#include "pp_debug.h"
#include "smumgr.h"
#include "smu_ucode_xfer_vi.h"
#include "vegam_smumgr.h"
#include "smu/smu_7_1_3_d.h"
#include "smu/smu_7_1_3_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "oss/oss_3_0_d.h"
#include "gca/gfx_8_0_d.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "ppatomctrl.h"
#include "cgs_common.h"
#include "smu7_ppsmc.h"
#include "smu7_dyn_defaults.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "atombios.h"
#include "pppcielanes.h"
#include "dce/dce_11_2_d.h"
#include "dce/dce_11_2_sh_mask.h"
#define PPVEGAM_TARGETACTIVITY_DFLT 50
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define POWERTUNE_DEFAULT_SET_MAX 1
#define VDDC_VDDCI_DELTA 200
#define MC_CG_ARB_FREQ_F1 0x0b
#define STRAP_ASIC_RO_LSB 2168
#define STRAP_ASIC_RO_MSB 2175
#define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415)
#define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305)
static const struct vegam_pt_defaults
vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
{ 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
{ 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61},
{ 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } },
};
static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = {
{VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160},
{VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160},
{VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112},
{VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160},
{VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108},
{VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} };
static int vegam_smu_init(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data;
smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL);
if (smu_data == NULL)
return -ENOMEM;
hwmgr->smu_backend = smu_data;
if (smu7_init(hwmgr)) {
kfree(smu_data);
return -EINVAL;
}
return 0;
}
static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr)
{
int result = 0;
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
result = smu7_upload_smu_firmware_image(hwmgr);
if (result != 0)
return result;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
smu7_send_msg_to_smc_offset(hwmgr);
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0);
if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMU_STATUS, SMU_PASS))
PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 1);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr)
{
int result = 0;
PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixFIRMWARE_FLAGS, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL,
rst_reg, 1);
result = smu7_upload_smu_firmware_image(hwmgr);
if (result != 0)
return result;
smu7_program_jump_on_start(hwmgr);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
SMC_SYSCON_RESET_CNTL, rst_reg, 0);
PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
return result;
}
static int vegam_start_smu(struct pp_hwmgr *hwmgr)
{
int result = 0;
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE));
smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(
hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL));
if (smu_data->protected_mode == 0)
result = vegam_start_smu_in_non_protection_mode(hwmgr);
else
result = vegam_start_smu_in_protection_mode(hwmgr);
if (result != 0)
PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result);
}
smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters),
&(smu_data->smu7_data.soft_regs_start),
0x40000);
result = smu7_request_smu_load_fw(hwmgr);
return result;
}
static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t tmp;
int result;
bool error = false;
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->smu7_data.dpm_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (!result) {
data->soft_regs_start = tmp;
smu_data->smu7_data.soft_regs_start = tmp;
}
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.mc_reg_table_start = tmp;
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.fan_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (!result)
smu_data->smu7_data.arb_table_start = tmp;
error |= (0 != result);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (!result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
return error ? -1 : 0;
}
static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return 1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON);
}
static uint32_t vegam_get_mac_definition(uint32_t value)
{
switch (value) {
case SMU_MAX_LEVELS_GRAPHICS:
return SMU75_MAX_LEVELS_GRAPHICS;
case SMU_MAX_LEVELS_MEMORY:
return SMU75_MAX_LEVELS_MEMORY;
case SMU_MAX_LEVELS_LINK:
return SMU75_MAX_LEVELS_LINK;
case SMU_MAX_ENTRIES_SMIO:
return SMU75_MAX_ENTRIES_SMIO;
case SMU_MAX_LEVELS_VDDC:
return SMU75_MAX_LEVELS_VDDC;
case SMU_MAX_LEVELS_VDDGFX:
return SMU75_MAX_LEVELS_VDDGFX;
case SMU_MAX_LEVELS_VDDCI:
return SMU75_MAX_LEVELS_VDDCI;
case SMU_MAX_LEVELS_MVDD:
return SMU75_MAX_LEVELS_MVDD;
case SMU_UVD_MCLK_HANDSHAKE_DISABLE:
return SMU7_UVD_MCLK_HANDSHAKE_DISABLE |
SMU7_VCE_MCLK_HANDSHAKE_DISABLE;
}
pr_warn("can't get the mac of %x\n", value);
return 0;
}
static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu_data->smc_state_table.UvdBootLevel = 0;
if (table_info->mm_dep_table->count > 0)
smu_data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable,
UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
NULL);
return 0;
}
static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smu_data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
else
smu_data->smc_state_table.VceBootLevel = 0;
mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
NULL);
return 0;
}
static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
int max_entry, i;
max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ?
