/* SPDX-License-Identifier: GPL-2.0-only */ /* * This file is part of UBIFS. * * Copyright (C) 2006-2008 Nokia Corporation * * Authors: Artem Bityutskiy (Битюцкий Артём) * Adrian Hunter */ #ifndef __UBIFS_H__ #define __UBIFS_H__ #include <asm/div64.h> #include <linux/statfs.h> #include <linux/fs.h> #include <linux/err.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/spinlock.h> #include <linux/mutex.h> #include <linux/rwsem.h> #include <linux/mtd/ubi.h> #include <linux/pagemap.h> #include <linux/backing-dev.h> #include <linux/security.h> #include <linux/xattr.h> #include <linux/random.h> #include <linux/sysfs.h> #include <linux/completion.h> #include <crypto/hash_info.h> #include <crypto/hash.h> #include <crypto/algapi.h> #include <linux/fscrypt.h> #include "ubifs-media.h" /* Version of this UBIFS implementation */ #define UBIFS_VERSION 1 /* UBIFS file system VFS magic number */ #define UBIFS_SUPER_MAGIC 0x24051905 /* Number of UBIFS blocks per VFS page */ #define UBIFS_BLOCKS_PER_PAGE (PAGE_SIZE / UBIFS_BLOCK_SIZE) #define UBIFS_BLOCKS_PER_PAGE_SHIFT (PAGE_SHIFT - UBIFS_BLOCK_SHIFT) /* "File system end of life" sequence number watermark */ #define SQNUM_WARN_WATERMARK 0xFFFFFFFF00000000ULL #define SQNUM_WATERMARK 0xFFFFFFFFFF000000ULL /* * Minimum amount of LEBs reserved for the index. At present the index needs at * least 2 LEBs: one for the index head and one for in-the-gaps method (which * currently does not cater for the index head and so excludes it from * consideration). */ #define MIN_INDEX_LEBS 2 /* Minimum amount of data UBIFS writes to the flash */ #define MIN_WRITE_SZ (UBIFS_DATA_NODE_SZ + 8) /* * Currently we do not support inode number overlapping and re-using, so this * watermark defines dangerous inode number level. This should be fixed later, * although it is difficult to exceed current limit. Another option is to use * 64-bit inode numbers, but this means more overhead. */ #define INUM_WARN_WATERMARK 0xFFF00000 #define INUM_WATERMARK 0xFFFFFF00 /* Maximum number of entries in each LPT (LEB category) heap */ #define LPT_HEAP_SZ 256 /* * Background thread name pattern. The numbers are UBI device and volume * numbers. */ #define BGT_NAME_PATTERN "ubifs_bgt%d_%d" /* Maximum possible inode number (only 32-bit inodes are supported now) */ #define MAX_INUM 0xFFFFFFFF /* Number of non-data journal heads */ #define NONDATA_JHEADS_CNT 2 /* Shorter names for journal head numbers for internal usage */ #define GCHD UBIFS_GC_HEAD #define BASEHD UBIFS_BASE_HEAD #define DATAHD UBIFS_DATA_HEAD /* 'No change' value for 'ubifs_change_lp()' */ #define LPROPS_NC 0x80000001 /* * There is no notion of truncation key because truncation nodes do not exist * in TNC. However, when replaying, it is handy to introduce fake "truncation" * keys for truncation nodes because the code becomes simpler. So we define * %UBIFS_TRUN_KEY type. * * But otherwise, out of the journal reply scope, the truncation keys are * invalid. */ #define UBIFS_TRUN_KEY UBIFS_KEY_TYPES_CNT #define UBIFS_INVALID_KEY UBIFS_KEY_TYPES_CNT /* * How much a directory entry/extended attribute entry adds to the parent/host * inode. */ #define CALC_DENT_SIZE(name_len) ALIGN(UBIFS_DENT_NODE_SZ + (name_len) + 1, 8) /* How much an extended attribute adds to the host inode */ #define CALC_XATTR_BYTES(data_len) ALIGN(UBIFS_INO_NODE_SZ + (data_len) + 1, 8) /* * Znodes which were not touched for 'OLD_ZNODE_AGE' seconds are considered * "old", and znode which were touched last 'YOUNG_ZNODE_AGE' seconds ago are * considered "young". This is used by shrinker when selecting znode to trim * off. */ #define OLD_ZNODE_AGE 20 #define YOUNG_ZNODE_AGE 5 /* * Some compressors, like LZO, may end up with more data then the input buffer. * So UBIFS always allocates larger output buffer, to be sure the compressor * will not corrupt memory in case of worst case compression. */ #define WORST_COMPR_FACTOR 2 #ifdef CONFIG_FS_ENCRYPTION #define UBIFS_CIPHER_BLOCK_SIZE FSCRYPT_CONTENTS_ALIGNMENT #else #define UBIFS_CIPHER_BLOCK_SIZE 0 #endif /* * How much memory is needed for a buffer where we compress a data node. */ #define COMPRESSED_DATA_NODE_BUF_SZ \ (UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR) /* Maximum expected tree height for use by bottom_up_buf */ #define BOTTOM_UP_HEIGHT 64 /* Maximum number of data nodes to bulk-read */ #define UBIFS_MAX_BULK_READ 32 #ifdef CONFIG_UBIFS_FS_AUTHENTICATION #define UBIFS_HASH_ARR_SZ UBIFS_MAX_HASH_LEN #define UBIFS_HMAC_ARR_SZ UBIFS_MAX_HMAC_LEN #else #define UBIFS_HASH_ARR_SZ 0 #define UBIFS_HMAC_ARR_SZ 0 #endif /* * The UBIFS sysfs directory name pattern and maximum name length (3 for "ubi" * + 1 for "_" and plus 2x2 for 2 UBI numbers and 1 for the trailing zero byte. */ #define UBIFS_DFS_DIR_NAME "ubi%d_%d" #define UBIFS_DFS_DIR_LEN (3 + 1 + 2*2 + 1) /* * Lockdep classes for UBIFS inode @ui_mutex. */ enum { WB_MUTEX_1 = 0, WB_MUTEX_2 = 1, WB_MUTEX_3 = 2, WB_MUTEX_4 = 3, }; /* * Znode flags (actually, bit numbers which store the flags). * * DIRTY_ZNODE: znode is dirty * COW_ZNODE: znode is being committed and a new instance of this znode has to * be created before changing this znode * OBSOLETE_ZNODE: znode is obsolete, which means it was deleted, but it is * still in the commit list and the ongoing commit operation * will commit it, and delete this znode after it is done */ enum { DIRTY_ZNODE = 0, COW_ZNODE = 1, OBSOLETE_ZNODE = 2, }; /* * Commit states. * * COMMIT_RESTING: commit is not wanted * COMMIT_BACKGROUND: background commit has been requested * COMMIT_REQUIRED: commit is required * COMMIT_RUNNING_BACKGROUND: background commit is running * COMMIT_RUNNING_REQUIRED: commit is running and it is required * COMMIT_BROKEN: commit failed */ enum { COMMIT_RESTING = 0, COMMIT_BACKGROUND, COMMIT_REQUIRED, COMMIT_RUNNING_BACKGROUND, COMMIT_RUNNING_REQUIRED, COMMIT_BROKEN, }; /* * 'ubifs_scan_a_node()' return values. * * SCANNED_GARBAGE: scanned garbage * SCANNED_EMPTY_SPACE: scanned empty space * SCANNED_A_NODE: scanned a valid node * SCANNED_A_CORRUPT_NODE: scanned a corrupted node * SCANNED_A_BAD_PAD_NODE: scanned a padding node with invalid pad length * * Greater than zero means: 'scanned that number of padding bytes' */ enum { SCANNED_GARBAGE = 0, SCANNED_EMPTY_SPACE = -1, SCANNED_A_NODE = -2, SCANNED_A_CORRUPT_NODE = -3, SCANNED_A_BAD_PAD_NODE = -4, }; /* * LPT cnode flag bits. * * DIRTY_CNODE: cnode is dirty * OBSOLETE_CNODE: cnode is being committed and has been copied (or deleted), * so it can (and must) be freed when the commit is finished * COW_CNODE: cnode is being committed and must be copied before writing */ enum { DIRTY_CNODE = 0, OBSOLETE_CNODE = 1, COW_CNODE = 2, }; /* * Dirty flag bits (lpt_drty_flgs) for LPT special nodes. * * LTAB_DIRTY: ltab node is dirty * LSAVE_DIRTY: lsave node is dirty */ enum { LTAB_DIRTY = 1, LSAVE_DIRTY = 2, }; /* * Return codes used by the garbage collector. * @LEB_FREED: the logical eraseblock was freed and is ready to use * @LEB_FREED_IDX: indexing LEB was freed and can be used only after the commit * @LEB_RETAINED: the logical eraseblock was freed and retained for GC purposes */ enum { LEB_FREED, LEB_FREED_IDX, LEB_RETAINED, }; /* * Action taken upon a failed ubifs_assert(). * @ASSACT_REPORT: just report the failed assertion * @ASSACT_RO: switch to read-only mode * @ASSACT_PANIC: call BUG() and possible panic the kernel */ enum { ASSACT_REPORT = 0, ASSACT_RO, ASSACT_PANIC, }; /** * struct ubifs_old_idx - index node obsoleted since last commit start. * @rb: rb-tree node * @lnum: LEB number of obsoleted index node * @offs: offset of obsoleted index node */ struct ubifs_old_idx { struct rb_node rb; int lnum; int offs; }; /* The below union makes it easier to deal with keys */ union ubifs_key { uint8_t u8[UBIFS_SK_LEN]; uint32_t u32[UBIFS_SK_LEN/4]; uint64_t u64[UBIFS_SK_LEN/8]; __le32 j32[UBIFS_SK_LEN/4]; }; /** * struct ubifs_scan_node - UBIFS scanned node information. * @list: list of scanned nodes * @key: key of node scanned (if it has one) * @sqnum: sequence number * @type: type of node scanned * @offs: offset with LEB of node scanned * @len: length of node scanned * @node: raw node */ struct ubifs_scan_node { struct list_head list; union ubifs_key key; unsigned long long sqnum; int type; int offs; int len; void *node; }; /** * struct ubifs_scan_leb - UBIFS scanned LEB information. * @lnum: logical eraseblock number * @nodes_cnt: number of nodes scanned * @nodes: list of struct ubifs_scan_node * @endpt: end point (and therefore the start of empty space) * @buf: buffer containing entire LEB scanned */ struct ubifs_scan_leb { int lnum; int nodes_cnt; struct list_head nodes; int endpt; void *buf; }; /** * struct ubifs_gced_idx_leb - garbage-collected indexing LEB. * @list: list * @lnum: LEB number * @unmap: OK to unmap this LEB * * This data structure is used to temporary store garbage-collected indexing * LEBs - they are not released immediately, but only after the next commit. * This is needed to guarantee recoverability. */ struct ubifs_gced_idx_leb { struct list_head list; int lnum; int unmap; }; /** * struct ubifs_inode - UBIFS in-memory inode description. * @vfs_inode: VFS inode description object * @creat_sqnum: sequence number at time of creation * @del_cmtno: commit number corresponding to the time the inode was deleted, * protected by @c->commit_sem; * @xattr_size: summarized size of all extended attributes in bytes * @xattr_cnt: count of extended attributes this inode has * @xattr_names: sum of lengths of all extended attribute names belonging to * this inode * @dirty: non-zero if the inode is dirty * @xattr: non-zero if this is an extended attribute inode * @bulk_read: non-zero if bulk-read should be used * @ui_mutex: serializes inode write-back with the rest of VFS operations, * serializes "clean <-> dirty" state changes, serializes bulk-read, * protects @dirty, @bulk_read, @ui_size, and @xattr_size * @xattr_sem: serilizes write operations (remove|set|create) on xattr * @ui_lock: protects @synced_i_size * @synced_i_size: synchronized size of inode, i.e. the value of inode size * currently stored on the flash; used only for regular file * inodes * @ui_size: inode size used by UBIFS when writing to flash * @flags: inode flags (@UBIFS_COMPR_FL, etc) * @compr_type: default compression type used for this inode * @last_page_read: page number of last page read (for bulk read) * @read_in_a_row: number of consecutive pages read in a row (for bulk read) * @data_len: length of the data attached to the inode * @data: inode's data * * @ui_mutex exists for two main reasons. At first it prevents inodes from * being written back while UBIFS changing them, being in the middle of an VFS * operation. This way UBIFS makes sure the inode fields are consistent. For * example, in 'ubifs_rename()' we change 4 inodes simultaneously, and * write-back must not write any of them before we have finished. * * The second reason is budgeting - UBIFS has to budget all operations. If an * operation is going to mark an inode dirty, it has to allocate budget for * this. It cannot just mark it dirty because there is no guarantee there will * be enough flash space to write the inode back later. This means UBIFS has * to have full control over inode "clean <-> dirty" transitions (and pages * actually). But unfortunately, VFS marks inodes dirty in many places, and it * does not ask the file-system if it is allowed to do so (there is a notifier, * but it is not enough), i.e., there is no mechanism to synchronize with this. * So UBIFS has its own inode dirty flag and its own mutex to serialize * "clean <-> dirty" transitions. * * The @synced_i_size field is used to make sure we never write pages which are * beyond last synchronized inode size. See 'ubifs_writepage()' for more * information. * * The @ui_size is a "shadow" variable for @inode->i_size and UBIFS uses * @ui_size instead of @inode->i_size. The reason for this is that UBIFS cannot * make sure @inode->i_size is always changed under @ui_mutex, because it * cannot call 'truncate_setsize()' with @ui_mutex locked, because it would * deadlock with 'ubifs_writepage()' (see file.c). All the other inode fields * are changed under @ui_mutex, so they do not need "shadow" fields. Note, one * could consider to rework locking and base it on "shadow" fields. */ struct ubifs_inode { struct inode vfs_inode; unsigned long long creat_sqnum; unsigned long long del_cmtno; unsigned int xattr_size; unsigned int xattr_cnt; unsigned int xattr_names; unsigned int dirty:1; unsigned int xattr:1; unsigned int bulk_read:1; unsigned int compr_type:2; struct mutex ui_mutex; struct rw_semaphore xattr_sem; spinlock_t ui_lock; loff_t synced_i_size; loff_t ui_size; int flags; pgoff_t last_page_read; pgoff_t read_in_a_row; int data_len; void *data; }; /** * struct ubifs_unclean_leb - records a LEB recovered under read-only mode. * @list: list * @lnum: LEB number of recovered LEB * @endpt: offset where recovery ended * * This structure records a LEB identified during recovery that needs to be * cleaned but was not because UBIFS was mounted read-only. The information * is used to clean the LEB when remounting to read-write mode. */ struct ubifs_unclean_leb { struct list_head list; int lnum; int endpt; }; /* * LEB properties flags. * * LPROPS_UNCAT: not categorized * LPROPS_DIRTY: dirty > free, dirty >= @c->dead_wm, not index * LPROPS_DIRTY_IDX: dirty + free > @c->min_idx_node_sze and index * LPROPS_FREE: free > 0, dirty < @c->dead_wm, not empty, not index * LPROPS_HEAP_CNT: number of heaps used for storing categorized LEBs * LPROPS_EMPTY: LEB is empty, not taken * LPROPS_FREEABLE: free + dirty == leb_size, not index, not taken * LPROPS_FRDI_IDX: free + dirty == leb_size and index, may be taken * LPROPS_CAT_MASK: mask for the LEB categories above * LPROPS_TAKEN: LEB was taken (this flag is not saved on the media) * LPROPS_INDEX: LEB contains indexing nodes (this flag also exists on flash) */ enum { LPROPS_UNCAT = 0, LPROPS_DIRTY = 1, LPROPS_DIRTY_IDX = 2, LPROPS_FREE = 3, LPROPS_HEAP_CNT = 3, LPROPS_EMPTY = 4, LPROPS_FREEABLE = 5, LPROPS_FRDI_IDX = 6, LPROPS_CAT_MASK = 15, LPROPS_TAKEN = 16, LPROPS_INDEX = 32, }; /** * struct ubifs_lprops - logical eraseblock properties. * @free: amount of free space in bytes * @dirty: amount of dirty space in bytes * @flags: LEB properties flags (see above) * @lnum: LEB number * @list: list of same-category lprops (for LPROPS_EMPTY and LPROPS_FREEABLE) * @hpos: heap position in heap of same-category lprops (other categories) */ struct ubifs_lprops { int free; int dirty; int flags; int lnum; union { struct list_head list; int hpos; }; }; /** * struct ubifs_lpt_lprops - LPT logical eraseblock properties. * @free: amount of free space in bytes * @dirty: amount of dirty space in bytes * @tgc: trivial GC flag (1 => unmap after commit end) * @cmt: commit flag (1 => reserved for commit) */ struct ubifs_lpt_lprops { int free; int dirty; unsigned tgc:1; unsigned cmt:1; }; /** * struct ubifs_lp_stats - statistics of eraseblocks in the main area. * @empty_lebs: number of empty LEBs * @taken_empty_lebs: number of taken LEBs * @idx_lebs: number of indexing LEBs * @total_free: total free space in bytes (includes all LEBs) * @total_dirty: total dirty space in bytes (includes all LEBs) * @total_used: total used space in bytes (does not include index LEBs) * @total_dead: total dead space in bytes (does not include index LEBs) * @total_dark: total dark space in bytes (does not include index LEBs) * * The @taken_empty_lebs field counts the LEBs that are in the transient state * of having been "taken" for use but not yet written to. @taken_empty_lebs is * needed to account correctly for @gc_lnum, otherwise @empty_lebs could be * used by itself (in which case 'unused_lebs' would be a better name). In the * case of @gc_lnum, it is "taken" at mount time or whenever a LEB is retained * by GC, but unlike other empty LEBs that are "taken", it may not be written * straight away (i.e. before the next commit start or unmount), so either * @gc_lnum must be specially accounted for, or the current approach followed * i.e. count it under @taken_empty_lebs. * * @empty_lebs includes @taken_empty_lebs. * * @total_used, @total_dead and @total_dark fields do not account indexing * LEBs. */ struct ubifs_lp_stats { int empty_lebs; int taken_empty_lebs; int idx_lebs; long long total_free; long long total_dirty; long long total_used; long long total_dead; long long total_dark; }; struct ubifs_nnode; /** * struct ubifs_cnode - LEB Properties Tree common node. * @parent: parent nnode * @cnext: next cnode to commit * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) * @iip: index in parent * @level: level in the tree (zero for pnodes, greater than zero for nnodes) * @num: node number */ struct ubifs_cnode { struct ubifs_nnode *parent; struct ubifs_cnode *cnext; unsigned long flags; int iip; int level; int num; }; /** * struct ubifs_pnode - LEB Properties Tree leaf node. * @parent: parent nnode * @cnext: next cnode to commit * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) * @iip: index in parent * @level: level in the tree (always zero for pnodes) * @num: node number * @lprops: LEB properties array */ struct ubifs_pnode { struct ubifs_nnode *parent; struct ubifs_cnode *cnext; unsigned long flags; int iip; int level; int num; struct