
rtlpci->rx_ring[hw_queue].next_rx_rp);
}
if (((rtlpriv->link_info.num_rx_inperiod +
rtlpriv->link_info.num_tx_inperiod) > 8) ||
rtlpriv->link_info.num_rx_inperiod > 2)
rtl_lps_leave(hw, false);
skb = new_skb;
no_new:
if (rtlpriv->use_new_trx_flow) {
_rtl_pci_init_one_rxdesc(hw, skb, (u8 *)buffer_desc,
rxring_idx,
rtlpci->rx_ring[rxring_idx].idx);
} else {
_rtl_pci_init_one_rxdesc(hw, skb, (u8 *)pdesc,
rxring_idx,
rtlpci->rx_ring[rxring_idx].idx);
if (rtlpci->rx_ring[rxring_idx].idx ==
rtlpci->rxringcount - 1)
rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc,
false,
HW_DESC_RXERO,
(u8 *)&tmp_one);
}
rtlpci->rx_ring[rxring_idx].idx =
(rtlpci->rx_ring[rxring_idx].idx + 1) %
rtlpci->rxringcount;
}
}
static irqreturn_t _rtl_pci_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *hw = dev_id;
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
unsigned long flags;
struct rtl_int intvec = {0};
irqreturn_t ret = IRQ_HANDLED;
if (rtlpci->irq_enabled == 0)
return ret;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
rtlpriv->cfg->ops->disable_interrupt(hw);
rtlpriv->cfg->ops->interrupt_recognized(hw, &intvec);
if (!intvec.inta || intvec.inta == 0xffff)
goto done;
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDOK])
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"beacon ok interrupt!\n");
if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_TBDER]))
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"beacon err interrupt!\n");
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BDOK])
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "beacon interrupt!\n");
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BCNINT]) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"prepare beacon for interrupt!\n");
tasklet_schedule(&rtlpriv->works.irq_prepare_bcn_tasklet);
}
if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_TXFOVW]))
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "IMR_TXFOVW!\n");
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_MGNTDOK]) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"Manage ok interrupt!\n");
_rtl_pci_tx_isr(hw, MGNT_QUEUE);
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_HIGHDOK]) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"HIGH_QUEUE ok interrupt!\n");
_rtl_pci_tx_isr(hw, HIGH_QUEUE);
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BKDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"BK Tx OK interrupt!\n");
_rtl_pci_tx_isr(hw, BK_QUEUE);
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_BEDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"BE TX OK interrupt!\n");
_rtl_pci_tx_isr(hw, BE_QUEUE);
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VIDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"VI TX OK interrupt!\n");
_rtl_pci_tx_isr(hw, VI_QUEUE);
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_VODOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"Vo TX OK interrupt!\n");
_rtl_pci_tx_isr(hw, VO_QUEUE);
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE) {
if (intvec.intd & rtlpriv->cfg->maps[RTL_IMR_H2CDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"H2C TX OK interrupt!\n");
_rtl_pci_tx_isr(hw, H2C_QUEUE);
}
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_COMDOK]) {
rtlpriv->link_info.num_tx_inperiod++;
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"CMD TX OK interrupt!\n");
_rtl_pci_tx_isr(hw, TXCMD_QUEUE);
}
}
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_ROK]) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE, "Rx ok interrupt!\n");
_rtl_pci_rx_interrupt(hw);
}
if (unlikely(intvec.inta & rtlpriv->cfg->maps[RTL_IMR_RDU])) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"rx descriptor unavailable!\n");
_rtl_pci_rx_interrupt(hw);
}
if (unlikely(intvec.intb & rtlpriv->cfg->maps[RTL_IMR_RXFOVW])) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING, "rx overflow !\n");
_rtl_pci_rx_interrupt(hw);
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8723AE) {
if (intvec.inta & rtlpriv->cfg->maps[RTL_IMR_C2HCMD]) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"firmware interrupt!\n");
queue_delayed_work(rtlpriv->works.rtl_wq,
&rtlpriv->works.fwevt_wq, 0);
}
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8188EE ||
rtlhal->hw_type == HARDWARE_TYPE_RTL8723BE) {
if (unlikely(intvec.inta &
rtlpriv->cfg->maps[RTL_IMR_HSISR_IND])) {
rtl_dbg(rtlpriv, COMP_INTR, DBG_TRACE,
"hsisr interrupt!\n");
_rtl_pci_hs_interrupt(hw);
}
}
if (rtlpriv->rtlhal.earlymode_enable)