SMU75_MAX_LEVELS_LINK :
pcie_table->count;
for (i = 0; i < max_entry; i++)
smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk;
return 0;
}
static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
case SMU_UVD_TABLE:
vegam_update_uvd_smc_table(hwmgr);
break;
case SMU_VCE_TABLE:
vegam_update_vce_smc_table(hwmgr);
break;
case SMU_BIF_TABLE:
vegam_update_bif_smc_table(hwmgr);
break;
default:
break;
}
return 0;
}
static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (table_info &&
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
table_info->cac_dtp_table->usPowerTuneDataSetID)
smu_data->power_tune_defaults =
&vegam_power_tune_data_set_array
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
else
smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0];
}
static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
SMU75_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count, level;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
count = data->mvdd_voltage_table.count;
if (count > SMU_MAX_SMIO_LEVELS)
count = SMU_MAX_SMIO_LEVELS;
for (level = 0; level < count; level++) {
table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
data->mvdd_voltage_table.entries[level].value * VOLTAGE_SCALE);
table->SmioTable2.Pattern[level].Smio =
(uint8_t) level;
table->Smio[level] |=
data->mvdd_voltage_table.entries[level].smio_low;
}
table->SmioMask2 = data->mvdd_voltage_table.mask_low;
table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count);
}
return 0;
}
static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
uint32_t count, level;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
count = data->vddci_voltage_table.count;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
if (count > SMU_MAX_SMIO_LEVELS)
count = SMU_MAX_SMIO_LEVELS;
for (level = 0; level < count; ++level) {
table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US(
data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE);
table->SmioTable1.Pattern[level].Smio = (uint8_t) level;
table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low;
}
}
table->SmioMask1 = data->vddci_voltage_table.mask_low;
return 0;
}
static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *lookup_table =
table_info->vddc_lookup_table;
for (count = 0; count < lookup_table->count; count++) {
index = phm_get_voltage_index(lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] =
convert_to_vid(lookup_table->entries[index].us_cac_low);
table->BapmVddcVidHiSidd[count] =
convert_to_vid(lookup_table->entries[index].us_cac_mid);
table->BapmVddcVidHiSidd2[count] =
convert_to_vid(lookup_table->entries[index].us_cac_high);
}
return 0;
}
static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
vegam_populate_smc_vddci_table(hwmgr, table);
vegam_populate_smc_mvdd_table(hwmgr, table);
vegam_populate_cac_table(hwmgr, table);
return 0;
}
static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_Ulv *state)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
state->VddcPhase = data->vddc_phase_shed_control ^ 0x3;
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
return 0;
}
static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
return vegam_populate_ulv_level(hwmgr, &table->Ulv);
}
static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data =
(struct vegam_smumgr *)(hwmgr->smu_backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
int i;
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(
dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity = 1;
table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30);
}
smu_data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
struct phm_ppt_v1_clock_voltage_dependency_table *dep_table,
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
uint32_t i;
uint16_t vddci;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
*voltage = *mvdd = 0;
if (dep_table->count == 0)
return -EINVAL;
for (i = 0; i < dep_table->count; i++) {
if (dep_table->entries[i].clk >= clock) {
*voltage |= (dep_table->entries[i].vddc *
VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i].vddci)
*voltage |= (dep_table->entries[i].vddci *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i].vddc -
(uint16_t)VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i].mvdd *
VOLTAGE_SCALE;
*voltage |= 1 << PHASES_SHIFT;
return 0;
}
}
*voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
*voltage |= (data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE) << VDDCI_SHIFT;
else if (dep_table->entries[i - 1].vddci)
*voltage |= (dep_table->entries[i - 1].vddci *
VOLTAGE_SCALE) << VDDC_SHIFT;
else {
vddci = phm_find_closest_vddci(&(data->vddci_voltage_table),
(dep_table->entries[i - 1].vddc -