ubifs_lprops lprops[UBIFS_LPT_FANOUT]; }; /** * struct ubifs_nbranch - LEB Properties Tree internal node branch. * @lnum: LEB number of child * @offs: offset of child * @nnode: nnode child * @pnode: pnode child * @cnode: cnode child */ struct ubifs_nbranch { int lnum; int offs; union { struct ubifs_nnode *nnode; struct ubifs_pnode *pnode; struct ubifs_cnode *cnode; }; }; /** * struct ubifs_nnode - LEB Properties Tree internal node. * @parent: parent nnode * @cnext: next cnode to commit * @flags: flags (%DIRTY_LPT_NODE or %OBSOLETE_LPT_NODE) * @iip: index in parent * @level: level in the tree (always greater than zero for nnodes) * @num: node number * @nbranch: branches to child nodes */ struct ubifs_nnode { struct ubifs_nnode *parent; struct ubifs_cnode *cnext; unsigned long flags; int iip; int level; int num; struct ubifs_nbranch nbranch[UBIFS_LPT_FANOUT]; }; /** * struct ubifs_lpt_heap - heap of categorized lprops. * @arr: heap array * @cnt: number in heap * @max_cnt: maximum number allowed in heap * * There are %LPROPS_HEAP_CNT heaps. */ struct ubifs_lpt_heap { struct ubifs_lprops **arr; int cnt; int max_cnt; }; /* * Return codes for LPT scan callback function. * * LPT_SCAN_CONTINUE: continue scanning * LPT_SCAN_ADD: add the LEB properties scanned to the tree in memory * LPT_SCAN_STOP: stop scanning */ enum { LPT_SCAN_CONTINUE = 0, LPT_SCAN_ADD = 1, LPT_SCAN_STOP = 2, }; struct ubifs_info; /* Callback used by the 'ubifs_lpt_scan_nolock()' function */ typedef int (*ubifs_lpt_scan_callback)(struct ubifs_info *c, const struct ubifs_lprops *lprops, int in_tree, void *data); /** * struct ubifs_wbuf - UBIFS write-buffer. * @c: UBIFS file-system description object * @buf: write-buffer (of min. flash I/O unit size) * @lnum: logical eraseblock number the write-buffer points to * @offs: write-buffer offset in this logical eraseblock * @avail: number of bytes available in the write-buffer * @used: number of used bytes in the write-buffer * @size: write-buffer size (in [@c->min_io_size, @c->max_write_size] range) * @jhead: journal head the mutex belongs to (note, needed only to shut lockdep * up by 'mutex_lock_nested()). * @sync_callback: write-buffer synchronization callback * @io_mutex: serializes write-buffer I/O * @lock: serializes @buf, @lnum, @offs, @avail, @used, @next_ino and @inodes * fields * @timer: write-buffer timer * @no_timer: non-zero if this write-buffer does not have a timer * @need_sync: non-zero if the timer expired and the wbuf needs sync'ing * @next_ino: points to the next position of the following inode number * @inodes: stores the inode numbers of the nodes which are in wbuf * * The write-buffer synchronization callback is called when the write-buffer is * synchronized in order to notify how much space was wasted due to * write-buffer padding and how much free space is left in the LEB. * * Note: the fields @buf, @lnum, @offs, @avail and @used can be read under * spin-lock or mutex because they are written under both mutex and spin-lock. * @buf is appended to under mutex but overwritten under both mutex and * spin-lock. Thus the data between @buf and @buf + @used can be read under * spinlock. */ struct ubifs_wbuf { struct ubifs_info *c; void *buf; int lnum; int offs; int avail; int used; int size; int jhead; int (*sync_callback)(struct ubifs_info *c, int lnum, int free, int pad); struct mutex io_mutex; spinlock_t lock; struct hrtimer timer; unsigned int no_timer:1; unsigned int need_sync:1; int next_ino; ino_t *inodes; }; /** * struct ubifs_bud - bud logical eraseblock. * @lnum: logical eraseblock number * @start: where the (uncommitted) bud data starts * @jhead: journal head number this bud belongs to * @list: link in the list buds belonging to the same journal head * @rb: link in the tree of all buds * @log_hash: the log hash from the commit start node up to this bud */ struct ubifs_bud { int lnum; int start; int jhead; struct list_head list; struct rb_node rb; struct shash_desc *log_hash; }; /** * struct ubifs_jhead - journal head. * @wbuf: head's write-buffer * @buds_list: list of bud LEBs belonging to this journal head * @grouped: non-zero if UBIFS groups nodes when writing to this journal head * @log_hash: the log hash from the commit start node up to this journal head * * Note, the @buds list is protected by the @c->buds_lock. */ struct ubifs_jhead { struct ubifs_wbuf wbuf; struct list_head buds_list; unsigned int grouped:1; struct shash_desc *log_hash; }; /** * struct ubifs_zbranch - key/coordinate/length branch stored in znodes. * @key: key * @znode: znode address in memory * @lnum: LEB number of the target node (indexing node or data node) * @offs: target node offset within @lnum * @len: target node length * @hash: the hash of the target node */ struct ubifs_zbranch { union ubifs_key key; union { struct ubifs_znode *znode; void *leaf; }; int lnum; int offs; int len; u8 hash[UBIFS_HASH_ARR_SZ]; }; /** * struct ubifs_znode - in-memory representation of an indexing node. * @parent: parent znode or NULL if it is the root * @cnext: next znode to commit * @cparent: parent node for this commit * @ciip: index in cparent's zbranch array * @flags: znode flags (%DIRTY_ZNODE, %COW_ZNODE or %OBSOLETE_ZNODE) * @time: last access time (seconds) * @level: level of the entry in the TNC tree * @child_cnt: count of child znodes * @iip: index in parent's zbranch array * @alt: lower bound of key range has altered i.e. child inserted at slot 0 * @lnum: LEB number of the corresponding indexing node * @offs: offset of the corresponding indexing node * @len: length of the corresponding indexing node * @zbranch: array of znode branches (@c->fanout elements) * * Note! The @lnum, @offs, and @len fields are not really needed - we have them * only for internal consistency check. They could be removed to save some RAM. */ struct ubifs_znode { struct ubifs_znode *parent; struct ubifs_znode *cnext; struct ubifs_znode *cparent; int ciip; unsigned long flags; time64_t time; int level; int child_cnt; int iip; int alt; int lnum; int offs; int len; struct ubifs_zbranch zbranch[]; }; /** * struct bu_info - bulk-read information. * @key: first data node key * @zbranch: zbranches of data nodes to bulk read * @buf: buffer to read into * @buf_len: buffer length * @gc_seq: GC sequence number to detect races with GC * @cnt: number of data nodes for bulk read * @blk_cnt: number of data blocks including holes * @oef: end of file reached */ struct bu_info { union ubifs_key key; struct ubifs_zbranch zbranch[UBIFS_MAX_BULK_READ]; void *buf; int buf_len; int gc_seq; int cnt; int blk_cnt; int eof; }; /** * struct ubifs_node_range - node length range description data structure. * @len: fixed node length * @min_len: minimum possible node length * @max_len: maximum possible node length * * If @max_len is %0, the node has fixed length @len. */ struct ubifs_node_range { union { int len; int min_len; }; int max_len; }; /** * struct ubifs_compressor - UBIFS compressor description structure. * @compr_type: compressor type (%UBIFS_COMPR_LZO, etc) * @cc: cryptoapi compressor handle * @comp_mutex: mutex used during compression * @decomp_mutex: mutex used during decompression * @name: compressor name * @capi_name: cryptoapi compressor name */ struct ubifs_compressor { int compr_type; struct crypto_comp *cc; struct mutex *comp_mutex; struct mutex *decomp_mutex; const char *name; const char *capi_name; }; /** * struct ubifs_budget_req - budget requirements of an operation. * * @fast: non-zero if the budgeting should try to acquire budget quickly and * should not try to call write-back * @recalculate: non-zero if @idx_growth, @data_growth, and @dd_growth fields * have to be re-calculated * @new_page: non-zero if the operation adds a new page * @dirtied_page: non-zero if the operation makes a page dirty * @new_dent: non-zero if the operation adds a new directory entry * @mod_dent: non-zero if the operation removes or modifies an existing * directory entry * @new_ino: non-zero if the operation adds a new inode * @new_ino_d: how much data newly created inode contains * @dirtied_ino: how many inodes the operation makes dirty * @dirtied_ino_d: how much data dirtied inode contains * @idx_growth: how much the index will supposedly grow * @data_growth: how much new data the operation will supposedly add * @dd_growth: how much data that makes other data dirty the operation will * supposedly add * * @idx_growth, @data_growth and @dd_growth are not used in budget request. The * budgeting subsystem caches index and data growth values there to avoid * re-calculating them when the budget is released. However, if @idx_growth is * %-1, it is calculated by the release function using other