tasklet_schedule(&rtlpriv->works.irq_tasklet);
done:
rtlpriv->cfg->ops->enable_interrupt(hw);
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return ret;
}
static void _rtl_pci_irq_tasklet(struct tasklet_struct *t)
{
struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t, works.irq_tasklet);
struct ieee80211_hw *hw = rtlpriv->hw;
_rtl_pci_tx_chk_waitq(hw);
}
static void _rtl_pci_prepare_bcn_tasklet(struct tasklet_struct *t)
{
struct rtl_priv *rtlpriv = from_tasklet(rtlpriv, t,
works.irq_prepare_bcn_tasklet);
struct ieee80211_hw *hw = rtlpriv->hw;
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl8192_tx_ring *ring = NULL;
struct ieee80211_hdr *hdr = NULL;
struct ieee80211_tx_info *info = NULL;
struct sk_buff *pskb = NULL;
struct rtl_tx_desc *pdesc = NULL;
struct rtl_tcb_desc tcb_desc;
struct rtl_tx_buffer_desc *pbuffer_desc = NULL;
u8 temp_one = 1;
u8 *entry;
memset(&tcb_desc, 0, sizeof(struct rtl_tcb_desc));
ring = &rtlpci->tx_ring[BEACON_QUEUE];
pskb = __skb_dequeue(&ring->queue);
if (rtlpriv->use_new_trx_flow)
entry = (u8 *)(&ring->buffer_desc[ring->idx]);
else
entry = (u8 *)(&ring->desc[ring->idx]);
if (pskb) {
dma_unmap_single(&rtlpci->pdev->dev,
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
true, HW_DESC_TXBUFF_ADDR),
pskb->len, DMA_TO_DEVICE);
kfree_skb(pskb);
}
pskb = ieee80211_beacon_get(hw, mac->vif, 0);
if (!pskb)
return;
hdr = rtl_get_hdr(pskb);
info = IEEE80211_SKB_CB(pskb);
pdesc = &ring->desc[0];
if (rtlpriv->use_new_trx_flow)
pbuffer_desc = &ring->buffer_desc[0];
rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc,
(u8 *)pbuffer_desc, info, NULL, pskb,
BEACON_QUEUE, &tcb_desc);
__skb_queue_tail(&ring->queue, pskb);
if (rtlpriv->use_new_trx_flow) {
temp_one = 4;
rtlpriv->cfg->ops->set_desc(hw, (u8 *)pbuffer_desc, true,
HW_DESC_OWN, (u8 *)&temp_one);
} else {
rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true, HW_DESC_OWN,
&temp_one);
}
}
static void _rtl_pci_init_trx_var(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
u8 i;
u16 desc_num;
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192EE)
desc_num = TX_DESC_NUM_92E;
else if (rtlhal->hw_type == HARDWARE_TYPE_RTL8822BE)
desc_num = TX_DESC_NUM_8822B;
else
desc_num = RT_TXDESC_NUM;
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
rtlpci->txringcount[i] = desc_num;
rtlpci->txringcount[BEACON_QUEUE] = 2;
if (!rtl_priv(hw)->use_new_trx_flow)
rtlpci->txringcount[BE_QUEUE] = RT_TXDESC_NUM_BE_QUEUE;
rtlpci->rxbuffersize = 9100;
rtlpci->rxringcount = RTL_PCI_MAX_RX_COUNT;
}
static void _rtl_pci_init_struct(struct ieee80211_hw *hw,
struct pci_dev *pdev)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
rtlpci->up_first_time = true;
rtlpci->being_init_adapter = false;
rtlhal->hw = hw;
rtlpci->pdev = pdev;
_rtl_pci_init_trx_var(hw);
mac->beacon_interval = 100;
mac->min_space_cfg = 0;
mac->max_mss_density = 0;
mac->current_ampdu_density = 7;
mac->current_ampdu_factor = 3;
mac->retry_short = 7;
mac->retry_long = 7;
rtlpci->acm_method = EACMWAY2_SW;
tasklet_setup(&rtlpriv->works.irq_tasklet, _rtl_pci_irq_tasklet);
tasklet_setup(&rtlpriv->works.irq_prepare_bcn_tasklet,
_rtl_pci_prepare_bcn_tasklet);
INIT_WORK(&rtlpriv->works.lps_change_work,
rtl_lps_change_work_callback);
}
static int _rtl_pci_init_tx_ring(struct ieee80211_hw *hw,
unsigned int prio, unsigned int entries)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_tx_buffer_desc *buffer_desc;
struct rtl_tx_desc *desc;
dma_addr_t buffer_desc_dma, desc_dma;
u32 nextdescaddress;
int i;
if (rtlpriv->use_new_trx_flow) {
buffer_desc =
dma_alloc_coherent(&rtlpci->pdev->dev,
sizeof(*buffer_desc) * entries,
&buffer_desc_dma, GFP_KERNEL);
if (!buffer_desc || (unsigned long)buffer_desc & 0xFF) {
pr_err("Cannot allocate TX ring (prio = %d)\n",
prio);
return -ENOMEM;
}
rtlpci->tx_ring[prio].buffer_desc = buffer_desc;
rtlpci->tx_ring[prio].buffer_desc_dma = buffer_desc_dma;
rtlpci->tx_ring[prio].cur_tx_rp = 0;
rtlpci->tx_ring[prio].cur_tx_wp = 0;
}
desc = dma_alloc_coherent(&rtlpci->pdev->dev, sizeof(*desc) * entries,
&desc_dma, GFP_KERNEL);
if (!desc || (unsigned long)desc & 0xFF) {
pr_err("Cannot allocate TX ring (prio = %d)\n", prio);
return -ENOMEM;
}
rtlpci->tx_ring[prio].desc = desc;
rtlpci->tx_ring[prio].dma = desc_dma;
rtlpci->tx_ring[prio].idx = 0;
rtlpci->tx_ring[prio].entries = entries;
skb_queue_head_init(&rtlpci->tx_ring[prio].queue);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "queue:%d, ring_addr:%p\n",
prio, desc);
if (!rtlpriv->use_new_trx_flow) {