(uint16_t)VDDC_VDDCI_DELTA));
*voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
}
if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control)
*mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE;
else if (dep_table->entries[i].mvdd)
*mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE;
return 0;
}
static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr,
SMU75_Discrete_DpmTable *table)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
uint32_t i, ref_clk;
struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } };
ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) {
for (i = 0; i < NUM_SCLK_RANGE; i++) {
table->SclkFcwRangeTable[i].vco_setting =
range_table_from_vbios.entry[i].ucVco_setting;
table->SclkFcwRangeTable[i].postdiv =
range_table_from_vbios.entry[i].ucPostdiv;
table->SclkFcwRangeTable[i].fcw_pcc =
range_table_from_vbios.entry[i].usFcw_pcc;
table->SclkFcwRangeTable[i].fcw_trans_upper =
range_table_from_vbios.entry[i].usFcw_trans_upper;
table->SclkFcwRangeTable[i].fcw_trans_lower =
range_table_from_vbios.entry[i].usRcw_trans_lower;
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
}
return;
}
for (i = 0; i < NUM_SCLK_RANGE; i++) {
smu_data->range_table[i].trans_lower_frequency =
(ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv;
smu_data->range_table[i].trans_upper_frequency =
(ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv;
table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting;
table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv;
table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc;
table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper;
table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower;
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper);
CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower);
}
}
static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, SMU_SclkSetting *sclk_setting)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct pp_atomctrl_clock_dividers_ai dividers;
uint32_t ref_clock;
uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq;
uint8_t i;
int result;
uint64_t temp;
sclk_setting->SclkFrequency = clock;
result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs);
if (result == 0) {
sclk_setting->Fcw_int = dividers.usSclk_fcw_int;
sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac;
sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int;
sclk_setting->PllRange = dividers.ucSclkPllRange;
sclk_setting->Sclk_slew_rate = 0x400;
sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac;
sclk_setting->Pcc_down_slew_rate = 0xffff;
sclk_setting->SSc_En = dividers.ucSscEnable;
sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int;
sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac;
sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac;
return result;
}
ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
for (i = 0; i < NUM_SCLK_RANGE; i++) {
if (clock > smu_data->range_table[i].trans_lower_frequency
&& clock <= smu_data->range_table[i].trans_upper_frequency) {
sclk_setting->PllRange = i;
break;
}
}
sclk_setting->Fcw_int = (uint16_t)
((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
ref_clock);
temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
temp <<= 0x10;
do_div(temp, ref_clock);
sclk_setting->Fcw_frac = temp & 0xffff;
pcc_target_percent = 10;
pcc_target_freq = clock - (clock * pcc_target_percent / 100);
sclk_setting->Pcc_fcw_int = (uint16_t)
((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
ref_clock);
ss_target_percent = 2;
sclk_setting->SSc_En = 0;
if (ss_target_percent) {
sclk_setting->SSc_En = 1;
ss_target_freq = clock - (clock * ss_target_percent / 100);
sclk_setting->Fcw1_int = (uint16_t)
((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) /
ref_clock);
temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv;
temp <<= 0x10;
do_div(temp, ref_clock);
sclk_setting->Fcw1_frac = temp & 0xffff;
}
return 0;
}
static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock,
uint32_t clock_insr)
{
uint8_t i;
uint32_t temp;
uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK);
PP_ASSERT_WITH_CODE((clock >= min),
"Engine clock can't satisfy stutter requirement!",
return 0);
for (i = 31; ; i--) {
temp = clock / (i + 1);
if (temp >= min || i == 0)
break;
}
return i;
}
static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level)
{
int result;
uint32_t mvdd;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
SMU_SclkSetting curr_sclk_setting = { 0 };
result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting);
result = vegam_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk, clock,
&level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for "
