#define pr_fmt(fmt) "arm-smmu: " fmt
#include <linux/acpi.h>
#include <linux/acpi_iort.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/ratelimit.h>
#include <linux/slab.h>
#include <linux/fsl/mc.h>
#include "arm-smmu.h"
#include "../../dma-iommu.h"
#define QCOM_DUMMY_VAL -1
#define MSI_IOVA_BASE 0x8000000
#define MSI_IOVA_LENGTH 0x100000
static int force_stage;
module_param(force_stage, int, S_IRUGO);
MODULE_PARM_DESC(force_stage,
"Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
static bool disable_bypass =
IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT);
module_param(disable_bypass, bool, S_IRUGO);
MODULE_PARM_DESC(disable_bypass,
"Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
#define s2cr_init_val (struct arm_smmu_s2cr){ \
.type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
}
static bool using_legacy_binding, using_generic_binding;
static inline int arm_smmu_rpm_get(struct arm_smmu_device *smmu)
{
if (pm_runtime_enabled(smmu->dev))
return pm_runtime_resume_and_get(smmu->dev);
return 0;
}
static inline void arm_smmu_rpm_put(struct arm_smmu_device *smmu)
{
if (pm_runtime_enabled(smmu->dev))
pm_runtime_put_autosuspend(smmu->dev);
}
static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
{
return container_of(dom, struct arm_smmu_domain, domain);
}
static struct platform_driver arm_smmu_driver;
static struct iommu_ops arm_smmu_ops;
#ifdef CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS
static struct device_node *dev_get_dev_node(struct device *dev)
{
if (dev_is_pci(dev)) {
struct pci_bus *bus = to_pci_dev(dev)->bus;
while (!pci_is_root_bus(bus))
bus = bus->parent;
return of_node_get(bus->bridge->parent->of_node);
}
return of_node_get(dev->of_node);
}
static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
{
*((__be32 *)data) = cpu_to_be32(alias);
return 0;
}
static int __find_legacy_master_phandle(struct device *dev, void *data)
{
struct of_phandle_iterator *it = *(void **)data;
struct device_node *np = it->node;
int err;
of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
"#stream-id-cells", -1)
if (it->node == np) {
*(void **)data = dev;
return 1;
}
it->node = np;
return err == -ENOENT ? 0 : err;
}
static int arm_smmu_register_legacy_master(struct device *dev,
struct arm_smmu_device **smmu)
{
struct device *smmu_dev;
struct device_node *np;
struct of_phandle_iterator it;
void *data = ⁢
u32 *sids;
__be32 pci_sid;
int err;
np = dev_get_dev_node(dev);
if (!np || !of_property_present(np, "#stream-id-cells")) {
of_node_put(np);
return -ENODEV;
}
it.node = np;
err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
__find_legacy_master_phandle);
smmu_dev = data;
of_node_put(np);
if (err == 0)
return -ENODEV;
if (err < 0)
return err;
if (dev_is_pci(dev)) {
pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
&pci_sid);
it.cur = &pci_sid;
it.cur_count = 1;
}
err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
&arm_smmu_ops);
if (err)
return err;
sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
if (!sids)
return -ENOMEM;
*smmu = dev_get_drvdata(smmu_dev);
of_phandle_iterator_args(&it, sids, it.cur_count);
err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
kfree(sids);
return err;
}
#else
static int arm_smmu_register_legacy_master(struct device *dev,
struct arm_smmu_device **smmu)
{
return -ENODEV;
}
#endif /* CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS */
static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
{
clear_bit(idx, map);
}
static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu, int page,
int sync, int status)
{
unsigned int spin_cnt, delay;
u32 reg;
if (smmu->impl && unlikely(smmu->impl->tlb_sync))
return smmu->impl->tlb_sync(smmu, page, sync, status);
arm_smmu_writel(smmu, page, sync, QCOM_DUMMY_VAL);
for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
reg = arm_smmu_readl(smmu, page, status);
if (!(reg & ARM_SMMU_sTLBGSTATUS_GSACTIVE))
return;
cpu_relax();
}
udelay(delay);
}
dev_err_ratelimited(smmu->dev,
"TLB sync timed out -- SMMU may be deadlocked\n");
}
static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
{
unsigned long flags;
spin_lock_irqsave(&smmu->global_sync_lock, flags);
__arm_smmu_tlb_sync(smmu, ARM_SMMU_GR0, ARM_SMMU_GR0_sTLBGSYNC,
ARM_SMMU_GR0_sTLBGSTATUS);
spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
}
static void arm_smmu_tlb_sync_context(struct arm_smmu_domain *smmu_domain)
{
struct arm_smmu_device *smmu = smmu_domain->smmu;
unsigned long flags;
spin_lock_irqsave(&smmu_domain->cb_lock, flags);
__arm_smmu_tlb_sync(smmu, ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx),
ARM_SMMU_CB_TLBSYNC, ARM_SMMU_CB_TLBSTATUS);
spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
}
static void arm_smmu_tlb_inv_context_s1(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
wmb();
arm_smmu_cb_write(smmu_domain->smmu, smmu_domain->cfg.cbndx,
ARM_SMMU_CB_S1_TLBIASID, smmu_domain->cfg.asid);
arm_smmu_tlb_sync_context(smmu_domain);
}
static void arm_smmu_tlb_inv_context_s2(void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_device *smmu = smmu_domain->smmu;
wmb();
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid);
arm_smmu_tlb_sync_global(smmu);
}
static void arm_smmu_tlb_inv_range_s1(unsigned long iova, size_t size,
size_t granule, void *cookie, int reg)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
int idx = cfg->cbndx;
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
wmb();
if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
iova = (iova >> 12) << 12;
iova |= cfg->asid;
do {
arm_smmu_cb_write(smmu, idx, reg, iova);
iova += granule;
} while (size -= granule);
} else {
iova >>= 12;
iova |= (u64)cfg->asid << 48;
do {
arm_smmu_cb_writeq(smmu, idx, reg, iova);
iova += granule >> 12;
} while (size -= granule);
}
}
static void arm_smmu_tlb_inv_range_s2(unsigned long iova, size_t size,
size_t granule, void *cookie, int reg)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_device *smmu = smmu_domain->smmu;
int idx = smmu_domain->cfg.cbndx;
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
wmb();
iova >>= 12;
do {
if (smmu_domain->cfg.fmt == ARM_SMMU_CTX_FMT_AARCH64)