for (i = 0; i < entries; i++) {
nextdescaddress = (u32)desc_dma +
((i + 1) % entries) *
sizeof(*desc);
rtlpriv->cfg->ops->set_desc(hw, (u8 *)&desc[i],
true,
HW_DESC_TX_NEXTDESC_ADDR,
(u8 *)&nextdescaddress);
}
}
return 0;
}
static int _rtl_pci_init_rx_ring(struct ieee80211_hw *hw, int rxring_idx)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_priv *rtlpriv = rtl_priv(hw);
int i;
if (rtlpriv->use_new_trx_flow) {
struct rtl_rx_buffer_desc *entry = NULL;
rtlpci->rx_ring[rxring_idx].buffer_desc =
dma_alloc_coherent(&rtlpci->pdev->dev,
sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) *
rtlpci->rxringcount,
&rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL);
if (!rtlpci->rx_ring[rxring_idx].buffer_desc ||
(ulong)rtlpci->rx_ring[rxring_idx].buffer_desc & 0xFF) {
pr_err("Cannot allocate RX ring\n");
return -ENOMEM;
}
rtlpci->rx_ring[rxring_idx].idx = 0;
for (i = 0; i < rtlpci->rxringcount; i++) {
entry = &rtlpci->rx_ring[rxring_idx].buffer_desc[i];
if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry,
rxring_idx, i))
return -ENOMEM;
}
} else {
struct rtl_rx_desc *entry = NULL;
u8 tmp_one = 1;
rtlpci->rx_ring[rxring_idx].desc =
dma_alloc_coherent(&rtlpci->pdev->dev,
sizeof(*rtlpci->rx_ring[rxring_idx].desc) *
rtlpci->rxringcount,
&rtlpci->rx_ring[rxring_idx].dma, GFP_KERNEL);
if (!rtlpci->rx_ring[rxring_idx].desc ||
(unsigned long)rtlpci->rx_ring[rxring_idx].desc & 0xFF) {
pr_err("Cannot allocate RX ring\n");
return -ENOMEM;
}
rtlpci->rx_ring[rxring_idx].idx = 0;
for (i = 0; i < rtlpci->rxringcount; i++) {
entry = &rtlpci->rx_ring[rxring_idx].desc[i];
if (!_rtl_pci_init_one_rxdesc(hw, NULL, (u8 *)entry,
rxring_idx, i))
return -ENOMEM;
}
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RXERO, &tmp_one);
}
return 0;
}
static void _rtl_pci_free_tx_ring(struct ieee80211_hw *hw,
unsigned int prio)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[prio];
while (skb_queue_len(&ring->queue)) {
u8 *entry;
struct sk_buff *skb = __skb_dequeue(&ring->queue);
if (rtlpriv->use_new_trx_flow)
entry = (u8 *)(&ring->buffer_desc[ring->idx]);
else
entry = (u8 *)(&ring->desc[ring->idx]);
dma_unmap_single(&rtlpci->pdev->dev,
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
true, HW_DESC_TXBUFF_ADDR),
skb->len, DMA_TO_DEVICE);
kfree_skb(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
dma_free_coherent(&rtlpci->pdev->dev,
sizeof(*ring->desc) * ring->entries, ring->desc,
ring->dma);
ring->desc = NULL;
if (rtlpriv->use_new_trx_flow) {
dma_free_coherent(&rtlpci->pdev->dev,
sizeof(*ring->buffer_desc) * ring->entries,
ring->buffer_desc, ring->buffer_desc_dma);
ring->buffer_desc = NULL;
}
}
static void _rtl_pci_free_rx_ring(struct ieee80211_hw *hw, int rxring_idx)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int i;
for (i = 0; i < rtlpci->rxringcount; i++) {
struct sk_buff *skb = rtlpci->rx_ring[rxring_idx].rx_buf[i];
if (!skb)
continue;
dma_unmap_single(&rtlpci->pdev->dev, *((dma_addr_t *)skb->cb),
rtlpci->rxbuffersize, DMA_FROM_DEVICE);
kfree_skb(skb);
}
if (rtlpriv->use_new_trx_flow) {
dma_free_coherent(&rtlpci->pdev->dev,
sizeof(*rtlpci->rx_ring[rxring_idx].buffer_desc) *
rtlpci->rxringcount,
rtlpci->rx_ring[rxring_idx].buffer_desc,
rtlpci->rx_ring[rxring_idx].dma);
rtlpci->rx_ring[rxring_idx].buffer_desc = NULL;
} else {
dma_free_coherent(&rtlpci->pdev->dev,
sizeof(*rtlpci->rx_ring[rxring_idx].desc) *
rtlpci->rxringcount,
rtlpci->rx_ring[rxring_idx].desc,
rtlpci->rx_ring[rxring_idx].dma);
rtlpci->rx_ring[rxring_idx].desc = NULL;
}
}
static int _rtl_pci_init_trx_ring(struct ieee80211_hw *hw)
{
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int ret;
int i, rxring_idx;
for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) {
ret = _rtl_pci_init_rx_ring(hw, rxring_idx);
if (ret)
return ret;
}
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
ret = _rtl_pci_init_tx_ring(hw, i, rtlpci->txringcount[i]);
if (ret)
goto err_free_rings;
}
return 0;
err_free_rings:
for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++)
_rtl_pci_free_rx_ring(hw, rxring_idx);
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
if (rtlpci->tx_ring[i].desc ||
rtlpci->tx_ring[i].buffer_desc)
_rtl_pci_free_tx_ring(hw, i);
return 1;
}
static int _rtl_pci_deinit_trx_ring(struct ieee80211_hw *hw)
{
u32 i, rxring_idx;
for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++)
_rtl_pci_free_rx_ring(hw, rxring_idx);
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++)
_rtl_pci_free_tx_ring(hw, i);