"VDDC engine clock dependency table",
return result);
level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
level->CcPwrDynRm = 0;
level->CcPwrDynRm1 = 0;
level->EnabledForActivity = 0;
level->EnabledForThrottle = 1;
level->VoltageDownHyst = 0;
level->PowerThrottle = 0;
data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep))
level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock,
hwmgr->display_config->min_core_set_clock_in_sr);
level->SclkSetting = curr_sclk_setting;
CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac);
CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate);
return 0;
}
static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table;
uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count;
int result = 0;
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable, GraphicsLevel);
uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) *
SMU75_MAX_LEVELS_GRAPHICS;
struct SMU75_Discrete_GraphicsLevel *levels =
smu_data->smc_state_table.GraphicsLevel;
uint32_t i, max_entry;
uint8_t hightest_pcie_level_enabled = 0,
lowest_pcie_level_enabled = 0,
mid_pcie_level_enabled = 0,
count = 0;
vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table));
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = vegam_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
&(smu_data->smc_state_table.GraphicsLevel[i]));
if (result)
return result;
levels[i].UpHyst = (uint8_t)
(SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
levels[i].DownHyst = (uint8_t)
(SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
if (i > 1)
levels[i].DeepSleepDivId = 0;
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SPLLShutdownSupport))
smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0;
smu_data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
for (i = 0; i < dpm_table->sclk_table.count; i++)
levels[i].EnabledForActivity =
(hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1;
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
max_entry = pcie_entry_cnt - 1;
for (i = 0; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel =
(uint8_t) ((i < max_entry) ? i : max_entry);
} else {
while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (hightest_pcie_level_enabled + 1))) != 0))
hightest_pcie_level_enabled++;
while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << lowest_pcie_level_enabled)) == 0))
lowest_pcie_level_enabled++;
while ((count < hightest_pcie_level_enabled) &&
((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1 << (lowest_pcie_level_enabled + 1 + count))) == 0))
count++;
mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) <
hightest_pcie_level_enabled ?
(lowest_pcie_level_enabled + 1 + count) :
hightest_pcie_level_enabled;
for (i = 2; i < dpm_table->sclk_table.count; i++)
levels[i].pcieDpmLevel = hightest_pcie_level_enabled;
levels[0].pcieDpmLevel = lowest_pcie_level_enabled;
levels[1].pcieDpmLevel = mid_pcie_level_enabled;
}
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
{
struct pp_atomctrl_memory_clock_param_ai mpll_param;
PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr,
clock, &mpll_param),
"Failed to retrieve memory pll parameter.",
return -EINVAL);
mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock;
mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int;
mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac;
mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv;
return 0;
}
static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr,
uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
uint32_t mclk_stutter_mode_threshold = 60000;
if (table_info->vdd_dep_on_mclk) {
result = vegam_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk, clock,
&mem_level->MinVoltage, &mem_level->MinMvdd);
PP_ASSERT_WITH_CODE(!result,
"can not find MinVddc voltage value from memory "
"VDDC voltage dependency table", return result);
}
result = vegam_calculate_mclk_params(hwmgr, clock, mem_level);
PP_ASSERT_WITH_CODE(!result,
"Failed to calculate mclk params.",
return -EINVAL);
mem_level->EnabledForThrottle = 1;
mem_level->EnabledForActivity = 0;
mem_level->VoltageDownHyst = 0;
mem_level->ActivityLevel = (uint16_t)
(MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift);
mem_level->StutterEnable = false;
mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
if (mclk_stutter_mode_threshold &&
(clock <= mclk_stutter_mode_threshold) &&
(PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL,
STUTTER_ENABLE) & 0x1))
mem_level->StutterEnable = true;
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac);
CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage);
}
return result;
}