arm_smmu_cb_writeq(smmu, idx, reg, iova);
else
arm_smmu_cb_write(smmu, idx, reg, iova);
iova += granule >> 12;
} while (size -= granule);
}
static void arm_smmu_tlb_inv_walk_s1(unsigned long iova, size_t size,
size_t granule, void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
if (cfg->flush_walk_prefer_tlbiasid) {
arm_smmu_tlb_inv_context_s1(cookie);
} else {
arm_smmu_tlb_inv_range_s1(iova, size, granule, cookie,
ARM_SMMU_CB_S1_TLBIVA);
arm_smmu_tlb_sync_context(cookie);
}
}
static void arm_smmu_tlb_add_page_s1(struct iommu_iotlb_gather *gather,
unsigned long iova, size_t granule,
void *cookie)
{
arm_smmu_tlb_inv_range_s1(iova, granule, granule, cookie,
ARM_SMMU_CB_S1_TLBIVAL);
}
static void arm_smmu_tlb_inv_walk_s2(unsigned long iova, size_t size,
size_t granule, void *cookie)
{
arm_smmu_tlb_inv_range_s2(iova, size, granule, cookie,
ARM_SMMU_CB_S2_TLBIIPAS2);
arm_smmu_tlb_sync_context(cookie);
}
static void arm_smmu_tlb_add_page_s2(struct iommu_iotlb_gather *gather,
unsigned long iova, size_t granule,
void *cookie)
{
arm_smmu_tlb_inv_range_s2(iova, granule, granule, cookie,
ARM_SMMU_CB_S2_TLBIIPAS2L);
}
static void arm_smmu_tlb_inv_walk_s2_v1(unsigned long iova, size_t size,
size_t granule, void *cookie)
{
arm_smmu_tlb_inv_context_s2(cookie);
}
static void arm_smmu_tlb_add_page_s2_v1(struct iommu_iotlb_gather *gather,
unsigned long iova, size_t granule,
void *cookie)
{
struct arm_smmu_domain *smmu_domain = cookie;
struct arm_smmu_device *smmu = smmu_domain->smmu;
if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
wmb();
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid);
}
static const struct iommu_flush_ops arm_smmu_s1_tlb_ops = {
.tlb_flush_all = arm_smmu_tlb_inv_context_s1,
.tlb_flush_walk = arm_smmu_tlb_inv_walk_s1,
.tlb_add_page = arm_smmu_tlb_add_page_s1,
};
static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v2 = {
.tlb_flush_all = arm_smmu_tlb_inv_context_s2,
.tlb_flush_walk = arm_smmu_tlb_inv_walk_s2,
.tlb_add_page = arm_smmu_tlb_add_page_s2,
};
static const struct iommu_flush_ops arm_smmu_s2_tlb_ops_v1 = {
.tlb_flush_all = arm_smmu_tlb_inv_context_s2,
.tlb_flush_walk = arm_smmu_tlb_inv_walk_s2_v1,
.tlb_add_page = arm_smmu_tlb_add_page_s2_v1,
};
static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
{
u32 fsr, fsynr, cbfrsynra;
unsigned long iova;
struct iommu_domain *domain = dev;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
int idx = smmu_domain->cfg.cbndx;
int ret;
fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR);
if (!(fsr & ARM_SMMU_FSR_FAULT))
return IRQ_NONE;
fsynr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSYNR0);
iova = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_FAR);
cbfrsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx));
ret = report_iommu_fault(domain, NULL, iova,
fsynr & ARM_SMMU_FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ);
if (ret == -ENOSYS)
dev_err_ratelimited(smmu->dev,
"Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n",
fsr, iova, fsynr, cbfrsynra, idx);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr);
return IRQ_HANDLED;
}
static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
{
u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
struct arm_smmu_device *smmu = dev;
static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
DEFAULT_RATELIMIT_BURST);
gfsr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR);
gfsynr0 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR0);
gfsynr1 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR1);
gfsynr2 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR2);
if (!gfsr)
return IRQ_NONE;
if (__ratelimit(&rs)) {
if (IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT) &&
(gfsr & ARM_SMMU_sGFSR_USF))
dev_err(smmu->dev,
"Blocked unknown Stream ID 0x%hx; boot with \"arm-smmu.disable_bypass=0\" to allow, but this may have security implications\n",
(u16)gfsynr1);
else
dev_err(smmu->dev,
"Unexpected global fault, this could be serious\n");
dev_err(smmu->dev,
"\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
gfsr, gfsynr0, gfsynr1, gfsynr2);
}
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, gfsr);
return IRQ_HANDLED;
}
static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
struct io_pgtable_cfg *pgtbl_cfg)
{
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx];
bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
cb->cfg = cfg;
if (stage1) {
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr;
} else {
cb->tcr[0] = arm_smmu_lpae_tcr(pgtbl_cfg);
cb->tcr[1] = arm_smmu_lpae_tcr2(pgtbl_cfg);
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
cb->tcr[1] |= ARM_SMMU_TCR2_AS;
else
cb->tcr[0] |= ARM_SMMU_TCR_EAE;
}
} else {
cb->tcr[0] = arm_smmu_lpae_vtcr(pgtbl_cfg);
}
if (stage1) {
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr;
cb->ttbr[1] = 0;
} else {
cb->ttbr[0] = FIELD_PREP(ARM_SMMU_TTBRn_ASID,
cfg->asid);
cb->ttbr[1] = FIELD_PREP(ARM_SMMU_TTBRn_ASID,
cfg->asid);
if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_TTBR1)
cb->ttbr[1] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
else
cb->ttbr[0] |= pgtbl_cfg->arm_lpae_s1_cfg.ttbr;
}
} else {
cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
}
if (stage1) {
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr;
cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr;
} else {
cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair;
cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair >> 32;
}
}
}
void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx)
{
u32 reg;
bool stage1;
struct arm_smmu_cb *cb = &smmu->cbs[idx];
struct arm_smmu_cfg *cfg = cb->cfg;
if (!cfg) {
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, 0);
return;
}
stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
if (smmu->version > ARM_SMMU_V1) {
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
reg = ARM_SMMU_CBA2R_VA64;
else
reg = 0;
if (smmu->features & ARM_SMMU_FEAT_VMID16)
reg |= FIELD_PREP(ARM_SMMU_CBA2R_VMID16, cfg->vmid);
arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBA2R(idx), reg);
}
reg = FIELD_PREP(ARM_SMMU_CBAR_TYPE, cfg->cbar);