return 0;
}
int rtl_pci_reset_trx_ring(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
int i, rxring_idx;
unsigned long flags;
u8 tmp_one = 1;
u32 bufferaddress;
for (rxring_idx = 0; rxring_idx < RTL_PCI_MAX_RX_QUEUE; rxring_idx++) {
if (!rtlpriv->use_new_trx_flow &&
rtlpci->rx_ring[rxring_idx].desc) {
struct rtl_rx_desc *entry = NULL;
rtlpci->rx_ring[rxring_idx].idx = 0;
for (i = 0; i < rtlpci->rxringcount; i++) {
entry = &rtlpci->rx_ring[rxring_idx].desc[i];
bufferaddress =
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
false, HW_DESC_RXBUFF_ADDR);
memset((u8 *)entry, 0,
sizeof(*rtlpci->rx_ring
[rxring_idx].desc));
if (rtlpriv->use_new_trx_flow) {
rtlpriv->cfg->ops->set_desc(hw,
(u8 *)entry, false,
HW_DESC_RX_PREPARE,
(u8 *)&bufferaddress);
} else {
rtlpriv->cfg->ops->set_desc(hw,
(u8 *)entry, false,
HW_DESC_RXBUFF_ADDR,
(u8 *)&bufferaddress);
rtlpriv->cfg->ops->set_desc(hw,
(u8 *)entry, false,
HW_DESC_RXPKT_LEN,
(u8 *)&rtlpci->rxbuffersize);
rtlpriv->cfg->ops->set_desc(hw,
(u8 *)entry, false,
HW_DESC_RXOWN,
(u8 *)&tmp_one);
}
}
rtlpriv->cfg->ops->set_desc(hw, (u8 *)entry, false,
HW_DESC_RXERO, (u8 *)&tmp_one);
}
rtlpci->rx_ring[rxring_idx].idx = 0;
}
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
for (i = 0; i < RTL_PCI_MAX_TX_QUEUE_COUNT; i++) {
if (rtlpci->tx_ring[i].desc ||
rtlpci->tx_ring[i].buffer_desc) {
struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[i];
while (skb_queue_len(&ring->queue)) {
u8 *entry;
struct sk_buff *skb =
__skb_dequeue(&ring->queue);
if (rtlpriv->use_new_trx_flow)
entry = (u8 *)(&ring->buffer_desc
[ring->idx]);
else
entry = (u8 *)(&ring->desc[ring->idx]);
dma_unmap_single(&rtlpci->pdev->dev,
rtlpriv->cfg->ops->get_desc(hw, (u8 *)entry,
true, HW_DESC_TXBUFF_ADDR),
skb->len, DMA_TO_DEVICE);
dev_kfree_skb_irq(skb);
ring->idx = (ring->idx + 1) % ring->entries;
}
if (rtlpriv->use_new_trx_flow) {
rtlpci->tx_ring[i].cur_tx_rp = 0;
rtlpci->tx_ring[i].cur_tx_wp = 0;
}
ring->idx = 0;
ring->entries = rtlpci->txringcount[i];
}
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return 0;
}
static bool rtl_pci_tx_chk_waitq_insert(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct sk_buff *skb)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_sta_info *sta_entry = NULL;
u8 tid = rtl_get_tid(skb);
__le16 fc = rtl_get_fc(skb);
if (!sta)
return false;
sta_entry = (struct rtl_sta_info *)sta->drv_priv;
if (!rtlpriv->rtlhal.earlymode_enable)
return false;
if (ieee80211_is_nullfunc(fc))
return false;
if (ieee80211_is_qos_nullfunc(fc))
return false;
if (ieee80211_is_pspoll(fc))
return false;
if (sta_entry->tids[tid].agg.agg_state != RTL_AGG_OPERATIONAL)
return false;
if (_rtl_mac_to_hwqueue(hw, skb) > VO_QUEUE)
return false;
if (tid > 7)
return false;
if (!rtlpriv->link_info.higher_busytxtraffic[tid])
return false;
spin_lock_bh(&rtlpriv->locks.waitq_lock);
skb_queue_tail(&rtlpriv->mac80211.skb_waitq[tid], skb);
spin_unlock_bh(&rtlpriv->locks.waitq_lock);
return true;
}
static int rtl_pci_tx(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct rtl_tcb_desc *ptcb_desc)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct rtl8192_tx_ring *ring;
struct rtl_tx_desc *pdesc;
struct rtl_tx_buffer_desc *ptx_bd_desc = NULL;
u16 idx;
u8 hw_queue = _rtl_mac_to_hwqueue(hw, skb);
unsigned long flags;
struct ieee80211_hdr *hdr = rtl_get_hdr(skb);
__le16 fc = rtl_get_fc(skb);
u8 *pda_addr = hdr->addr1;
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
u8 own;
u8 temp_one = 1;
if (ieee80211_is_mgmt(fc))
rtl_tx_mgmt_proc(hw, skb);
if (rtlpriv->psc.sw_ps_enabled) {
if (ieee80211_is_data(fc) && !ieee80211_is_nullfunc(fc) &&
!ieee80211_has_pm(fc))
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
}
rtl_action_proc(hw, skb, true);
if (is_multicast_ether_addr(pda_addr))
rtlpriv->stats.txbytesmulticast += skb->len;
else if (is_broadcast_ether_addr(pda_addr))
rtlpriv->stats.txbytesbroadcast += skb->len;
else
rtlpriv->stats.txbytesunicast += skb->len;
spin_lock_irqsave(&rtlpriv->locks.irq_th_lock, flags);
ring = &rtlpci->tx_ring[hw_queue];
if (hw_queue != BEACON_QUEUE) {
if (rtlpriv->use_new_trx_flow)
idx = ring->cur_tx_wp;
else
idx = (ring->idx + skb_queue_len(&ring->queue)) %
ring->entries;
} else {
idx = 0;
}
pdesc = &ring->desc[idx];
if (rtlpriv->use_new_trx_flow) {
ptx_bd_desc = &ring->buffer_desc[idx];
} else {
own = (u8)rtlpriv->cfg->ops->get_desc(hw, (u8 *)pdesc,
true, HW_DESC_OWN);
if (own == 1 && hw_queue != BEACON_QUEUE) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"No more TX desc@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n",