static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct smu7_dpm_table *dpm_table = &hw_data->dpm_table;
int result;
uint32_t array = smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable, MemoryLevel);
uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) *
SMU75_MAX_LEVELS_MEMORY;
struct SMU75_Discrete_MemoryLevel *levels =
smu_data->smc_state_table.MemoryLevel;
uint32_t i;
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero",
return -EINVAL);
result = vegam_populate_single_memory_level(hwmgr,
dpm_table->mclk_table.dpm_levels[i].value,
&levels[i]);
if (result)
return result;
levels[i].UpHyst = (uint8_t)
(MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift);
levels[i].DownHyst = (uint8_t)
(MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift);
}
smu_data->smc_state_table.MemoryDpmLevelCount =
(uint8_t)dpm_table->mclk_table.count;
hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
for (i = 0; i < dpm_table->mclk_table.count; i++)
levels[i].EnabledForActivity =
(hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1;
levels[dpm_table->mclk_table.count - 1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels,
(uint32_t)array_size, SMC_RAM_END);
return result;
}
static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr,
uint32_t mclk, SMIO_Pattern *smio_pat)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.",
return -EINVAL);
} else
return -EINVAL;
return 0;
}
static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU75_Discrete_DpmTable *table)
{
int result = 0;
uint32_t sclk_frequency;
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
SMIO_Pattern vol_level;
uint32_t mvdd;
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
sclk_frequency = data->vbios_boot_state.sclk_bootup_value;
result = vegam_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_sclk,
sclk_frequency,
&table->ACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE(!result,
"Cannot find ACPI VDDC voltage value "
"in Clock Dependency Table",
);
result = vegam_calculate_sclk_params(hwmgr, sclk_frequency,
&(table->ACPILevel.SclkSetting));
PP_ASSERT_WITH_CODE(!result,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
table->ACPILevel.DeepSleepDivId = 0;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac);
CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate);
table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value;
result = vegam_get_dependency_volt_by_clk(hwmgr,
table_info->vdd_dep_on_mclk,
table->MemoryACPILevel.MclkFrequency,
&table->MemoryACPILevel.MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"Cannot find ACPI VDDCI voltage value "
"in Clock Dependency Table",
);
if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level))
table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage);
else
table->MemoryACPILevel.MinMvdd = 0;
table->MemoryACPILevel.StutterEnable = false;
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
table->MemoryACPILevel.ActivityLevel =
PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);
return result;
}
static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU75_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->VceLevelCount = (uint8_t)(mm_table->count);
table->VceBootLevel = 0;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency = mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage = 0;
table->VceLevel[count].MinVoltage |=
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |=
(vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, ÷rs);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock",
return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage);
}
return result;
}
static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr,
int32_t eng_clock, int32_t mem_clock,
SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs)
{
uint32_t dram_timing;
uint32_t dram_timing2;
uint32_t burst_time;
uint32_t rfsh_rate;
uint32_t misc3;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
eng_clock, mem_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.",
return result);
dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME);
rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE);
misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2);
arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time);
arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate);
arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3);
return 0;
}
static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct SMU75_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
int result = 0;
memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable));
for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) {