if (smmu->version < ARM_SMMU_V2)
reg |= FIELD_PREP(ARM_SMMU_CBAR_IRPTNDX, cfg->irptndx);
if (stage1) {
reg |= FIELD_PREP(ARM_SMMU_CBAR_S1_BPSHCFG,
ARM_SMMU_CBAR_S1_BPSHCFG_NSH) |
FIELD_PREP(ARM_SMMU_CBAR_S1_MEMATTR,
ARM_SMMU_CBAR_S1_MEMATTR_WB);
} else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
reg |= FIELD_PREP(ARM_SMMU_CBAR_VMID, cfg->vmid);
}
arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBAR(idx), reg);
if (stage1 && smmu->version > ARM_SMMU_V1)
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR2, cb->tcr[1]);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR, cb->tcr[0]);
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_CONTEXTIDR, cfg->asid);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR1, cb->ttbr[1]);
} else {
arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]);
if (stage1)
arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR1,
cb->ttbr[1]);
}
if (stage1) {
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR0, cb->mair[0]);
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR1, cb->mair[1]);
}
reg = ARM_SMMU_SCTLR_CFIE | ARM_SMMU_SCTLR_CFRE | ARM_SMMU_SCTLR_AFE |
ARM_SMMU_SCTLR_TRE | ARM_SMMU_SCTLR_M;
if (stage1)
reg |= ARM_SMMU_SCTLR_S1_ASIDPNE;
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
reg |= ARM_SMMU_SCTLR_E;
if (smmu->impl && smmu->impl->write_sctlr)
smmu->impl->write_sctlr(smmu, idx, reg);
else
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, reg);
}
static int arm_smmu_alloc_context_bank(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_device *smmu,
struct device *dev, unsigned int start)
{
if (smmu->impl && smmu->impl->alloc_context_bank)
return smmu->impl->alloc_context_bank(smmu_domain, smmu, dev, start);
return __arm_smmu_alloc_bitmap(smmu->context_map, start, smmu->num_context_banks);
}
static int arm_smmu_init_domain_context(struct iommu_domain *domain,
struct arm_smmu_device *smmu,
struct device *dev)
{
int irq, start, ret = 0;
unsigned long ias, oas;
struct io_pgtable_ops *pgtbl_ops;
struct io_pgtable_cfg pgtbl_cfg;
enum io_pgtable_fmt fmt;
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
irqreturn_t (*context_fault)(int irq, void *dev);
mutex_lock(&smmu_domain->init_mutex);
if (smmu_domain->smmu)
goto out_unlock;
if (domain->type == IOMMU_DOMAIN_IDENTITY) {
smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
smmu_domain->smmu = smmu;
goto out_unlock;
}
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
!IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
(smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
(smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
(smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
ARM_SMMU_FEAT_FMT_AARCH64_16K |
ARM_SMMU_FEAT_FMT_AARCH64_4K)))
cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
ret = -EINVAL;
goto out_unlock;
}
switch (smmu_domain->stage) {
case ARM_SMMU_DOMAIN_S1:
cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
start = smmu->num_s2_context_banks;
ias = smmu->va_size;
oas = smmu->ipa_size;
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
fmt = ARM_64_LPAE_S1;
} else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
fmt = ARM_32_LPAE_S1;
ias = min(ias, 32UL);
oas = min(oas, 40UL);
} else {
fmt = ARM_V7S;
ias = min(ias, 32UL);
oas = min(oas, 32UL);
}
smmu_domain->flush_ops = &arm_smmu_s1_tlb_ops;
break;
case ARM_SMMU_DOMAIN_NESTED:
case ARM_SMMU_DOMAIN_S2:
cfg->cbar = CBAR_TYPE_S2_TRANS;
start = 0;
ias = smmu->ipa_size;
oas = smmu->pa_size;
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
fmt = ARM_64_LPAE_S2;
} else {
fmt = ARM_32_LPAE_S2;
ias = min(ias, 40UL);
oas = min(oas, 40UL);
}
if (smmu->version == ARM_SMMU_V2)
smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v2;
else
smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v1;
break;
default:
ret = -EINVAL;
goto out_unlock;
}
ret = arm_smmu_alloc_context_bank(smmu_domain, smmu, dev, start);
if (ret < 0) {
goto out_unlock;
}
smmu_domain->smmu = smmu;
cfg->cbndx = ret;
if (smmu->version < ARM_SMMU_V2) {
cfg->irptndx = atomic_inc_return(&smmu->irptndx);
cfg->irptndx %= smmu->num_context_irqs;
} else {
cfg->irptndx = cfg->cbndx;
}
if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
cfg->vmid = cfg->cbndx + 1;
else
cfg->asid = cfg->cbndx;
pgtbl_cfg = (struct io_pgtable_cfg) {
.pgsize_bitmap = smmu->pgsize_bitmap,
.ias = ias,
.oas = oas,
.coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK,
.tlb = smmu_domain->flush_ops,
.iommu_dev = smmu->dev,
};
if (smmu->impl && smmu->impl->init_context) {
ret = smmu->impl->init_context(smmu_domain, &pgtbl_cfg, dev);
if (ret)
goto out_clear_smmu;
}
if (smmu_domain->pgtbl_quirks)
pgtbl_cfg.quirks |= smmu_domain->pgtbl_quirks;
pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
if (!pgtbl_ops) {
ret = -ENOMEM;
goto out_clear_smmu;
}
domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
if (pgtbl_cfg.quirks & IO_PGTABLE_QUIRK_ARM_TTBR1) {
domain->geometry.aperture_start = ~0UL << ias;
domain->geometry.aperture_end = ~0UL;
} else {
domain->geometry.aperture_end = (1UL << ias) - 1;
}
domain->geometry.force_aperture = true;
arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
arm_smmu_write_context_bank(smmu, cfg->cbndx);
irq = smmu->irqs[cfg->irptndx];
if (smmu->impl && smmu->impl->context_fault)
context_fault = smmu->impl->context_fault;
else
context_fault = arm_smmu_context_fault;
ret = devm_request_irq(smmu->dev, irq, context_fault,
IRQF_SHARED, "arm-smmu-context-fault", domain);
if (ret < 0) {
dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
cfg->irptndx, irq);
cfg->irptndx = ARM_SMMU_INVALID_IRPTNDX;
}
mutex_unlock(&smmu_domain->init_mutex);
smmu_domain->pgtbl_ops = pgtbl_ops;
return 0;
out_clear_smmu:
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
smmu_domain->smmu = NULL;
out_unlock:
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
int ret, irq;
if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
return;
ret = arm_smmu_rpm_get(smmu);
if (ret < 0)
return;
smmu->cbs[cfg->cbndx].cfg = NULL;
arm_smmu_write_context_bank(smmu, cfg->cbndx);
if (cfg->irptndx != ARM_SMMU_INVALID_IRPTNDX) {