fields. * * An inode may contain 4KiB of data at max., thus the widths of @new_ino_d * is 13 bits, and @dirtied_ino_d - 15, because up to 4 inodes may be made * dirty by the re-name operation. * * Note, UBIFS aligns node lengths to 8-bytes boundary, so the requester has to * make sure the amount of inode data which contribute to @new_ino_d and * @dirtied_ino_d fields are aligned. */ struct ubifs_budget_req { unsigned int fast:1; unsigned int recalculate:1; #ifndef UBIFS_DEBUG unsigned int new_page:1; unsigned int dirtied_page:1; unsigned int new_dent:1; unsigned int mod_dent:1; unsigned int new_ino:1; unsigned int new_ino_d:13; unsigned int dirtied_ino:4; unsigned int dirtied_ino_d:15; #else /* Not bit-fields to check for overflows */ unsigned int new_page; unsigned int dirtied_page; unsigned int new_dent; unsigned int mod_dent; unsigned int new_ino; unsigned int new_ino_d; unsigned int dirtied_ino; unsigned int dirtied_ino_d; #endif int idx_growth; int data_growth; int dd_growth; }; /** * struct ubifs_orphan - stores the inode number of an orphan. * @rb: rb-tree node of rb-tree of orphans sorted by inode number * @list: list head of list of orphans in order added * @new_list: list head of list of orphans added since the last commit * @child_list: list of xattr children if this orphan hosts xattrs, list head * if this orphan is a xattr, not used otherwise. * @cnext: next orphan to commit * @dnext: next orphan to delete * @inum: inode number * @new: %1 => added since the last commit, otherwise %0 * @cmt: %1 => commit pending, otherwise %0 * @del: %1 => delete pending, otherwise %0 */ struct ubifs_orphan { struct rb_node rb; struct list_head list; struct list_head new_list; struct list_head child_list; struct ubifs_orphan *cnext; struct ubifs_orphan *dnext; ino_t inum; unsigned new:1; unsigned cmt:1; unsigned del:1; }; /** * struct ubifs_mount_opts - UBIFS-specific mount options information. * @unmount_mode: selected unmount mode (%0 default, %1 normal, %2 fast) * @bulk_read: enable/disable bulk-reads (%0 default, %1 disable, %2 enable) * @chk_data_crc: enable/disable CRC data checking when reading data nodes * (%0 default, %1 disable, %2 enable) * @override_compr: override default compressor (%0 - do not override and use * superblock compressor, %1 - override and use compressor * specified in @compr_type) * @compr_type: compressor type to override the superblock compressor with * (%UBIFS_COMPR_NONE, etc) */ struct ubifs_mount_opts { unsigned int unmount_mode:2; unsigned int bulk_read:2; unsigned int chk_data_crc:2; unsigned int override_compr:1; unsigned int compr_type:2; }; /** * struct ubifs_budg_info - UBIFS budgeting information. * @idx_growth: amount of bytes budgeted for index growth * @data_growth: amount of bytes budgeted for cached data * @dd_growth: amount of bytes budgeted for cached data that will make * other data dirty * @uncommitted_idx: amount of bytes were budgeted for growth of the index, but * which still have to be taken into account because the index * has not been committed so far * @old_idx_sz: size of index on flash * @min_idx_lebs: minimum number of LEBs required for the index * @nospace: non-zero if the file-system does not have flash space (used as * optimization) * @nospace_rp: the same as @nospace, but additionally means that even reserved * pool is full * @page_budget: budget for a page (constant, never changed after mount) * @inode_budget: budget for an inode (constant, never changed after mount) * @dent_budget: budget for a directory entry (constant, never changed after * mount) */ struct ubifs_budg_info { long long idx_growth; long long data_growth; long long dd_growth; long long uncommitted_idx; unsigned long long old_idx_sz; int min_idx_lebs; unsigned int nospace:1; unsigned int nospace_rp:1; int page_budget; int inode_budget; int dent_budget; }; /** * ubifs_stats_info - per-FS statistics information. * @magic_errors: number of bad magic numbers (will be reset with a new mount). * @node_errors: number of bad nodes (will be reset with a new mount). * @crc_errors: number of bad crcs (will be reset with a new mount). */ struct ubifs_stats_info { unsigned int magic_errors; unsigned int node_errors; unsigned int crc_errors; }; struct ubifs_debug_info; /** * struct ubifs_info - UBIFS file-system description data structure * (per-superblock). * @vfs_sb: VFS @struct super_block object * @sup_node: The super block node as read from the device * * @highest_inum: highest used inode number * @max_sqnum: current global sequence number * @cmt_no: commit number of the last successfully completed commit, protected * by @commit_sem * @cnt_lock: protects @highest_inum and @max_sqnum counters * @fmt_version: UBIFS on-flash format version * @ro_compat_version: R/O compatibility version * @uuid: UUID from super block * * @lhead_lnum: log head logical eraseblock number * @lhead_offs: log head offset * @ltail_lnum: log tail logical eraseblock number (offset is always 0) * @log_mutex: protects the log, @lhead_lnum, @lhead_offs, @ltail_lnum, and * @bud_bytes * @min_log_bytes: minimum required number of bytes in the log * @cmt_bud_bytes: used during commit to temporarily amount of bytes in * committed buds * * @buds: tree of all buds indexed by bud LEB number * @bud_bytes: how many bytes of flash is used by buds * @buds_lock: protects the @buds tree, @bud_bytes, and per-journal head bud * lists * @jhead_cnt: count of journal heads * @jheads: journal heads (head zero is base head) * @max_bud_bytes: maximum number of bytes allowed in buds * @bg_bud_bytes: number of bud bytes when background commit is initiated * @old_buds: buds to be released after commit ends * @max_bud_cnt: maximum number of buds * * @commit_sem: synchronizes committer with other processes * @cmt_state: commit state * @cs_lock: commit state lock * @cmt_wq: wait queue to sleep on if the log is full and a commit is running * * @big_lpt: flag that LPT is too big to write whole during commit * @space_fixup: flag indicating that free space in LEBs needs to be cleaned up * @double_hash: flag indicating that we can do lookups by hash * @encrypted: flag indicating that this file system contains encrypted files * @no_chk_data_crc: do not check CRCs when reading data nodes (except during * recovery) * @bulk_read: enable bulk-reads * @default_compr: default compression algorithm (%UBIFS_COMPR_LZO, etc) * @rw_incompat: the media is not R/W compatible * @assert_action: action to take when a ubifs_assert() fails * @authenticated: flag indigating the FS is mounted in authenticated mode * * @tnc_mutex: protects the Tree Node Cache (TNC), @zroot, @cnext, @enext, and * @calc_idx_sz * @zroot: zbranch which points to the root index node and znode * @cnext: next znode to commit * @enext: next znode to commit to empty space * @gap_lebs: array of LEBs used by the in-gaps commit method * @cbuf: commit buffer * @ileb_buf: buffer for commit in-the-gaps method * @ileb_len: length of data in ileb_buf * @ihead_lnum: LEB number of index head * @ihead_offs: offset of index head * @ilebs: pre-allocated index LEBs * @ileb_cnt: number of pre-allocated index LEBs * @ileb_nxt: next pre-allocated index LEBs * @old_idx: tree of index nodes obsoleted since the last commit start * @bottom_up_buf: a buffer which is used by 'dirty_cow_bottom_up()' in tnc.c * * @mst_node: master node * @mst_offs: offset of valid master node * * @max_bu_buf_len: maximum bulk-read buffer length * @bu_mutex: protects the pre-allocated bulk-read buffer and @c->bu * @bu: pre-allocated bulk-read information * * @write_reserve_mutex: protects @write_reserve_buf * @write_reserve_buf: on the write path we allocate memory, which might * sometimes be unavailable, in which case we use this * write reserve buffer * * @log_lebs: number of logical eraseblocks in the log * @log_bytes: log size in bytes * @log_last: last LEB of the log * @lpt_lebs: number of LEBs used for lprops table * @lpt_first: first LEB of the lprops table area * @lpt_last: last LEB of the lprops table area * @orph_lebs: number of LEBs used for the orphan area * @orph_first: first LEB of the orphan area * @orph_last: last LEB of the orphan area * @main_lebs: count of LEBs in the main area * @main_first: first LEB of the main area * @main_bytes: main area size in bytes * * @key_hash_type: type of the key hash * @key_hash: direntry key hash function * @key_fmt: key format * @key_len: key length * @hash_len: The length of the index node hashes * @fanout: fanout of the index tree (number of links per indexing node) * * @min_io_size: minimal input/output unit size * @min_io_shift: number of bits in @min_io_size minus one * @max_write_size: maximum amount of bytes the