result = vegam_populate_memory_timing_parameters(hwmgr,
hw_data->dpm_table.sclk_table.dpm_levels[i].value,
hw_data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (result)
return result;
}
}
result = smu7_copy_bytes_to_smc(
hwmgr,
smu_data->smu7_data.arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU75_Discrete_MCArbDramTimingTable),
SMC_RAM_END);
return result;
}
static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
int result = -EINVAL;
uint8_t count;
struct pp_atomctrl_clock_dividers_vi dividers;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
table_info->mm_dep_table;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t vddci;
table->UvdLevelCount = (uint8_t)(mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].MinVoltage = 0;
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage |=
(mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table),
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA;
else
vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT;
table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].VclkFrequency, ÷rs);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock", return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, ÷rs);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock", return result);
table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage);
}
return result;
}
static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(table->GraphicsBootLevel));
if (result)
return result;
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(table->MemoryBootLevel));
if (result)
return result;
table->BootVddc = data->vbios_boot_state.vddc_bootup_value *
VOLTAGE_SCALE;
table->BootVddci = data->vbios_boot_state.vddci_bootup_value *
VOLTAGE_SCALE;
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value *
VOLTAGE_SCALE;
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc);
CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci);
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return 0;
}
static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t count, level;
count = (uint8_t)(table_info->vdd_dep_on_sclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_sclk->entries[level].clk >=
hw_data->vbios_boot_state.sclk_bootup_value) {
smu_data->smc_state_table.GraphicsBootLevel = level;
break;
}
}
count = (uint8_t)(table_info->vdd_dep_on_mclk->count);
for (level = 0; level < count; level++) {
if (table_info->vdd_dep_on_mclk->entries[level].clk >=
hw_data->vbios_boot_state.mclk_bootup_value) {
smu_data->smc_state_table.MemoryBootLevel = level;
break;
}
}
return 0;
}
static uint16_t scale_fan_gain_settings(uint16_t raw_setting)
{
uint32_t tmp;
tmp = raw_setting * 4096 / 100;
return (uint16_t)tmp;
}
static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
struct pp_advance_fan_control_parameters *fan_table =
&hwmgr->thermal_controller.advanceFanControlParameters;
int i, j, k;
const uint16_t *pdef1;
const uint16_t *pdef2;
table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128));
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
"Target Operating Temp is out of Range!",
);
table->TemperatureLimitEdge = PP_HOST_TO_SMC_US(
cac_dtp_table->usTargetOperatingTemp * 256);
table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US(
cac_dtp_table->usTemperatureLimitHotspot * 256);
table->FanGainEdge = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainEdge));
table->FanGainHotspot = PP_HOST_TO_SMC_US(
scale_fan_gain_settings(fan_table->usFanGainHotspot));
pdef1 = defaults->BAPMTI_R;
pdef2 = defaults->BAPMTI_RC;
for (i = 0; i < SMU75_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU75_DTE_SOURCES; j++) {
for (k = 0; k < SMU75_DTE_SINKS; k++) {
table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1);
table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2);
pdef1++;
pdef2++;
}
}
}
return 0;
}
static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min;
struct vegam_smumgr *smu_data =
(struct vegam_smumgr *)(hwmgr->smu_backend);
uint8_t i, stretch_amount, volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB,
&efuse);
min = 1200;
max = 2500;
ro = efuse * (max - min) / 255 + min;
for (i = 0; i < sclk_table->count; i++) {
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) *
136418 - (ro - 70) * 1000000) /
(2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000));
volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 *
3232 - (ro - 65) * 1000000) /
(2522480 - sclk_table->entries[i].clk/100 * 115764/100));
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 + 624) / 625);
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
smu_data->smc_state_table.LdoRefSel =
(table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ?