hw_queue, ring->idx, idx,
skb_queue_len(&ring->queue));
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock,
flags);
return skb->len;
}
}
if (rtlpriv->cfg->ops->get_available_desc &&
rtlpriv->cfg->ops->get_available_desc(hw, hw_queue) == 0) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"get_available_desc fail\n");
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
return skb->len;
}
if (ieee80211_is_data(fc))
rtlpriv->cfg->ops->led_control(hw, LED_CTL_TX);
rtlpriv->cfg->ops->fill_tx_desc(hw, hdr, (u8 *)pdesc,
(u8 *)ptx_bd_desc, info, sta, skb, hw_queue, ptcb_desc);
__skb_queue_tail(&ring->queue, skb);
if (rtlpriv->use_new_trx_flow) {
rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true,
HW_DESC_OWN, &hw_queue);
} else {
rtlpriv->cfg->ops->set_desc(hw, (u8 *)pdesc, true,
HW_DESC_OWN, &temp_one);
}
if ((ring->entries - skb_queue_len(&ring->queue)) < 2 &&
hw_queue != BEACON_QUEUE) {
rtl_dbg(rtlpriv, COMP_ERR, DBG_LOUD,
"less desc left, stop skb_queue@%d, ring->idx = %d, idx = %d, skb_queue_len = 0x%x\n",
hw_queue, ring->idx, idx,
skb_queue_len(&ring->queue));
ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
}
spin_unlock_irqrestore(&rtlpriv->locks.irq_th_lock, flags);
rtlpriv->cfg->ops->tx_polling(hw, hw_queue);
return 0;
}
static void rtl_pci_flush(struct ieee80211_hw *hw, u32 queues, bool drop)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
u16 i = 0;
int queue_id;
struct rtl8192_tx_ring *ring;
if (mac->skip_scan)
return;
for (queue_id = RTL_PCI_MAX_TX_QUEUE_COUNT - 1; queue_id >= 0;) {
u32 queue_len;
if (((queues >> queue_id) & 0x1) == 0) {
queue_id--;
continue;
}
ring = &pcipriv->dev.tx_ring[queue_id];
queue_len = skb_queue_len(&ring->queue);
if (queue_len == 0 || queue_id == BEACON_QUEUE ||
queue_id == TXCMD_QUEUE) {
queue_id--;
continue;
} else {
msleep(20);
i++;
}
if (rtlpriv->psc.rfpwr_state == ERFOFF ||
is_hal_stop(rtlhal) || i >= 200)
return;
}
}
static void rtl_pci_deinit(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
_rtl_pci_deinit_trx_ring(hw);
synchronize_irq(rtlpci->pdev->irq);
tasklet_kill(&rtlpriv->works.irq_tasklet);
cancel_work_sync(&rtlpriv->works.lps_change_work);
destroy_workqueue(rtlpriv->works.rtl_wq);
}
static int rtl_pci_init(struct ieee80211_hw *hw, struct pci_dev *pdev)
{
int err;
_rtl_pci_init_struct(hw, pdev);
err = _rtl_pci_init_trx_ring(hw);
if (err) {
pr_err("tx ring initialization failed\n");
return err;
}
return 0;
}
static int rtl_pci_start(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_mac *rtlmac = rtl_mac(rtl_priv(hw));
struct rtl_btc_ops *btc_ops = rtlpriv->btcoexist.btc_ops;
int err;
rtl_pci_reset_trx_ring(hw);
rtlpci->driver_is_goingto_unload = false;
if (rtlpriv->cfg->ops->get_btc_status &&
rtlpriv->cfg->ops->get_btc_status()) {
rtlpriv->btcoexist.btc_info.ap_num = 36;
btc_ops->btc_init_variables(rtlpriv);
btc_ops->btc_init_hal_vars(rtlpriv);
} else if (btc_ops) {
btc_ops->btc_init_variables_wifi_only(rtlpriv);
}
err = rtlpriv->cfg->ops->hw_init(hw);
if (err) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Failed to config hardware!\n");
kfree(rtlpriv->btcoexist.btc_context);
kfree(rtlpriv->btcoexist.wifi_only_context);
return err;
}
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
&rtlmac->retry_long);
rtlpriv->cfg->ops->enable_interrupt(hw);
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "enable_interrupt OK\n");
rtl_init_rx_config(hw);
set_hal_start(rtlhal);
RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
rtlpci->up_first_time = false;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG, "%s OK\n", __func__);
return 0;
}
static void rtl_pci_stop(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
unsigned long flags;
u8 rf_timeout = 0;
if (rtlpriv->cfg->ops->get_btc_status())
rtlpriv->btcoexist.btc_ops->btc_halt_notify(rtlpriv);
if (rtlpriv->btcoexist.btc_ops)
rtlpriv->btcoexist.btc_ops->btc_deinit_variables(rtlpriv);
set_hal_stop(rtlhal);
rtlpci->driver_is_goingto_unload = true;
rtlpriv->cfg->ops->disable_interrupt(hw);
cancel_work_sync(&rtlpriv->works.lps_change_work);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
while (ppsc->rfchange_inprogress) {
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
if (rf_timeout > 100) {
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
break;
}
mdelay(1);
rf_timeout++;
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
}
ppsc->rfchange_inprogress = true;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