underlying flash can write at a * time (MTD write buffer size) * @max_write_shift: number of bits in @max_write_size minus one * @leb_size: logical eraseblock size in bytes * @leb_start: starting offset of logical eraseblocks within physical * eraseblocks * @half_leb_size: half LEB size * @idx_leb_size: how many bytes of an LEB are effectively available when it is * used to store indexing nodes (@leb_size - @max_idx_node_sz) * @leb_cnt: count of logical eraseblocks * @max_leb_cnt: maximum count of logical eraseblocks * @ro_media: the underlying UBI volume is read-only * @ro_mount: the file-system was mounted as read-only * @ro_error: UBIFS switched to R/O mode because an error happened * * @dirty_pg_cnt: number of dirty pages (not used) * @dirty_zn_cnt: number of dirty znodes * @clean_zn_cnt: number of clean znodes * * @space_lock: protects @bi and @lst * @lst: lprops statistics * @bi: budgeting information * @calc_idx_sz: temporary variable which is used to calculate new index size * (contains accurate new index size at end of TNC commit start) * * @ref_node_alsz: size of the LEB reference node aligned to the min. flash * I/O unit * @mst_node_alsz: master node aligned size * @min_idx_node_sz: minimum indexing node aligned on 8-bytes boundary * @max_idx_node_sz: maximum indexing node aligned on 8-bytes boundary * @max_inode_sz: maximum possible inode size in bytes * @max_znode_sz: size of znode in bytes * * @leb_overhead: how many bytes are wasted in an LEB when it is filled with * data nodes of maximum size - used in free space reporting * @dead_wm: LEB dead space watermark * @dark_wm: LEB dark space watermark * @block_cnt: count of 4KiB blocks on the FS * * @ranges: UBIFS node length ranges * @ubi: UBI volume descriptor * @di: UBI device information * @vi: UBI volume information * * @orph_tree: rb-tree of orphan inode numbers * @orph_list: list of orphan inode numbers in order added * @orph_new: list of orphan inode numbers added since last commit * @orph_cnext: next orphan to commit * @orph_dnext: next orphan to delete * @orphan_lock: lock for orph_tree and orph_new * @orph_buf: buffer for orphan nodes * @new_orphans: number of orphans since last commit * @cmt_orphans: number of orphans being committed * @tot_orphans: number of orphans in the rb_tree * @max_orphans: maximum number of orphans allowed * @ohead_lnum: orphan head LEB number * @ohead_offs: orphan head offset * @no_orphs: non-zero if there are no orphans * * @bgt: UBIFS background thread * @bgt_name: background thread name * @need_bgt: if background thread should run * @need_wbuf_sync: if write-buffers have to be synchronized * * @gc_lnum: LEB number used for garbage collection * @sbuf: a buffer of LEB size used by GC and replay for scanning * @idx_gc: list of index LEBs that have been garbage collected * @idx_gc_cnt: number of elements on the idx_gc list * @gc_seq: incremented for every non-index LEB garbage collected * @gced_lnum: last non-index LEB that was garbage collected * * @infos_list: links all 'ubifs_info' objects * @umount_mutex: serializes shrinker and un-mount * @shrinker_run_no: shrinker run number * * @space_bits: number of bits needed to record free or dirty space * @lpt_lnum_bits: number of bits needed to record a LEB number in the LPT * @lpt_offs_bits: number of bits needed to record an offset in the LPT * @lpt_spc_bits: number of bits needed to space in the LPT * @pcnt_bits: number of bits needed to record pnode or nnode number * @lnum_bits: number of bits needed to record LEB number * @nnode_sz: size of on-flash nnode * @pnode_sz: size of on-flash pnode * @ltab_sz: size of on-flash LPT lprops table * @lsave_sz: size of on-flash LPT save table * @pnode_cnt: number of pnodes * @nnode_cnt: number of nnodes * @lpt_hght: height of the LPT * @pnodes_have: number of pnodes in memory * * @lp_mutex: protects lprops table and all the other lprops-related fields * @lpt_lnum: LEB number of the root nnode of the LPT * @lpt_offs: offset of the root nnode of the LPT * @nhead_lnum: LEB number of LPT head * @nhead_offs: offset of LPT head * @lpt_drty_flgs: dirty flags for LPT special nodes e.g. ltab * @dirty_nn_cnt: number of dirty nnodes * @dirty_pn_cnt: number of dirty pnodes * @check_lpt_free: flag that indicates LPT GC may be needed * @lpt_sz: LPT size * @lpt_nod_buf: buffer for an on-flash nnode or pnode * @lpt_buf: buffer of LEB size used by LPT * @nroot: address in memory of the root nnode of the LPT * @lpt_cnext: next LPT node to commit * @lpt_heap: array of heaps of categorized lprops * @dirty_idx: a (reverse sorted) copy of the LPROPS_DIRTY_IDX heap as at * previous commit start * @uncat_list: list of un-categorized LEBs * @empty_list: list of empty LEBs * @freeable_list: list of freeable non-index LEBs (free + dirty == @leb_size) * @frdi_idx_list: list of freeable index LEBs (free + dirty == @leb_size) * @freeable_cnt: number of freeable LEBs in @freeable_list * @in_a_category_cnt: count of lprops which are in a certain category, which * basically meants that they were loaded from the flash * * @ltab_lnum: LEB number of LPT's own lprops table * @ltab_offs: offset of LPT's own lprops table * @ltab: LPT's own lprops table * @ltab_cmt: LPT's own lprops table (commit copy) * @lsave_cnt: number of LEB numbers in LPT's save table * @lsave_lnum: LEB number of LPT's save table * @lsave_offs: offset of LPT's save table * @lsave: LPT's save table * @lscan_lnum: LEB number of last LPT scan * * @rp_size: size of the reserved pool in bytes * @report_rp_size: size of the reserved pool reported to user-space * @rp_uid: reserved pool user ID * @rp_gid: reserved pool group ID * * @hash_tfm: the hash transformation used for hashing nodes * @hmac_tfm: the HMAC transformation for this filesystem * @hmac_desc_len: length of the HMAC used for authentication * @auth_key_name: the authentication key name * @auth_hash_name: the name of the hash algorithm used for authentication * @auth_hash_algo: the authentication hash used for this fs * @log_hash: the log hash from the commit start node up to the latest reference * node. * * @empty: %1 if the UBI device is empty * @need_recovery: %1 if the file-system needs recovery * @replaying: %1 during journal replay * @mounting: %1 while mounting * @probing: %1 while attempting to mount if SB_SILENT mount flag is set * @remounting_rw: %1 while re-mounting from R/O mode to R/W mode * @replay_list: temporary list used during journal replay * @replay_buds: list of buds to replay * @cs_sqnum: sequence number of first node in the log (commit start node) * @unclean_leb_list: LEBs to recover when re-mounting R/O mounted FS to R/W * mode * @rcvrd_mst_node: recovered master node to write when re-mounting R/O mounted * FS to R/W mode * @size_tree: inode size information for recovery * @mount_opts: UBIFS-specific mount options * * @dbg: debugging-related information * @stats: statistics exported over sysfs * * @kobj: kobject for /sys/fs/ubifs/ * @kobj_unregister: completion to unregister sysfs kobject */ struct ubifs_info { struct super_block *vfs_sb; struct ubifs_sb_node *sup_node; ino_t highest_inum; unsigned long long max_sqnum; unsigned long long cmt_no; spinlock_t cnt_lock; int fmt_version; int ro_compat_version; unsigned char uuid[16]; int lhead_lnum; int lhead_offs; int ltail_lnum; struct mutex log_mutex; int min_log_bytes; long long cmt_bud_bytes; struct rb_root buds; long long bud_bytes; spinlock_t buds_lock; int jhead_cnt; struct ubifs_jhead *jheads; long long max_bud_bytes; long long bg_bud_bytes; struct list_head old_buds; int max_bud_cnt; struct rw_semaphore commit_sem; int cmt_state; spinlock_t cs_lock; wait_queue_head_t cmt_wq; struct kobject kobj; struct completion kobj_unregister; unsigned int big_lpt:1; unsigned int space_fixup:1; unsigned int double_hash:1; unsigned int encrypted:1; unsigned int no_chk_data_crc:1; unsigned int bulk_read:1; unsigned int default_compr:2; unsigned int rw_incompat:1; unsigned int assert_action:2; unsigned int authenticated:1; unsigned int superblock_need_write:1; struct mutex tnc_mutex; struct ubifs_zbranch zroot; struct ubifs_znode *cnext; struct ubifs_znode *enext; int *gap_lebs; void *cbuf; void *ileb_buf; int ileb_len; int ihead_lnum; int ihead_offs; int *ilebs; int ileb_cnt; int ileb_nxt; struct rb_root old_idx; int *bottom_up_buf; struct ubifs_mst_node *mst_node; int mst_offs; int max_bu_buf_len; struct mutex bu_mutex; struct bu_info bu; struct mutex write_reserve_mutex; void *write_reserve_buf; int log_lebs; long long log_bytes; int log_last; int lpt_lebs; int lpt_first; int lpt_last; int orph_lebs; int orph_first; int orph_last; int main_lebs; int main_first; long long main_bytes; uint8_t