irq = smmu->irqs[cfg->irptndx];
devm_free_irq(smmu->dev, irq, domain);
}
free_io_pgtable_ops(smmu_domain->pgtbl_ops);
__arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
arm_smmu_rpm_put(smmu);
}
static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
{
struct arm_smmu_domain *smmu_domain;
if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_IDENTITY) {
if (using_legacy_binding || type != IOMMU_DOMAIN_DMA)
return NULL;
}
smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
if (!smmu_domain)
return NULL;
mutex_init(&smmu_domain->init_mutex);
spin_lock_init(&smmu_domain->cb_lock);
return &smmu_domain->domain;
}
static void arm_smmu_domain_free(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
arm_smmu_destroy_domain_context(domain);
kfree(smmu_domain);
}
static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
{
struct arm_smmu_smr *smr = smmu->smrs + idx;
u32 reg = FIELD_PREP(ARM_SMMU_SMR_ID, smr->id) |
FIELD_PREP(ARM_SMMU_SMR_MASK, smr->mask);
if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
reg |= ARM_SMMU_SMR_VALID;
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(idx), reg);
}
static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
{
struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
u32 reg;
if (smmu->impl && smmu->impl->write_s2cr) {
smmu->impl->write_s2cr(smmu, idx);
return;
}
reg = FIELD_PREP(ARM_SMMU_S2CR_TYPE, s2cr->type) |
FIELD_PREP(ARM_SMMU_S2CR_CBNDX, s2cr->cbndx) |
FIELD_PREP(ARM_SMMU_S2CR_PRIVCFG, s2cr->privcfg);
if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
smmu->smrs[idx].valid)
reg |= ARM_SMMU_S2CR_EXIDVALID;
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_S2CR(idx), reg);
}
static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
{
arm_smmu_write_s2cr(smmu, idx);
if (smmu->smrs)
arm_smmu_write_smr(smmu, idx);
}
static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
{
u32 smr;
int i;
if (!smmu->smrs)
return;
for (i = 0; i < smmu->num_mapping_groups; i++)
if (!smmu->smrs[i].valid)
goto smr_ok;
return;
smr_ok:
smr = FIELD_PREP(ARM_SMMU_SMR_ID, smmu->streamid_mask);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr);
smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i));
smmu->streamid_mask = FIELD_GET(ARM_SMMU_SMR_ID, smr);
smr = FIELD_PREP(ARM_SMMU_SMR_MASK, smmu->streamid_mask);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(i), smr);
smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(i));
smmu->smr_mask_mask = FIELD_GET(ARM_SMMU_SMR_MASK, smr);
}
static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
{
struct arm_smmu_smr *smrs = smmu->smrs;
int i, free_idx = -ENOSPC;
if (!smrs)
return id;
for (i = 0; i < smmu->num_mapping_groups; ++i) {
if (!smrs[i].valid) {
if (free_idx < 0)
free_idx = i;
continue;
}
if ((mask & smrs[i].mask) == mask &&
!((id ^ smrs[i].id) & ~smrs[i].mask))
return i;
if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
return -EINVAL;
}
return free_idx;
}
static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
{
if (--smmu->s2crs[idx].count)
return false;
smmu->s2crs[idx] = s2cr_init_val;
if (smmu->smrs)
smmu->smrs[idx].valid = false;
return true;
}
static int arm_smmu_master_alloc_smes(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev);
struct arm_smmu_device *smmu = cfg->smmu;
struct arm_smmu_smr *smrs = smmu->smrs;
int i, idx, ret;
mutex_lock(&smmu->stream_map_mutex);
for_each_cfg_sme(cfg, fwspec, i, idx) {
u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]);
u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]);
if (idx != INVALID_SMENDX) {
ret = -EEXIST;
goto out_err;
}
ret = arm_smmu_find_sme(smmu, sid, mask);
if (ret < 0)
goto out_err;
idx = ret;
if (smrs && smmu->s2crs[idx].count == 0) {
smrs[idx].id = sid;
smrs[idx].mask = mask;
smrs[idx].valid = true;
}
smmu->s2crs[idx].count++;
cfg->smendx[i] = (s16)idx;
}
for_each_cfg_sme(cfg, fwspec, i, idx)
arm_smmu_write_sme(smmu, idx);
mutex_unlock(&smmu->stream_map_mutex);
return 0;
out_err:
while (i--) {
arm_smmu_free_sme(smmu, cfg->smendx[i]);
cfg->smendx[i] = INVALID_SMENDX;
}
mutex_unlock(&smmu->stream_map_mutex);
return ret;
}
static void arm_smmu_master_free_smes(struct arm_smmu_master_cfg *cfg,
struct iommu_fwspec *fwspec)
{
struct arm_smmu_device *smmu = cfg->smmu;
int i, idx;
mutex_lock(&smmu->stream_map_mutex);
for_each_cfg_sme(cfg, fwspec, i, idx) {
if (arm_smmu_free_sme(smmu, idx))
arm_smmu_write_sme(smmu, idx);
cfg->smendx[i] = INVALID_SMENDX;
}
mutex_unlock(&smmu->stream_map_mutex);
}
static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
struct arm_smmu_master_cfg *cfg,
struct iommu_fwspec *fwspec)
{
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_s2cr *s2cr = smmu->s2crs;
u8 cbndx = smmu_domain->cfg.cbndx;
enum arm_smmu_s2cr_type type;
int i, idx;
if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
type = S2CR_TYPE_BYPASS;
else
type = S2CR_TYPE_TRANS;
for_each_cfg_sme(cfg, fwspec, i, idx) {
if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
continue;
s2cr[idx].type = type;
s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
s2cr[idx].cbndx = cbndx;
arm_smmu_write_s2cr(smmu, idx);
}
return 0;
}
static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct arm_smmu_master_cfg *cfg;
struct arm_smmu_device *smmu;
int ret;
if (!fwspec || fwspec->ops != &arm_smmu_ops) {
dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
return -ENXIO;
}
cfg = dev_iommu_priv_get(dev);
if (!cfg)
return -ENODEV;
smmu = cfg->smmu;
ret = arm_smmu_rpm_get(smmu);
if (ret < 0)
return ret;
ret = arm_smmu_init_domain_context(domain, smmu, dev);
if (ret < 0)
goto rpm_put;
if (smmu_domain->smmu != smmu) {
ret = -EINVAL;
goto rpm_put;
}
ret = arm_smmu_domain_add_master(smmu_domain, cfg, fwspec);
pm_runtime_set_autosuspend_delay(smmu->dev, 20);
pm_runtime_use_autosuspend(smmu->dev);
rpm_put:
arm_smmu_rpm_put(smmu);
return ret;
}
static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t pgsize, size_t pgcount,
int prot, gfp_t gfp, size_t *mapped)
{
struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
int ret;
if (!ops)
return -ENODEV;
arm_smmu_rpm_get(smmu);