rtlpriv->cfg->ops->hw_disable(hw);
if (!rtlpriv->max_fw_size)
return;
rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flags);
ppsc->rfchange_inprogress = false;
spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flags);
rtl_pci_enable_aspm(hw);
}
static bool _rtl_pci_find_adapter(struct pci_dev *pdev,
struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
struct pci_dev *bridge_pdev = pdev->bus->self;
u16 venderid;
u16 deviceid;
u8 revisionid;
u16 irqline;
u8 tmp;
pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN;
venderid = pdev->vendor;
deviceid = pdev->device;
pci_read_config_byte(pdev, 0x8, &revisionid);
pci_read_config_word(pdev, 0x3C, &irqline);
if (deviceid == RTL_PCI_8192SE_DID &&
revisionid == RTL_PCI_REVISION_ID_8192PCIE)
return false;
if (deviceid == RTL_PCI_8192_DID ||
deviceid == RTL_PCI_0044_DID ||
deviceid == RTL_PCI_0047_DID ||
deviceid == RTL_PCI_8192SE_DID ||
deviceid == RTL_PCI_8174_DID ||
deviceid == RTL_PCI_8173_DID ||
deviceid == RTL_PCI_8172_DID ||
deviceid == RTL_PCI_8171_DID) {
switch (revisionid) {
case RTL_PCI_REVISION_ID_8192PCIE:
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"8192 PCI-E is found - vid/did=%x/%x\n",
venderid, deviceid);
rtlhal->hw_type = HARDWARE_TYPE_RTL8192E;
return false;
case RTL_PCI_REVISION_ID_8192SE:
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"8192SE is found - vid/did=%x/%x\n",
venderid, deviceid);
rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
break;
default:
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"Err: Unknown device - vid/did=%x/%x\n",
venderid, deviceid);
rtlhal->hw_type = HARDWARE_TYPE_RTL8192SE;
break;
}
} else if (deviceid == RTL_PCI_8723AE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8723AE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"8723AE PCI-E is found - vid/did=%x/%x\n",
venderid, deviceid);
} else if (deviceid == RTL_PCI_8192CET_DID ||
deviceid == RTL_PCI_8192CE_DID ||
deviceid == RTL_PCI_8191CE_DID ||
deviceid == RTL_PCI_8188CE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8192CE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"8192C PCI-E is found - vid/did=%x/%x\n",
venderid, deviceid);
} else if (deviceid == RTL_PCI_8192DE_DID ||
deviceid == RTL_PCI_8192DE_DID2) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8192DE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"8192D PCI-E is found - vid/did=%x/%x\n",
venderid, deviceid);
} else if (deviceid == RTL_PCI_8188EE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8188EE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8188EE\n");
} else if (deviceid == RTL_PCI_8723BE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8723BE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8723BE\n");
} else if (deviceid == RTL_PCI_8192EE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8192EE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8192EE\n");
} else if (deviceid == RTL_PCI_8821AE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8821AE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8821AE\n");
} else if (deviceid == RTL_PCI_8812AE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8812AE;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8812AE\n");
} else if (deviceid == RTL_PCI_8822BE_DID) {
rtlhal->hw_type = HARDWARE_TYPE_RTL8822BE;
rtlhal->bandset = BAND_ON_BOTH;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find adapter, Hardware type is 8822BE\n");
} else {
rtl_dbg(rtlpriv, COMP_ERR, DBG_WARNING,
"Err: Unknown device - vid/did=%x/%x\n",
venderid, deviceid);
rtlhal->hw_type = RTL_DEFAULT_HARDWARE_TYPE;
}
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192DE) {
if (revisionid == 0 || revisionid == 1) {
if (revisionid == 0) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find 92DE MAC0\n");
rtlhal->interfaceindex = 0;
} else if (revisionid == 1) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Find 92DE MAC1\n");
rtlhal->interfaceindex = 1;
}
} else {
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Unknown device - VendorID/DeviceID=%x/%x, Revision=%x\n",
venderid, deviceid, revisionid);
rtlhal->interfaceindex = 0;
}
}
switch (rtlhal->hw_type) {
case HARDWARE_TYPE_RTL8192EE:
case HARDWARE_TYPE_RTL8822BE:
rtlpriv->use_new_trx_flow = true;
break;
default:
rtlpriv->use_new_trx_flow = false;
break;
}
pcipriv->ndis_adapter.busnumber = pdev->bus->number;
pcipriv->ndis_adapter.devnumber = PCI_SLOT(pdev->devfn);