key_hash_type; uint32_t (*key_hash)(const char *str, int len); int key_fmt; int key_len; int hash_len; int fanout; int min_io_size; int min_io_shift; int max_write_size; int max_write_shift; int leb_size; int leb_start; int half_leb_size; int idx_leb_size; int leb_cnt; int max_leb_cnt; unsigned int ro_media:1; unsigned int ro_mount:1; unsigned int ro_error:1; atomic_long_t dirty_pg_cnt; atomic_long_t dirty_zn_cnt; atomic_long_t clean_zn_cnt; spinlock_t space_lock; struct ubifs_lp_stats lst; struct ubifs_budg_info bi; unsigned long long calc_idx_sz; int ref_node_alsz; int mst_node_alsz; int min_idx_node_sz; int max_idx_node_sz; long long max_inode_sz; int max_znode_sz; int leb_overhead; int dead_wm; int dark_wm; int block_cnt; struct ubifs_node_range ranges[UBIFS_NODE_TYPES_CNT]; struct ubi_volume_desc *ubi; struct ubi_device_info di; struct ubi_volume_info vi; struct rb_root orph_tree; struct list_head orph_list; struct list_head orph_new; struct ubifs_orphan *orph_cnext; struct ubifs_orphan *orph_dnext; spinlock_t orphan_lock; void *orph_buf; int new_orphans; int cmt_orphans; int tot_orphans; int max_orphans; int ohead_lnum; int ohead_offs; int no_orphs; struct task_struct *bgt; char bgt_name[sizeof(BGT_NAME_PATTERN) + 9]; int need_bgt; int need_wbuf_sync; int gc_lnum; void *sbuf; struct list_head idx_gc; int idx_gc_cnt; int gc_seq; int gced_lnum; struct list_head infos_list; struct mutex umount_mutex; unsigned int shrinker_run_no; int space_bits; int lpt_lnum_bits; int lpt_offs_bits; int lpt_spc_bits; int pcnt_bits; int lnum_bits; int nnode_sz; int pnode_sz; int ltab_sz; int lsave_sz; int pnode_cnt; int nnode_cnt; int lpt_hght; int pnodes_have; struct mutex lp_mutex; int lpt_lnum; int lpt_offs; int nhead_lnum; int nhead_offs; int lpt_drty_flgs; int dirty_nn_cnt; int dirty_pn_cnt; int check_lpt_free; long long lpt_sz; void *lpt_nod_buf; void *lpt_buf; struct ubifs_nnode *nroot; struct ubifs_cnode *lpt_cnext; struct ubifs_lpt_heap lpt_heap[LPROPS_HEAP_CNT]; struct ubifs_lpt_heap dirty_idx; struct list_head uncat_list; struct list_head empty_list; struct list_head freeable_list; struct list_head frdi_idx_list; int freeable_cnt; int in_a_category_cnt; int ltab_lnum; int ltab_offs; struct ubifs_lpt_lprops *ltab; struct ubifs_lpt_lprops *ltab_cmt; int lsave_cnt; int lsave_lnum; int lsave_offs; int *lsave; int lscan_lnum; long long rp_size; long long report_rp_size; kuid_t rp_uid; kgid_t rp_gid; struct crypto_shash *hash_tfm; struct crypto_shash *hmac_tfm; int hmac_desc_len; char *auth_key_name; char *auth_hash_name; enum hash_algo auth_hash_algo; struct shash_desc *log_hash; /* The below fields are used only during mounting and re-mounting */ unsigned int empty:1; unsigned int need_recovery:1; unsigned int replaying:1; unsigned int mounting:1; unsigned int remounting_rw:1; unsigned int probing:1; struct list_head replay_list; struct list_head replay_buds; unsigned long long cs_sqnum; struct list_head unclean_leb_list; struct ubifs_mst_node *rcvrd_mst_node; struct rb_root size_tree; struct ubifs_mount_opts mount_opts; struct ubifs_debug_info *dbg; struct ubifs_stats_info *stats; }; extern struct list_head ubifs_infos; extern spinlock_t ubifs_infos_lock; extern atomic_long_t ubifs_clean_zn_cnt; extern const struct super_operations ubifs_super_operations; extern const struct address_space_operations ubifs_file_address_operations; extern const struct file_operations ubifs_file_operations; extern const struct inode_operations ubifs_file_inode_operations; extern const struct file_operations ubifs_dir_operations; extern const struct inode_operations ubifs_dir_inode_operations; extern const struct inode_operations ubifs_symlink_inode_operations; extern struct ubifs_compressor *ubifs_compressors[UBIFS_COMPR_TYPES_CNT]; extern int ubifs_default_version; /* auth.c */ static inline int ubifs_authenticated(const struct ubifs_info *c) { return (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) && c->authenticated; } struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c); static inline struct shash_desc *ubifs_hash_get_desc(const struct ubifs_info *c) { return ubifs_authenticated(c) ? __ubifs_hash_get_desc(c) : NULL; } static inline int ubifs_shash_init(const struct ubifs_info *c, struct shash_desc *desc) { if (ubifs_authenticated(c)) return crypto_shash_init(desc); else return 0; } static inline int ubifs_shash_update(const struct ubifs_info *c, struct shash_desc *desc, const void *buf, unsigned int len) { int err = 0; if (ubifs_authenticated(c)) { err = crypto_shash_update(desc, buf, len); if (err < 0) return err; } return 0; } static inline int ubifs_shash_final(const struct ubifs_info *c, struct shash_desc *desc, u8 *out) { return ubifs_authenticated(c) ? crypto_shash_final(desc, out) : 0; } int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *buf, u8 *hash); static inline int ubifs_node_calc_hash(const struct ubifs_info *c, const void *buf, u8 *hash) { if (ubifs_authenticated(c)) return __ubifs_node_calc_hash(c, buf, hash); else return 0; } int ubifs_prepare_auth_node(struct ubifs_info *c, void *node, struct shash_desc *inhash); /** * ubifs_check_hash - compare two hashes * @c: UBIFS file-system description object * @expected: first hash * @got: second hash * * Compare two hashes @expected and @got. Returns 0 when they are equal, a * negative error code otherwise. */ static inline int ubifs_check_hash(const struct ubifs_info *c, const u8 *expected, const u8 *got) { return crypto_memneq(expected, got, c->hash_len); } /** * ubifs_check_hmac - compare two HMACs * @c: UBIFS file-system description object * @expected: first HMAC * @got: second HMAC * * Compare two hashes @expected and @got. Returns 0 when they are equal, a * negative error code otherwise. */ static inline int ubifs_check_hmac(const struct ubifs_info *c, const u8 *expected, const u8 *got) { return crypto_memneq(expected, got, c->hmac_desc_len); } #ifdef CONFIG_UBIFS_FS_AUTHENTICATION void ubifs_bad_hash(const struct ubifs_info *c, const void *node, const u8 *hash, int lnum, int offs); #else static inline void ubifs_bad_hash(const struct ubifs_info *c, const void *node, const u8 *hash, int lnum, int offs) {}; #endif int __ubifs_node_check_hash(const struct ubifs_info *c, const void *buf, const u8 *expected); static inline int ubifs_node_check_hash(const struct ubifs_info *c, const void *buf, const u8 *expected) { if (ubifs_authenticated(c)) return __ubifs_node_check_hash(c, buf, expected); else return 0; } int ubifs_init_authentication(struct ubifs_info *c); void __ubifs_exit_authentication(struct ubifs_info *c); static inline void ubifs_exit_authentication(struct ubifs_info *c) { if (ubifs_authenticated(c)) __ubifs_exit_authentication(c); } /** * ubifs_branch_hash - returns a pointer to the hash of a branch * @c: UBIFS file-system description object * @br: branch to get the hash from * * This returns a pointer to the hash of a branch. Since the key already is a * dynamically sized object we cannot use a struct member here. */ static inline u8 *ubifs_branch_hash(struct ubifs_info *c, struct ubifs_branch *br) { return (void *)br + sizeof(*br) + c->key_len; } /** * ubifs_copy_hash - copy a hash * @c: UBIFS file-system description object * @from: source hash * @to: destination hash * * With authentication this copies a hash, otherwise does nothing. */ static inline void ubifs_copy_hash(const struct ubifs_info *c, const u8 *from, u8 *to) { if (ubifs_authenticated(c)) memcpy(to, from, c->hash_len); } int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf, int len, int ofs_hmac); static inline int ubifs_node_insert_hmac(const struct ubifs_info *c, void *buf, int len, int ofs_hmac) { if (ubifs_authenticated(c)) return __ubifs_node_insert_hmac(c, buf, len, ofs_hmac); else return 0; } int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *buf, int len, int ofs_hmac); static inline int ubifs_node_verify_hmac(const struct ubifs_info *c, const void *buf, int len, int ofs_hmac) { if (ubifs_authenticated(c)) return __ubifs_node_verify_hmac(c, buf, len, ofs_hmac); else return 0; } /** * ubifs_auth_node_sz - returns the size of an authentication node * @c: UBIFS file-system description object * * This function returns the size of an authentication node which can * be 0 for unauthenticated filesystems or the real size of an auth node * authentication is enabled. */ static inline int ubifs_auth_node_sz(const struct ubifs_info *c) { if (ubifs_authenticated(c)) return sizeof(struct ubifs_auth_node) + c->hmac_desc_len; else return 0; } int ubifs_sb_verify_signature(struct ubifs_info *c, const struct ubifs_sb_node *sup); bool ubifs_hmac_zero(struct ubifs_info *c, const u8 *hmac); int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac); int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src, struct shash_desc *target); static inline int ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src, struct shash_desc *target) { if (ubifs_authenticated(c)) return __ubifs_shash_copy_state(c, src, target); else return 0; } /* io.c */ void ubifs_ro_mode(struct ubifs_info *c, int err); int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, int len, int even_ebadmsg); int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, int len); int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len); int ubifs_leb_unmap(struct ubifs_info *c, int lnum); int ubifs_leb_map(struct ubifs_info *c, int lnum); int ubifs_is_mapped(const struct ubifs_info *c, int lnum); int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len); int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs); int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf); int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs); int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, int lnum, int offs); int ubifs_write_node(struct ubifs_info *c, void *node, int len, int lnum, int offs); int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, int offs, int hmac_offs); int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len, int lnum, int offs, int quiet, int must_chk_crc); void ubifs_init_node(struct ubifs_info *c, void *buf, int len, int pad); void ubifs_crc_node(struct ubifs_info *c, void *buf, int len); void ubifs_prepare_node(struct ubifs_info *c, void *buf, int len, int pad); int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, int hmac_offs, int pad); void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last); int ubifs_io_init(struct ubifs_info *c); void ubifs_pad(const struct ubifs_info *c, void *buf, int pad); int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf); int ubifs_bg_wbufs_sync(struct ubifs_info *c); void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum); int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode); /* scan.c */ struct ubifs_scan_leb *ubifs_scan(const struct ubifs_info *c, int lnum, int offs, void *sbuf, int quiet); void ubifs_scan_destroy(struct ubifs_scan_leb *sleb); int ubifs_scan_a_node(const struct ubifs_info *c, void *buf, int len, int lnum, int offs, int quiet); struct ubifs_scan_leb *ubifs_start_scan(const struct ubifs_info *c, int lnum, int offs, void *sbuf); void ubifs_end_scan(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, int lnum, int offs); int ubifs_add_snod(const struct ubifs_info *c, struct ubifs_scan_leb *sleb, void *buf, int offs); void ubifs_scanned_corruption(const struct ubifs_info *c, int lnum, int offs, void *buf); /* log.c */ void ubifs_add_bud(struct ubifs_info *c, struct ubifs_bud *bud); void ubifs_create_buds_lists(struct ubifs_info *c); int ubifs_add_bud_to_log(struct ubifs_info *c, int jhead, int lnum, int offs); struct ubifs_bud *ubifs_search_bud(struct ubifs_info *c, int lnum); struct ubifs_wbuf *ubifs_get_wbuf(struct ubifs_info *c, int lnum); int ubifs_log_start_commit(struct ubifs_info *c, int *ltail_lnum); int ubifs_log_end_commit(struct ubifs_info *c, int new_ltail_lnum); int ubifs_log_post_commit(struct ubifs_info *c, int old_ltail_lnum); int ubifs_consolidate_log(struct ubifs_info *c); /* journal.c */ int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, const struct fscrypt_name *nm, const struct inode *inode, int deletion, int xent); int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, const union ubifs_key *key, const void *buf, int len); int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode); int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode); int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, const struct inode *fst_inode, const struct fscrypt_name *fst_nm, const struct inode *snd_dir, const struct inode *snd_inode, const struct fscrypt_name *snd_nm, int sync); int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, const struct inode *old_inode, const struct fscrypt_name *old_nm, const struct inode *new_dir, const struct inode *new_inode, const struct fscrypt_name *new_nm, const struct inode *whiteout, int sync); int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, loff_t old_size, loff_t new_size); int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, const struct inode *inode, const struct fscrypt_name *nm); int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode1, const struct inode *inode2); /* budget.c */ int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req); void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req); void ubifs_release_dirty_inode_budget(struct ubifs_info *c, struct ubifs_inode *ui); int ubifs_budget_inode_op(struct ubifs_info *c, struct inode *inode, struct ubifs_budget_req *req); void ubifs_release_ino_dirty(struct ubifs_info *c, struct inode *inode, struct ubifs_budget_req *req); void ubifs_cancel_ino_op(struct ubifs_info *c, struct inode *inode, struct ubifs_budget_req *req); long long ubifs_get_free_space(struct ubifs_info *c); long long ubifs_get_free_space_nolock(struct ubifs_info *c); int ubifs_calc_min_idx_lebs(struct ubifs_info *c); void ubifs_convert_page_budget(struct ubifs_info *c); long long ubifs_reported_space(const struct ubifs_info *c, long long free); long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs); /* find.c */ int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs, int squeeze); int ubifs_find_free_leb_for_idx(struct ubifs_info *c); int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp, int min_space, int pick_free); int ubifs_find_dirty_idx_leb(struct ubifs_info *c); int ubifs_save_dirty_idx_lnums(struct ubifs_info *c); /* tnc.c */ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n); int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key, void *node, const struct fscrypt_name *nm); int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key, void *node, uint32_t secondary_hash); int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key, void *node, int *lnum, int *offs); int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum, int offs, int len, const u8 *hash); int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key, int old_lnum, int old_offs, int lnum, int offs, int len); int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key, int lnum, int offs, int len, const u8 *hash, const struct fscrypt_name *nm); int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key); int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key, const struct fscrypt_name *nm); int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key, uint32_t cookie); int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key, union ubifs_key *to_key); int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum); struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c, union ubifs_key *key, const struct fscrypt_name *nm); void ubifs_tnc_close(struct ubifs_info *c); int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs, int is_idx); int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs); /* Shared by tnc.c for tnc_commit.c */ void destroy_old_idx(struct ubifs_info *c); int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level, int lnum, int offs); int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode); int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu); int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu); /* tnc_misc.c */ struct ubifs_znode *ubifs_tnc_levelorder_next(const struct ubifs_info *c, struct ubifs_znode *zr, struct ubifs_znode *znode); int ubifs_search_zbranch(const struct ubifs_info *c, const struct ubifs_znode *znode, const union ubifs_key *key, int *n); struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode); struct ubifs_znode *ubifs_tnc_postorder_next(const struct ubifs_info *c, struct ubifs_znode *znode); long ubifs_destroy_tnc_subtree(const struct ubifs_info *c, struct ubifs_znode *zr); struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr, struct ubifs_znode *parent, int iip); int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, void *node); /* tnc_commit.c */ int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot); int ubifs_tnc_end_commit(struct ubifs_info *c); /* shrinker.c */ unsigned long ubifs_shrink_scan(struct shrinker *shrink, struct shrink_control *sc); unsigned long ubifs_shrink_count(struct shrinker *shrink, struct shrink_control *sc); /* commit.c */ int ubifs_bg_thread(void *info); void ubifs_commit_required(struct ubifs_info *c); void ubifs_request_bg_commit(struct ubifs_info *c); int ubifs_run_commit(struct ubifs_info *c); void ubifs_recovery_commit(struct