table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5;
if (!(stretch_amount == 1 || stretch_amount == 2 ||
stretch_amount == 5 || stretch_amount == 3 ||
stretch_amount == 4)) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
PP_ASSERT_WITH_CODE(false,
"Stretch Amount in PPTable not supported\n",
return -EINVAL);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value);
return 0;
}
static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr)
{
uint32_t efuse;
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (49 * 4));
efuse &= 0x00000001;
if (efuse)
return true;
return false;
}
static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
int result = 0;
struct pp_atom_ctrl__avfs_parameters avfs_params = {0};
AVFS_meanNsigma_t AVFS_meanNsigma = { {0} };
AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} };
uint32_t tmp, i;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)hwmgr->pptable;
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
if (!hwmgr->avfs_supported)
return 0;
result = atomctrl_get_avfs_information(hwmgr, &avfs_params);
if (0 == result) {
table->BTCGB_VDROOP_TABLE[0].a0 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0);
table->BTCGB_VDROOP_TABLE[0].a1 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1);
table->BTCGB_VDROOP_TABLE[0].a2 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2);
table->BTCGB_VDROOP_TABLE[1].a0 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0);
table->BTCGB_VDROOP_TABLE[1].a1 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1);
table->BTCGB_VDROOP_TABLE[1].a2 =
PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2);
table->AVFSGB_FUSE_TABLE[0].m1 =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1);
table->AVFSGB_FUSE_TABLE[0].m2 =
PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2);
table->AVFSGB_FUSE_TABLE[0].b =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b);
table->AVFSGB_FUSE_TABLE[0].m1_shift = 24;
table->AVFSGB_FUSE_TABLE[0].m2_shift = 12;
table->AVFSGB_FUSE_TABLE[1].m1 =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
table->AVFSGB_FUSE_TABLE[1].m2 =
PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2);
table->AVFSGB_FUSE_TABLE[1].b =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b);
table->AVFSGB_FUSE_TABLE[1].m1_shift = 24;
table->AVFSGB_FUSE_TABLE[1].m2_shift = 12;
table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv);
AVFS_meanNsigma.Aconstant[0] =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0);
AVFS_meanNsigma.Aconstant[1] =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1);
AVFS_meanNsigma.Aconstant[2] =
PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2);
AVFS_meanNsigma.DC_tol_sigma =
PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma);
AVFS_meanNsigma.Platform_mean =
PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean);
AVFS_meanNsigma.PSM_Age_CompFactor =
PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor);
AVFS_meanNsigma.Platform_sigma =
PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma);
for (i = 0; i < sclk_table->count; i++) {
AVFS_meanNsigma.Static_Voltage_Offset[i] =
(uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625);
AVFS_SclkOffset.Sclk_Offset[i] =
PP_HOST_TO_SMC_US((uint16_t)
(sclk_table->entries[i].sclk_offset) / 100);
}
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, AvfsMeanNSigma),
&tmp, SMC_RAM_END);
smu7_copy_bytes_to_smc(hwmgr,
tmp,
(uint8_t *)&AVFS_meanNsigma,
sizeof(AVFS_meanNsigma_t),
SMC_RAM_END);
result = smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable),
&tmp, SMC_RAM_END);
smu7_copy_bytes_to_smc(hwmgr,
tmp,
(uint8_t *)&AVFS_SclkOffset,
sizeof(AVFS_Sclk_Offset_t),
SMC_RAM_END);
data->avfs_vdroop_override_setting =
(avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) |
(avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT);
data->apply_avfs_cks_off_voltage =
avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1;
}
return result;
}
static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr,
struct SMU75_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data =
(struct vegam_smumgr *)(hwmgr->smu_backend);
uint16_t config;
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT);
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
PP_ASSERT_WITH_CODE(false,
"VDDC should be on SVI2 control in merged mode!",
);
}
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_VDDCI_SHIFT);
}
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) {
if (config != VR_SVI2_PLANE_2) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
smu_data->smu7_data.soft_regs_start +
offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
0x1);
} else {
PP_ASSERT_WITH_CODE(false,
"SVI2 Plane 2 is already taken, set MVDD as Static",);
config = VR_STATIC_VOLTAGE;
table->VRConfig = (config << VRCONF_MVDD_SHIFT);
}
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
config = VR_SMIO_PATTERN_2;
table->VRConfig = (config << VRCONF_MVDD_SHIFT);
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
smu_data->smu7_data.soft_regs_start +
offsetof(SMU75_SoftRegisters, AllowMvddSwitch),
0x1);
} else {
config = VR_STATIC_VOLTAGE;
table->VRConfig |= (config << VRCONF_MVDD_SHIFT);
}
return 0;
}
static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn;
smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC;
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
uint16_t tdc_limit;
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128);
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
defaults->TDC_VDDC_ThrottleReleaseLimitPerc;
smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt;
return 0;
}
static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (smu7_read_smc_sram_dword(hwmgr,
fuse_table_offset +
offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
return -EINVAL);
else {
smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl;
smu_data->power_tune_table.LPMLTemperatureMin =