ret = ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
arm_smmu_rpm_put(smmu);
return ret;
}
static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
size_t pgsize, size_t pgcount,
struct iommu_iotlb_gather *iotlb_gather)
{
struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
size_t ret;
if (!ops)
return 0;
arm_smmu_rpm_get(smmu);
ret = ops->unmap_pages(ops, iova, pgsize, pgcount, iotlb_gather);
arm_smmu_rpm_put(smmu);
return ret;
}
static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
if (smmu_domain->flush_ops) {
arm_smmu_rpm_get(smmu);
smmu_domain->flush_ops->tlb_flush_all(smmu_domain);
arm_smmu_rpm_put(smmu);
}
}
static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
struct iommu_iotlb_gather *gather)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
if (!smmu)
return;
arm_smmu_rpm_get(smmu);
if (smmu->version == ARM_SMMU_V2 ||
smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
arm_smmu_tlb_sync_context(smmu_domain);
else
arm_smmu_tlb_sync_global(smmu);
arm_smmu_rpm_put(smmu);
}
static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
dma_addr_t iova)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct arm_smmu_device *smmu = smmu_domain->smmu;
struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
struct device *dev = smmu->dev;
void __iomem *reg;
u32 tmp;
u64 phys;
unsigned long va, flags;
int ret, idx = cfg->cbndx;
phys_addr_t addr = 0;
ret = arm_smmu_rpm_get(smmu);
if (ret < 0)
return 0;
spin_lock_irqsave(&smmu_domain->cb_lock, flags);
va = iova & ~0xfffUL;
if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_ATS1PR, va);
else
arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_ATS1PR, va);
reg = arm_smmu_page(smmu, ARM_SMMU_CB(smmu, idx)) + ARM_SMMU_CB_ATSR;
if (readl_poll_timeout_atomic(reg, tmp, !(tmp & ARM_SMMU_ATSR_ACTIVE),
5, 50)) {
spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
dev_err(dev,
"iova to phys timed out on %pad. Falling back to software table walk.\n",
&iova);
arm_smmu_rpm_put(smmu);
return ops->iova_to_phys(ops, iova);
}
phys = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_PAR);
spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
if (phys & ARM_SMMU_CB_PAR_F) {
dev_err(dev, "translation fault!\n");
dev_err(dev, "PAR = 0x%llx\n", phys);
goto out;
}
addr = (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
out:
arm_smmu_rpm_put(smmu);
return addr;
}
static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
if (!ops)
return 0;
if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
return arm_smmu_iova_to_phys_hard(domain, iova);
return ops->iova_to_phys(ops, iova);
}
static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap)
{
struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev);
switch (cap) {
case IOMMU_CAP_CACHE_COHERENCY:
return cfg->smmu->features & ARM_SMMU_FEAT_COHERENT_WALK ||
device_get_dma_attr(dev) == DEV_DMA_COHERENT;
case IOMMU_CAP_NOEXEC:
case IOMMU_CAP_DEFERRED_FLUSH:
return true;
default:
return false;
}
}
static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
{
struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
fwnode);
put_device(dev);
return dev ? dev_get_drvdata(dev) : NULL;
}
static struct iommu_device *arm_smmu_probe_device(struct device *dev)
{
struct arm_smmu_device *smmu = NULL;
struct arm_smmu_master_cfg *cfg;
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
int i, ret;
if (using_legacy_binding) {
ret = arm_smmu_register_legacy_master(dev, &smmu);
fwspec = dev_iommu_fwspec_get(dev);
if (ret)
goto out_free;
} else if (fwspec && fwspec->ops == &arm_smmu_ops) {
smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
} else {
return ERR_PTR(-ENODEV);
}
ret = -EINVAL;
for (i = 0; i < fwspec->num_ids; i++) {
u16 sid = FIELD_GET(ARM_SMMU_SMR_ID, fwspec->ids[i]);
u16 mask = FIELD_GET(ARM_SMMU_SMR_MASK, fwspec->ids[i]);
if (sid & ~smmu->streamid_mask) {
dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
sid, smmu->streamid_mask);
goto out_free;
}
if (mask & ~smmu->smr_mask_mask) {
dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
mask, smmu->smr_mask_mask);
goto out_free;
}
}
ret = -ENOMEM;
cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
GFP_KERNEL);
if (!cfg)
goto out_free;
cfg->smmu = smmu;
dev_iommu_priv_set(dev, cfg);
while (i--)
cfg->smendx[i] = INVALID_SMENDX;
ret = arm_smmu_rpm_get(smmu);
if (ret < 0)
goto out_cfg_free;
ret = arm_smmu_master_alloc_smes(dev);
arm_smmu_rpm_put(smmu);
if (ret)
goto out_cfg_free;
device_link_add(dev, smmu->dev,
DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_SUPPLIER);
return &smmu->iommu;
out_cfg_free:
kfree(cfg);
out_free:
iommu_fwspec_free(dev);
return ERR_PTR(ret);
}
static void arm_smmu_release_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev);
int ret;
ret = arm_smmu_rpm_get(cfg->smmu);
if (ret < 0)
return;
arm_smmu_master_free_smes(cfg, fwspec);
arm_smmu_rpm_put(cfg->smmu);
dev_iommu_priv_set(dev, NULL);
kfree(cfg);
}
static void arm_smmu_probe_finalize(struct device *dev)
{
struct arm_smmu_master_cfg *cfg;
struct arm_smmu_device *smmu;
cfg = dev_iommu_priv_get(dev);
smmu = cfg->smmu;
if (smmu->impl && smmu->impl->probe_finalize)
smmu->impl->probe_finalize(smmu, dev);
}
static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev);
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct arm_smmu_device *smmu = cfg->smmu;
struct iommu_group *group = NULL;
int i, idx;
mutex_lock(&smmu->stream_map_mutex);
for_each_cfg_sme(cfg, fwspec, i, idx) {
if (group && smmu->s2crs[idx].group &&
group != smmu->s2crs[idx].group) {
mutex_unlock(&smmu->stream_map_mutex);
return ERR_PTR(-EINVAL);
}
group = smmu->s2crs[idx].group;
}
if (group) {
mutex_unlock(&smmu->stream_map_mutex);
return iommu_group_ref_get(group);
}
if (dev_is_pci(dev))
group = pci_device_group(dev);
else if (dev_is_fsl_mc(dev))
group = fsl_mc_device_group(dev);
else
group = generic_device_group(dev);
if (!IS_ERR(group))
for_each_cfg_sme(cfg, fwspec, i, idx)
smmu->s2crs[idx].group = group;
mutex_unlock(&smmu->stream_map_mutex);
return group;
}
static int arm_smmu_enable_nesting(struct iommu_domain *domain)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