ubifs_info *c); int ubifs_gc_should_commit(struct ubifs_info *c); void ubifs_wait_for_commit(struct ubifs_info *c); /* master.c */ int ubifs_compare_master_node(struct ubifs_info *c, void *m1, void *m2); int ubifs_read_master(struct ubifs_info *c); int ubifs_write_master(struct ubifs_info *c); /* sb.c */ int ubifs_read_superblock(struct ubifs_info *c); int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup); int ubifs_fixup_free_space(struct ubifs_info *c); int ubifs_enable_encryption(struct ubifs_info *c); /* replay.c */ int ubifs_validate_entry(struct ubifs_info *c, const struct ubifs_dent_node *dent); int ubifs_replay_journal(struct ubifs_info *c); /* gc.c */ int ubifs_garbage_collect(struct ubifs_info *c, int anyway); int ubifs_gc_start_commit(struct ubifs_info *c); int ubifs_gc_end_commit(struct ubifs_info *c); void ubifs_destroy_idx_gc(struct ubifs_info *c); int ubifs_get_idx_gc_leb(struct ubifs_info *c); int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp); /* orphan.c */ int ubifs_add_orphan(struct ubifs_info *c, ino_t inum); void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum); int ubifs_orphan_start_commit(struct ubifs_info *c); int ubifs_orphan_end_commit(struct ubifs_info *c); int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only); int ubifs_clear_orphans(struct ubifs_info *c); /* lpt.c */ int ubifs_calc_lpt_geom(struct ubifs_info *c); int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, int *lpt_lebs, int *big_lpt, u8 *hash); int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr); struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum); struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum); int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, ubifs_lpt_scan_callback scan_cb, void *data); /* Shared by lpt.c for lpt_commit.c */ void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave); void ubifs_pack_ltab(struct ubifs_info *c, void *buf, struct ubifs_lpt_lprops *ltab); void ubifs_pack_pnode(struct ubifs_info *c, void *buf, struct ubifs_pnode *pnode); void ubifs_pack_nnode(struct ubifs_info *c, void *buf, struct ubifs_nnode *nnode); struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip); struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip); struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i); int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip); void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty); void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode); uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits); struct ubifs_nnode *ubifs_first_nnode(struct ubifs_info *c, int *hght); /* Needed only in debugging code in lpt_commit.c */ int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, struct ubifs_nnode *nnode); int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash); /* lpt_commit.c */ int ubifs_lpt_start_commit(struct ubifs_info *c); int ubifs_lpt_end_commit(struct ubifs_info *c); int ubifs_lpt_post_commit(struct ubifs_info *c); void ubifs_lpt_free(struct ubifs_info *c, int wr_only); /* lprops.c */ const struct ubifs_lprops *ubifs_change_lp(struct ubifs_info *c, const struct ubifs_lprops *lp, int free, int dirty, int flags, int idx_gc_cnt); void ubifs_get_lp_stats(struct ubifs_info *c, struct ubifs_lp_stats *lst); void ubifs_add_to_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat); void ubifs_replace_cat(struct ubifs_info *c, struct ubifs_lprops *old_lprops, struct ubifs_lprops *new_lprops); void ubifs_ensure_cat(struct ubifs_info *c, struct ubifs_lprops *lprops); int ubifs_categorize_lprops(const struct ubifs_info *c, const struct ubifs_lprops *lprops); int ubifs_change_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, int flags_set, int flags_clean, int idx_gc_cnt); int ubifs_update_one_lp(struct ubifs_info *c, int lnum, int free, int dirty, int flags_set, int flags_clean); int ubifs_read_one_lp(struct ubifs_info *c, int lnum, struct ubifs_lprops *lp); const struct ubifs_lprops *ubifs_fast_find_free(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_freeable(struct ubifs_info *c); const struct ubifs_lprops *ubifs_fast_find_frdi_idx(struct ubifs_info *c); int ubifs_calc_dark(const struct ubifs_info *c, int spc); /* file.c */ int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync); int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, struct iattr *attr); int ubifs_update_time(struct inode *inode, int flags); /* dir.c */ struct inode *ubifs_new_inode(struct ubifs_info *c, struct inode *dir, umode_t mode, bool is_xattr); int ubifs_getattr(struct mnt_idmap *idmap, const struct path *path, struct kstat *stat, u32 request_mask, unsigned int flags); int ubifs_check_dir_empty(struct inode *dir); /* xattr.c */ int ubifs_xattr_set(struct inode *host, const char *name, const void *value, size_t size, int flags, bool check_lock); ssize_t ubifs_xattr_get(struct inode *host, const char *name, void *buf, size_t size); #ifdef CONFIG_UBIFS_FS_XATTR extern const struct xattr_handler *ubifs_xattr_handlers[]; ssize_t ubifs_listxattr(struct dentry *dentry, char *buffer, size_t size); void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum); int ubifs_purge_xattrs(struct inode *host); #else #define ubifs_listxattr NULL #define ubifs_xattr_handlers NULL static inline void ubifs_evict_xattr_inode(struct ubifs_info *c, ino_t xattr_inum) { } static inline int ubifs_purge_xattrs(struct inode *host) { return 0; } #endif #ifdef CONFIG_UBIFS_FS_SECURITY extern int ubifs_init_security(struct inode *dentry, struct inode *inode, const struct qstr *qstr); #else static inline int ubifs_init_security(struct inode *dentry, struct inode *inode, const struct qstr *qstr) { return 0; } #endif /* super.c */ struct inode *ubifs_iget(struct super_block *sb, unsigned long inum); /* recovery.c */ int ubifs_recover_master_node(struct ubifs_info *c); int ubifs_write_rcvrd_mst_node(struct ubifs_info *c); struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf, int jhead); struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf); int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf); int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf); int ubifs_rcvry_gc_commit(struct ubifs_info *c); int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, int deletion, loff_t new_size); int ubifs_recover_size(struct ubifs_info *c, bool in_place); void ubifs_destroy_size_tree(struct ubifs_info *c); /* ioctl.c */ int ubifs_fileattr_get(struct dentry *dentry, struct fileattr *fa); int ubifs_fileattr_set(struct mnt_idmap *idmap, struct dentry *dentry, struct fileattr *fa); long ubifs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); void ubifs_set_inode_flags(struct inode *inode); #ifdef CONFIG_COMPAT long ubifs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); #endif /* compressor.c */ int __init ubifs_compressors_init(void); void ubifs_compressors_exit(void); void ubifs_compress(const struct ubifs_info *c, const void *in_buf, int in_len, void *out_buf, int *out_len, int *compr_type); int ubifs_decompress(const struct ubifs_info *c, const void *buf, int len, void *out, int *out_len, int compr_type); /* sysfs.c */ int ubifs_sysfs_init(void); void ubifs_sysfs_exit(void); int ubifs_sysfs_register(struct ubifs_info *c); void ubifs_sysfs_unregister(struct ubifs_info *c); #include "debug.h" #include "misc.h" #include "key.h" #ifndef CONFIG_FS_ENCRYPTION static inline int ubifs_encrypt(const struct inode *inode, struct ubifs_data_node *dn, unsigned int in_len, unsigned int *out_len, int block) { struct ubifs_info *c = inode->i_sb->s_fs_info; ubifs_assert(c, 0); return -EOPNOTSUPP; } static inline int ubifs_decrypt(const struct inode *inode, struct ubifs_data_node *dn, unsigned int *out_len, int block) { struct ubifs_info *c = inode->i_sb->s_fs_info; ubifs_assert(c, 0); return -EOPNOTSUPP; } #else /* crypto.c */ int ubifs_encrypt(const struct inode *inode, struct ubifs_data_node *dn, unsigned int in_len, unsigned int *out_len, int block); int ubifs_decrypt(const struct inode *inode, struct ubifs_data_node *dn, unsigned int *out_len, int block); #endif extern const struct fscrypt_operations ubifs_crypt_operations; /* Normal UBIFS messages */ __printf(2, 3) void ubifs_msg(const struct ubifs_info *c, const char *fmt, ...); __printf(2, 3) void ubifs_err(const struct ubifs_info *c, const char *fmt, ...); __printf(2, 3) void ubifs_warn(const struct ubifs_info *c, const char *fmt, ...); /* * A conditional variant of 'ubifs_err()' which doesn't output anything * if probing (ie. SB_SILENT set). */ #define ubifs_errc(c, fmt, ...) \ do { \ if (!(c)->probing) \ ubifs_err(c, fmt, ##__VA_ARGS__); \ } while (0) #endif /* !__UBIFS_H__ */