pcipriv->ndis_adapter.funcnumber = PCI_FUNC(pdev->devfn);
pcipriv->ndis_adapter.pcibridge_vendor = PCI_BRIDGE_VENDOR_UNKNOWN;
if (bridge_pdev) {
pcipriv->ndis_adapter.pcibridge_vendorid = bridge_pdev->vendor;
for (tmp = 0; tmp < PCI_BRIDGE_VENDOR_MAX; tmp++) {
if (bridge_pdev->vendor == pcibridge_vendors[tmp]) {
pcipriv->ndis_adapter.pcibridge_vendor = tmp;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Pci Bridge Vendor is found index: %d\n",
tmp);
break;
}
}
}
if (pcipriv->ndis_adapter.pcibridge_vendor !=
PCI_BRIDGE_VENDOR_UNKNOWN) {
pcipriv->ndis_adapter.pcibridge_busnum =
bridge_pdev->bus->number;
pcipriv->ndis_adapter.pcibridge_devnum =
PCI_SLOT(bridge_pdev->devfn);
pcipriv->ndis_adapter.pcibridge_funcnum =
PCI_FUNC(bridge_pdev->devfn);
pcipriv->ndis_adapter.pcibridge_pciehdr_offset =
pci_pcie_cap(bridge_pdev);
pcipriv->ndis_adapter.num4bytes =
(pcipriv->ndis_adapter.pcibridge_pciehdr_offset + 0x10) / 4;
rtl_pci_get_linkcontrol_field(hw);
if (pcipriv->ndis_adapter.pcibridge_vendor ==
PCI_BRIDGE_VENDOR_AMD) {
pcipriv->ndis_adapter.amd_l1_patch =
rtl_pci_get_amd_l1_patch(hw);
}
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"pcidev busnumber:devnumber:funcnumber:vendor:link_ctl %d:%d:%d:%x:%x\n",
pcipriv->ndis_adapter.busnumber,
pcipriv->ndis_adapter.devnumber,
pcipriv->ndis_adapter.funcnumber,
pdev->vendor, pcipriv->ndis_adapter.linkctrl_reg);
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"pci_bridge busnumber:devnumber:funcnumber:vendor:pcie_cap:link_ctl_reg:amd %d:%d:%d:%x:%x:%x:%x\n",
pcipriv->ndis_adapter.pcibridge_busnum,
pcipriv->ndis_adapter.pcibridge_devnum,
pcipriv->ndis_adapter.pcibridge_funcnum,
pcibridge_vendors[pcipriv->ndis_adapter.pcibridge_vendor],
pcipriv->ndis_adapter.pcibridge_pciehdr_offset,
pcipriv->ndis_adapter.pcibridge_linkctrlreg,
pcipriv->ndis_adapter.amd_l1_patch);
rtl_pci_parse_configuration(pdev, hw);
list_add_tail(&rtlpriv->list, &rtlpriv->glb_var->glb_priv_list);
return true;
}
static int rtl_pci_intr_mode_msi(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
int ret;
ret = pci_enable_msi(rtlpci->pdev);
if (ret < 0)
return ret;
ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
IRQF_SHARED, KBUILD_MODNAME, hw);
if (ret < 0) {
pci_disable_msi(rtlpci->pdev);
return ret;
}
rtlpci->using_msi = true;
rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG,
"MSI Interrupt Mode!\n");
return 0;
}
static int rtl_pci_intr_mode_legacy(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
int ret;
ret = request_irq(rtlpci->pdev->irq, &_rtl_pci_interrupt,
IRQF_SHARED, KBUILD_MODNAME, hw);
if (ret < 0)
return ret;
rtlpci->using_msi = false;
rtl_dbg(rtlpriv, COMP_INIT | COMP_INTR, DBG_DMESG,
"Pin-based Interrupt Mode!\n");
return 0;
}
static int rtl_pci_intr_mode_decide(struct ieee80211_hw *hw)
{
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
int ret;
if (rtlpci->msi_support) {
ret = rtl_pci_intr_mode_msi(hw);
if (ret < 0)
ret = rtl_pci_intr_mode_legacy(hw);
} else {
ret = rtl_pci_intr_mode_legacy(hw);
}
return ret;
}
static void platform_enable_dma64(struct pci_dev *pdev, bool dma64)
{
u8 value;
pci_read_config_byte(pdev, 0x719, &value);
if (dma64)
value |= BIT(5);
else
value &= ~BIT(5);
pci_write_config_byte(pdev, 0x719, value);
}
int rtl_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct ieee80211_hw *hw = NULL;
struct rtl_priv *rtlpriv = NULL;
struct rtl_pci_priv *pcipriv = NULL;
struct rtl_pci *rtlpci;
unsigned long pmem_start, pmem_len, pmem_flags;
int err;
err = pci_enable_device(pdev);
if (err) {
WARN_ONCE(true, "%s : Cannot enable new PCI device\n",
pci_name(pdev));
return err;
}
if (((struct rtl_hal_cfg *)id->driver_data)->mod_params->dma64 &&
!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
WARN_ONCE(true,
"Unable to obtain 64bit DMA for consistent allocations\n");
err = -ENOMEM;
goto fail1;
}
platform_enable_dma64(pdev, true);
} else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
if (dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32))) {
WARN_ONCE(true,
"rtlwifi: Unable to obtain 32bit DMA for consistent allocations\n");
err = -ENOMEM;
goto fail1;
}
platform_enable_dma64(pdev, false);
}
pci_set_master(pdev);
hw = ieee80211_alloc_hw(sizeof(struct rtl_pci_priv) +
sizeof(struct rtl_priv), &rtl_ops);
if (!hw) {
WARN_ONCE(true,
"%s : ieee80211 alloc failed\n", pci_name(pdev));
err = -ENOMEM;
goto fail1;
}
SET_IEEE80211_DEV(hw, &pdev->dev);
pci_set_drvdata(pdev, hw);
rtlpriv = hw->priv;
rtlpriv->hw = hw;
pcipriv = (void *)rtlpriv->priv;
pcipriv->dev.pdev = pdev;