int ret = 0;
mutex_lock(&smmu_domain->init_mutex);
if (smmu_domain->smmu)
ret = -EPERM;
else
smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_set_pgtable_quirks(struct iommu_domain *domain,
unsigned long quirks)
{
struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
int ret = 0;
mutex_lock(&smmu_domain->init_mutex);
if (smmu_domain->smmu)
ret = -EPERM;
else
smmu_domain->pgtbl_quirks = quirks;
mutex_unlock(&smmu_domain->init_mutex);
return ret;
}
static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
{
u32 mask, fwid = 0;
if (args->args_count > 0)
fwid |= FIELD_PREP(ARM_SMMU_SMR_ID, args->args[0]);
if (args->args_count > 1)
fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, args->args[1]);
else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
fwid |= FIELD_PREP(ARM_SMMU_SMR_MASK, mask);
return iommu_fwspec_add_ids(dev, &fwid, 1);
}
static void arm_smmu_get_resv_regions(struct device *dev,
struct list_head *head)
{
struct iommu_resv_region *region;
int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
prot, IOMMU_RESV_SW_MSI, GFP_KERNEL);
if (!region)
return;
list_add_tail(®ion->list, head);
iommu_dma_get_resv_regions(dev, head);
}
static int arm_smmu_def_domain_type(struct device *dev)
{
struct arm_smmu_master_cfg *cfg = dev_iommu_priv_get(dev);
const struct arm_smmu_impl *impl = cfg->smmu->impl;
if (using_legacy_binding)
return IOMMU_DOMAIN_IDENTITY;
if (impl && impl->def_domain_type)
return impl->def_domain_type(dev);
return 0;
}
static struct iommu_ops arm_smmu_ops = {
.capable = arm_smmu_capable,
.domain_alloc = arm_smmu_domain_alloc,
.probe_device = arm_smmu_probe_device,
.release_device = arm_smmu_release_device,
.probe_finalize = arm_smmu_probe_finalize,
.device_group = arm_smmu_device_group,
.of_xlate = arm_smmu_of_xlate,
.get_resv_regions = arm_smmu_get_resv_regions,
.def_domain_type = arm_smmu_def_domain_type,
.pgsize_bitmap = -1UL,
.owner = THIS_MODULE,
.default_domain_ops = &(const struct iommu_domain_ops) {
.attach_dev = arm_smmu_attach_dev,
.map_pages = arm_smmu_map_pages,
.unmap_pages = arm_smmu_unmap_pages,
.flush_iotlb_all = arm_smmu_flush_iotlb_all,
.iotlb_sync = arm_smmu_iotlb_sync,
.iova_to_phys = arm_smmu_iova_to_phys,
.enable_nesting = arm_smmu_enable_nesting,
.set_pgtable_quirks = arm_smmu_set_pgtable_quirks,
.free = arm_smmu_domain_free,
}
};
static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
int i;
u32 reg;
reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, reg);
for (i = 0; i < smmu->num_mapping_groups; ++i)
arm_smmu_write_sme(smmu, i);
for (i = 0; i < smmu->num_context_banks; ++i) {
arm_smmu_write_context_bank(smmu, i);
arm_smmu_cb_write(smmu, i, ARM_SMMU_CB_FSR, ARM_SMMU_FSR_FAULT);
}
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLH, QCOM_DUMMY_VAL);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLNSNH, QCOM_DUMMY_VAL);
reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0);
reg |= (ARM_SMMU_sCR0_GFRE | ARM_SMMU_sCR0_GFIE |
ARM_SMMU_sCR0_GCFGFRE | ARM_SMMU_sCR0_GCFGFIE);
reg |= (ARM_SMMU_sCR0_VMIDPNE | ARM_SMMU_sCR0_PTM);
reg &= ~ARM_SMMU_sCR0_CLIENTPD;
if (disable_bypass)
reg |= ARM_SMMU_sCR0_USFCFG;
else
reg &= ~ARM_SMMU_sCR0_USFCFG;
reg &= ~ARM_SMMU_sCR0_FB;
reg &= ~(ARM_SMMU_sCR0_BSU);
if (smmu->features & ARM_SMMU_FEAT_VMID16)
reg |= ARM_SMMU_sCR0_VMID16EN;
if (smmu->features & ARM_SMMU_FEAT_EXIDS)
reg |= ARM_SMMU_sCR0_EXIDENABLE;
if (smmu->impl && smmu->impl->reset)
smmu->impl->reset(smmu);
arm_smmu_tlb_sync_global(smmu);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg);
}
static int arm_smmu_id_size_to_bits(int size)
{
switch (size) {
case 0:
return 32;
case 1:
return 36;
case 2:
return 40;
case 3:
return 42;
case 4:
return 44;
case 5:
default:
return 48;
}
}
static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
{
unsigned int size;
u32 id;
bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
int i, ret;
dev_notice(smmu->dev, "probing hardware configuration...\n");
dev_notice(smmu->dev, "SMMUv%d with:\n",
smmu->version == ARM_SMMU_V2 ? 2 : 1);
id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID0);
if (force_stage == 1)
id &= ~(ARM_SMMU_ID0_S2TS | ARM_SMMU_ID0_NTS);
else if (force_stage == 2)
id &= ~(ARM_SMMU_ID0_S1TS | ARM_SMMU_ID0_NTS);
if (id & ARM_SMMU_ID0_S1TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
dev_notice(smmu->dev, "\tstage 1 translation\n");
}
if (id & ARM_SMMU_ID0_S2TS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
dev_notice(smmu->dev, "\tstage 2 translation\n");
}
if (id & ARM_SMMU_ID0_NTS) {
smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
dev_notice(smmu->dev, "\tnested translation\n");
}
if (!(smmu->features &
(ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
dev_err(smmu->dev, "\tno translation support!\n");
return -ENODEV;
}
if ((id & ARM_SMMU_ID0_S1TS) &&
((smmu->version < ARM_SMMU_V2) || !(id & ARM_SMMU_ID0_ATOSNS))) {
smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
dev_notice(smmu->dev, "\taddress translation ops\n");
}
cttw_reg = !!(id & ARM_SMMU_ID0_CTTW);
if (cttw_fw || cttw_reg)
dev_notice(smmu->dev, "\t%scoherent table walk\n",
cttw_fw ? "" : "non-");
if (cttw_fw != cttw_reg)
dev_notice(smmu->dev,
"\t(IDR0.CTTW overridden by FW configuration)\n");
if (smmu->version == ARM_SMMU_V2 && id & ARM_SMMU_ID0_EXIDS) {
smmu->features |= ARM_SMMU_FEAT_EXIDS;
size = 1 << 16;
} else {
size = 1 << FIELD_GET(ARM_SMMU_ID0_NUMSIDB, id);
}
smmu->streamid_mask = size - 1;
if (id & ARM_SMMU_ID0_SMS) {
smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
size = FIELD_GET(ARM_SMMU_ID0_NUMSMRG, id);
if (size == 0) {
dev_err(smmu->dev,
"stream-matching supported, but no SMRs present!\n");
return -ENODEV;
}
smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
GFP_KERNEL);
if (!smmu->smrs)
return -ENOMEM;
dev_notice(smmu->dev,
"\tstream matching with %u register groups", size);
}
smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
GFP_KERNEL);
if (!smmu->s2crs)
return -ENOMEM;
for (i = 0; i < size; i++)
smmu->s2crs[i] = s2cr_init_val;
smmu->num_mapping_groups = size;
mutex_init(&smmu->stream_map_mutex);
spin_lock_init(&smmu->global_sync_lock);
if (smmu->version < ARM_SMMU_V2 ||
!(id & ARM_SMMU_ID0_PTFS_NO_AARCH32)) {
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
if (!(id & ARM_SMMU_ID0_PTFS_NO_AARCH32S))
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
}
id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID1);
smmu->pgshift = (id & ARM_SMMU_ID1_PAGESIZE) ? 16 : 12;
size = 1 << (FIELD_GET(ARM_SMMU_ID1_NUMPAGENDXB, id) + 1);
if (smmu->numpage != 2 * size << smmu->pgshift)
dev_warn(smmu->dev,
"SMMU address space size (0x%x) differs from mapped region size (0x%x)!\n",
2 * size << smmu->pgshift, smmu->numpage);
smmu->numpage = size;
smmu->num_s2_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMS2CB, id);
smmu->num_context_banks = FIELD_GET(ARM_SMMU_ID1_NUMCB, id);
if (smmu->num_s2_context_banks > smmu->num_context_banks) {
dev_err(smmu->dev, "impossible number of S2 context banks!\n");
return -ENODEV;
}
dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
smmu->num_context_banks, smmu->num_s2_context_banks);
smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks,
sizeof(*smmu->cbs), GFP_KERNEL);
if (!smmu->cbs)
return -ENOMEM;
id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID2);
size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_IAS, id));
smmu->ipa_size = size;
size = arm_smmu_id_size_to_bits(FIELD_GET(ARM_SMMU_ID2_OAS, id));
smmu->pa_size = size;
if (id & ARM_SMMU_ID2_VMID16)
smmu->features |= ARM_SMMU_FEAT_VMID16;
if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
dev_warn(smmu->dev,
"failed to set DMA mask for table walker\n");
if (smmu->version < ARM_SMMU_V2) {
smmu->va_size = smmu->ipa_size;
if (smmu->version == ARM_SMMU_V1_64K)
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
} else {
size = FIELD_GET(ARM_SMMU_ID2_UBS, id);
smmu->va_size = arm_smmu_id_size_to_bits(size);
if (id & ARM_SMMU_ID2_PTFS_4K)
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
if (id & ARM_SMMU_ID2_PTFS_16K)
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
if (id & ARM_SMMU_ID2_PTFS_64K)
smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
}
if (smmu->impl && smmu->impl->cfg_probe) {
ret = smmu->impl->cfg_probe(smmu);
if (ret)
return ret;
}
if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
if (smmu->features &
(ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
if (arm_smmu_ops.pgsize_bitmap == -1UL)
arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
else
arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
smmu->pgsize_bitmap);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
smmu->va_size, smmu->ipa_size);
if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
smmu->ipa_size, smmu->pa_size);
return 0;
}
struct arm_smmu_match_data {
enum arm_smmu_arch_version version;
enum arm_smmu_implementation model;
};
#define ARM_SMMU_MATCH_DATA(name, ver, imp) \
static const struct arm_smmu_match_data name = { .version = ver, .model = imp }
ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
ARM_SMMU_MATCH_DATA(qcom_smmuv2, ARM_SMMU_V2, QCOM_SMMUV2);
static const struct of_device_id arm_smmu_of_match[] = {
{ .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
{ .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
{ .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
{ .compatible = "arm,mmu-401", .data = &arm_mmu401 },
{ .compatible = "arm,mmu-500", .data = &arm_mmu500 },
{ .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
{ .compatible = "nvidia,smmu-500", .data = &arm_mmu500 },
{ .compatible = "qcom,smmu-v2", .data = &qcom_smmuv2 },
{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
#ifdef CONFIG_ACPI
static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
{
int ret = 0;
switch (model) {
case ACPI_IORT_SMMU_V1:
case ACPI_IORT_SMMU_CORELINK_MMU400:
smmu->version = ARM_SMMU_V1;
smmu->model = GENERIC_SMMU;
break;
case ACPI_IORT_SMMU_CORELINK_MMU401:
smmu->version = ARM_SMMU_V1_64K;
smmu->model = GENERIC_SMMU;
break;
case ACPI_IORT_SMMU_V2:
smmu->version = ARM_SMMU_V2;
smmu->model = GENERIC_SMMU;
break;
case ACPI_IORT_SMMU_CORELINK_MMU500:
smmu->version = ARM_SMMU_V2;
smmu->model = ARM_MMU500;
break;
case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
smmu->version = ARM_SMMU_V2;
smmu->model = CAVIUM_SMMUV2;
break;
default:
ret = -ENODEV;
}
return ret;
}
static int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu,
u32 *global_irqs, u32 *pmu_irqs)
{
struct device *dev = smmu->dev;
struct acpi_iort_node *node =
*(struct acpi_iort_node **)dev_get_platdata(dev);
struct acpi_iort_smmu *iort_smmu;
int ret;
iort_smmu = (struct acpi_iort_smmu *)node->node_data;
ret = acpi_smmu_get_data(iort_smmu->model, smmu);
if (ret < 0)
return ret;
*global_irqs = 1;
*pmu_irqs = 0;
if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct arm_smmu_device *smmu,
u32 *global_irqs, u32 *pmu_irqs)
{
return -ENODEV;
}
#endif
static int arm_smmu_device_dt_probe(struct arm_smmu_device *smmu,
u32 *global_irqs, u32 *pmu_irqs)
{
const struct arm_smmu_match_data *data;
struct device *dev = smmu->dev;
bool legacy_binding;
if (of_property_read_u32(dev->of_node, "#global-interrupts", global_irqs))
return dev_err_probe(dev, -ENODEV,
"missing #global-interrupts property\n");
*pmu_irqs = 0;
data = of_device_get_match_data(dev);
smmu->version = data->version;
smmu->model = data->model;
legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
if (legacy_binding && !using_generic_binding) {
if (!using_legacy_binding) {
pr_notice("deprecated \"mmu-masters\" DT property in use; %s support unavailable\n",
IS_ENABLED(CONFIG_ARM_SMMU_LEGACY_DT_BINDINGS) ? "DMA API" : "SMMU");
}
using_legacy_binding = true;
} else if (!legacy_binding && !using_legacy_binding) {
using_generic_binding = true;
} else {
dev_err(dev, "not probing due to mismatched DT properties\n");
return -ENODEV;
}
if (of_dma_is_coherent(dev->of_node))
smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
return 0;
}
static void arm_smmu_rmr_install_bypass_smr(struct arm_smmu_device *smmu)
{
struct list_head rmr_list;
struct iommu_resv_region *e;
int idx, cnt = 0;
u32 reg;
INIT_LIST_HEAD(&rmr_list);
iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0);