init_completion(&rtlpriv->firmware_loading_complete);
rtlpriv->proximity.proxim_on = false;
pcipriv = (void *)rtlpriv->priv;
pcipriv->dev.pdev = pdev;
rtlpriv->rtlhal.interface = INTF_PCI;
rtlpriv->cfg = (struct rtl_hal_cfg *)(id->driver_data);
rtlpriv->intf_ops = &rtl_pci_ops;
rtlpriv->glb_var = &rtl_global_var;
rtl_efuse_ops_init(hw);
err = pci_request_regions(pdev, KBUILD_MODNAME);
if (err) {
WARN_ONCE(true, "rtlwifi: Can't obtain PCI resources\n");
goto fail1;
}
pmem_start = pci_resource_start(pdev, rtlpriv->cfg->bar_id);
pmem_len = pci_resource_len(pdev, rtlpriv->cfg->bar_id);
pmem_flags = pci_resource_flags(pdev, rtlpriv->cfg->bar_id);
rtlpriv->io.pci_mem_start =
(unsigned long)pci_iomap(pdev,
rtlpriv->cfg->bar_id, pmem_len);
if (rtlpriv->io.pci_mem_start == 0) {
WARN_ONCE(true, "rtlwifi: Can't map PCI mem\n");
err = -ENOMEM;
goto fail2;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"mem mapped space: start: 0x%08lx len:%08lx flags:%08lx, after map:0x%08lx\n",
pmem_start, pmem_len, pmem_flags,
rtlpriv->io.pci_mem_start);
pci_write_config_byte(pdev, 0x81, 0);
pci_write_config_byte(pdev, 0x44, 0);
pci_write_config_byte(pdev, 0x04, 0x06);
pci_write_config_byte(pdev, 0x04, 0x07);
if (!_rtl_pci_find_adapter(pdev, hw)) {
err = -ENODEV;
goto fail2;
}
_rtl_pci_io_handler_init(&pdev->dev, hw);
rtlpriv->cfg->ops->read_eeprom_info(hw);
if (rtlpriv->cfg->ops->init_sw_vars(hw)) {
pr_err("Can't init_sw_vars\n");
err = -ENODEV;
goto fail3;
}
rtl_init_sw_leds(hw);
rtl_pci_init_aspm(hw);
err = rtl_init_core(hw);
if (err) {
pr_err("Can't allocate sw for mac80211\n");
goto fail3;
}
err = rtl_pci_init(hw, pdev);
if (err) {
pr_err("Failed to init PCI\n");
goto fail3;
}
err = ieee80211_register_hw(hw);
if (err) {
pr_err("Can't register mac80211 hw.\n");
err = -ENODEV;
goto fail3;
}
rtlpriv->mac80211.mac80211_registered = 1;
rtl_debug_add_one(hw);
rtl_init_rfkill(hw);
rtlpci = rtl_pcidev(pcipriv);
err = rtl_pci_intr_mode_decide(hw);
if (err) {
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"%s: failed to register IRQ handler\n",
wiphy_name(hw->wiphy));
goto fail3;
}
rtlpci->irq_alloc = 1;
set_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
return 0;
fail3:
pci_set_drvdata(pdev, NULL);
rtl_deinit_core(hw);
fail2:
if (rtlpriv->io.pci_mem_start != 0)
pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
pci_release_regions(pdev);
complete(&rtlpriv->firmware_loading_complete);
fail1:
if (hw)
ieee80211_free_hw(hw);
pci_disable_device(pdev);
return err;
}
EXPORT_SYMBOL(rtl_pci_probe);
void rtl_pci_disconnect(struct pci_dev *pdev)
{
struct ieee80211_hw *hw = pci_get_drvdata(pdev);
struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(pcipriv);
struct rtl_mac *rtlmac = rtl_mac(rtlpriv);
wait_for_completion(&rtlpriv->firmware_loading_complete);
clear_bit(RTL_STATUS_INTERFACE_START, &rtlpriv->status);
rtl_debug_remove_one(hw);
if (rtlmac->mac80211_registered == 1) {
ieee80211_unregister_hw(hw);
rtlmac->mac80211_registered = 0;
} else {
rtl_deinit_deferred_work(hw, false);
rtlpriv->intf_ops->adapter_stop(hw);
}
rtlpriv->cfg->ops->disable_interrupt(hw);
rtl_deinit_rfkill(hw);
rtl_pci_deinit(hw);
rtl_deinit_core(hw);
rtlpriv->cfg->ops->deinit_sw_vars(hw);
if (rtlpci->irq_alloc) {
free_irq(rtlpci->pdev->irq, hw);
rtlpci->irq_alloc = 0;
}
if (rtlpci->using_msi)
pci_disable_msi(rtlpci->pdev);
list_del(&rtlpriv->list);
if (rtlpriv->io.pci_mem_start != 0) {
pci_iounmap(pdev, (void __iomem *)rtlpriv->io.pci_mem_start);
pci_release_regions(pdev);
}
pci_disable_device(pdev);
rtl_pci_disable_aspm(hw);
pci_set_drvdata(pdev, NULL);
ieee80211_free_hw(hw);
}
EXPORT_SYMBOL(rtl_pci_disconnect);
#ifdef CONFIG_PM_SLEEP
int rtl_pci_suspend(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->cfg->ops->hw_suspend(hw);
rtl_deinit_rfkill(hw);
return 0;
}
EXPORT_SYMBOL(rtl_pci_suspend);
int rtl_pci_resume(struct device *dev)
{
struct ieee80211_hw *hw = dev_get_drvdata(dev);
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtlpriv->cfg->ops->hw_resume(hw);
rtl_init_rfkill(hw);
return 0;
}
EXPORT_SYMBOL(rtl_pci_resume);
#endif /* CONFIG_PM_SLEEP */
const struct rtl_intf_ops rtl_pci_ops = {
.read_efuse_byte = read_efuse_byte,
.adapter_start = rtl_pci_start,
.adapter_stop = rtl_pci_stop,
.check_buddy_priv = rtl_pci_check_buddy_priv,
.adapter_tx = rtl_pci_tx,
.flush = rtl_pci_flush,
.reset_trx_ring = rtl_pci_reset_trx_ring,
.waitq_insert = rtl_pci_tx_chk_waitq_insert,
.disable_aspm = rtl_pci_disable_aspm,
.enable_aspm = rtl_pci_enable_aspm,
}