reg |= ARM_SMMU_sCR0_CLIENTPD;
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg);
list_for_each_entry(e, &rmr_list, list) {
struct iommu_iort_rmr_data *rmr;
int i;
rmr = container_of(e, struct iommu_iort_rmr_data, rr);
for (i = 0; i < rmr->num_sids; i++) {
idx = arm_smmu_find_sme(smmu, rmr->sids[i], ~0);
if (idx < 0)
continue;
if (smmu->s2crs[idx].count == 0) {
smmu->smrs[idx].id = rmr->sids[i];
smmu->smrs[idx].mask = 0;
smmu->smrs[idx].valid = true;
}
smmu->s2crs[idx].count++;
smmu->s2crs[idx].type = S2CR_TYPE_BYPASS;
smmu->s2crs[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
cnt++;
}
}
dev_notice(smmu->dev, "\tpreserved %d boot mapping%s\n", cnt,
cnt == 1 ? "" : "s");
iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
}
static int arm_smmu_device_probe(struct platform_device *pdev)
{
struct resource *res;
struct arm_smmu_device *smmu;
struct device *dev = &pdev->dev;
int num_irqs, i, err;
u32 global_irqs, pmu_irqs;
irqreturn_t (*global_fault)(int irq, void *dev);
smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
if (!smmu) {
dev_err(dev, "failed to allocate arm_smmu_device\n");
return -ENOMEM;
}
smmu->dev = dev;
if (dev->of_node)
err = arm_smmu_device_dt_probe(smmu, &global_irqs, &pmu_irqs);
else
err = arm_smmu_device_acpi_probe(smmu, &global_irqs, &pmu_irqs);
if (err)
return err;
smmu->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(smmu->base))
return PTR_ERR(smmu->base);
smmu->ioaddr = res->start;
smmu->numpage = resource_size(res);
smmu = arm_smmu_impl_init(smmu);
if (IS_ERR(smmu))
return PTR_ERR(smmu);
num_irqs = platform_irq_count(pdev);
smmu->num_context_irqs = num_irqs - global_irqs - pmu_irqs;
if (smmu->num_context_irqs <= 0)
return dev_err_probe(dev, -ENODEV,
"found %d interrupts but expected at least %d\n",
num_irqs, global_irqs + pmu_irqs + 1);
smmu->irqs = devm_kcalloc(dev, smmu->num_context_irqs,
sizeof(*smmu->irqs), GFP_KERNEL);
if (!smmu->irqs)
return dev_err_probe(dev, -ENOMEM, "failed to allocate %d irqs\n",
smmu->num_context_irqs);
for (i = 0; i < smmu->num_context_irqs; i++) {
int irq = platform_get_irq(pdev, global_irqs + pmu_irqs + i);
if (irq < 0)
return irq;
smmu->irqs[i] = irq;
}
err = devm_clk_bulk_get_all(dev, &smmu->clks);
if (err < 0) {
dev_err(dev, "failed to get clocks %d\n", err);
return err;
}
smmu->num_clks = err;
err = clk_bulk_prepare_enable(smmu->num_clks, smmu->clks);
if (err)
return err;
err = arm_smmu_device_cfg_probe(smmu);
if (err)
return err;
if (smmu->version == ARM_SMMU_V2) {
if (smmu->num_context_banks > smmu->num_context_irqs) {
dev_err(dev,
"found only %d context irq(s) but %d required\n",
smmu->num_context_irqs, smmu->num_context_banks);
return -ENODEV;
}
smmu->num_context_irqs = smmu->num_context_banks;
}
if (smmu->impl && smmu->impl->global_fault)
global_fault = smmu->impl->global_fault;
else
global_fault = arm_smmu_global_fault;
for (i = 0; i < global_irqs; i++) {
int irq = platform_get_irq(pdev, i);
if (irq < 0)
return irq;
err = devm_request_irq(dev, irq, global_fault, IRQF_SHARED,
"arm-smmu global fault", smmu);
if (err)
return dev_err_probe(dev, err,
"failed to request global IRQ %d (%u)\n",
i, irq);
}
err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
"smmu.%pa", &smmu->ioaddr);
if (err) {
dev_err(dev, "Failed to register iommu in sysfs\n");
return err;
}
err = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
if (err) {
dev_err(dev, "Failed to register iommu\n");
iommu_device_sysfs_remove(&smmu->iommu);
return err;
}
platform_set_drvdata(pdev, smmu);
arm_smmu_rmr_install_bypass_smr(smmu);
arm_smmu_device_reset(smmu);
arm_smmu_test_smr_masks(smmu);
if (dev->pm_domain) {
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
}
return 0;
}
static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
dev_notice(&pdev->dev, "disabling translation\n");
arm_smmu_rpm_get(smmu);
arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, ARM_SMMU_sCR0_CLIENTPD);
arm_smmu_rpm_put(smmu);
if (pm_runtime_enabled(smmu->dev))
pm_runtime_force_suspend(smmu->dev);
else
clk_bulk_disable(smmu->num_clks, smmu->clks);
clk_bulk_unprepare(smmu->num_clks, smmu->clks);
}
static void arm_smmu_device_remove(struct platform_device *pdev)
{
struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
iommu_device_unregister(&smmu->iommu);
iommu_device_sysfs_remove(&smmu->iommu);
arm_smmu_device_shutdown(pdev);
}
static int __maybe_unused arm_smmu_runtime_resume(struct device *dev)
{
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
int ret;
ret = clk_bulk_enable(smmu->num_clks, smmu->clks);
if (ret)
return ret;
arm_smmu_device_reset(smmu);
return 0;
}
static int __maybe_unused arm_smmu_runtime_suspend(struct device *dev)
{
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
clk_bulk_disable(smmu->num_clks, smmu->clks);
return 0;
}
static int __maybe_unused arm_smmu_pm_resume(struct device *dev)
{
int ret;
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
ret = clk_bulk_prepare(smmu->num_clks, smmu->clks);
if (ret)
return ret;
if (pm_runtime_suspended(dev))
return 0;
ret = arm_smmu_runtime_resume(dev);
if (ret)
clk_bulk_unprepare(smmu->num_clks, smmu->clks);
return ret;
}
static int __maybe_unused arm_smmu_pm_suspend(struct device *dev)
{
int ret = 0;
struct arm_smmu_device *smmu = dev_get_drvdata(dev);
if (pm_runtime_suspended(dev))
goto clk_unprepare;
ret = arm_smmu_runtime_suspend(dev);
if (ret)
return ret;
clk_unprepare:
clk_bulk_unprepare(smmu->num_clks, smmu->clks);
return ret;
}
static const struct dev_pm_ops arm_smmu_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(arm_smmu_pm_suspend, arm_smmu_pm_resume)
SET_RUNTIME_PM_OPS(arm_smmu_runtime_suspend,
arm_smmu_runtime_resume, NULL)
};
static struct platform_driver arm_smmu_driver = {
.driver = {
.name = "arm-smmu",
.of_match_table = arm_smmu_of_match,
.pm = &arm_smmu_pm_ops,
.suppress_bind_attrs = true,
},
.probe = arm_smmu_device_probe,
.remove_new = arm_smmu_device_remove,
.shutdown = arm_smmu_device_shutdown,
};
module_platform_driver(arm_smmu_driver);
MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
MODULE_ALIAS("platform:arm-smmu");
MODULE_LICENSE("GPL v2"