(uint8_t)((temp >> 16) & 0xff);
smu_data->power_tune_table.LPMLTemperatureMax =
(uint8_t)((temp >> 8) & 0xff);
smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff);
}
return 0;
}
static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
int i;
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
for (i = 0; i < 16; i++)
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
return 0;
}
static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
|| 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity =
hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US(
hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity);
return 0;
}
static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
int i;
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
for (i = 0; i < 16; i++)
smu_data->power_tune_table.GnbLPML[i] = 0;
return 0;
}
static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
return 0;
}
static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
uint32_t pm_fuse_table_offset;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (smu7_read_smc_sram_dword(hwmgr,
SMU7_FIRMWARE_HEADER_LOCATION +
offsetof(SMU75_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to get pm_fuse_table_offset Failed!",
return -EINVAL);
if (vegam_populate_svi_load_line(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate SviLoadLine Failed!",
return -EINVAL);
if (vegam_populate_tdc_limit(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TDCLimit Failed!", return -EINVAL);
if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TdcWaterfallCtl, "
"LPMLTemperature Min and Max Failed!",
return -EINVAL);
if (0 != vegam_populate_temperature_scaler(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate LPMLTemperatureScaler Failed!",
return -EINVAL);
if (vegam_populate_fuzzy_fan(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate Fuzzy Fan Control parameters Failed!",
return -EINVAL);
if (vegam_populate_gnb_lpml(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Failed!",
return -EINVAL);
if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate BapmVddCBaseLeakage Hi and Lo "
"Sidd Failed!", return -EINVAL);
if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
(sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE),
SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to download PmFuseTable Failed!",
return -EINVAL);
}
return 0;
}
static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr)
{
struct amdgpu_device *adev = hwmgr->adev;
smum_send_msg_to_smc_with_parameter(hwmgr,
PPSMC_MSG_EnableModeSwitchRLCNotification,
adev->gfx.cu_info.number,
NULL);
return 0;
}
static int vegam_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table);
uint8_t i;
struct pp_atomctrl_gpio_pin_assignment gpio_pin;
struct phm_ppt_v1_gpio_table *gpio_table =
(struct phm_ppt_v1_gpio_table *)table_info->gpio_table;
pp_atomctrl_clock_dividers_vi dividers;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
vegam_initialize_power_tune_defaults(hwmgr);
if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control)
vegam_populate_smc_voltage_tables(hwmgr, table);
table->SystemFlags = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (hw_data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) {
result = vegam_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ULV state!", return result);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT);
}
result = vegam_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Link Level!", return result);
result = vegam_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Graphics Level!", return result);
result = vegam_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Memory Level!", return result);
result = vegam_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize ACPI Level!", return result);
result = vegam_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize VCE Level!", return result);
result = vegam_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to Write ARB settings for the initial state.", return result);
result = vegam_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize UVD Level!", return result);
result = vegam_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Boot Level!", return result);
result = vegam_populate_smc_initial_state(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to initialize Boot State!", return result);
result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate BAPM Parameters!", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = vegam_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate Clock Stretcher Data Table!",
return result);
}
result = vegam_populate_avfs_parameters(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate AVFS Parameters!", return result;);
table->CurrSclkPllRange = 0xff;
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
table_info->cac_dtp_table->usTargetOperatingTemp *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1,
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
table->PCIeBootLinkLevel =
hw_data->dpm_table.pcie_speed_table.count;
table->PCIeGenInterval = 1;
table->VRConfig = 0;
result = vegam_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate VRConfig setting!", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
if (atomctrl_get_pp_assign_pin(hwmgr,
VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
if (gpio_table)
table->VRHotLevel =
table_info->gpio_table->vrhot_triggered_sclk_dpm_index;
} else {
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
if (atomctrl_get_pp_assign_pin(hwmgr,
PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) {
table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition) &&
!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme, NULL))
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme);
} else {
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
if (atomctrl_get_pp_assign_pin(hwmgr,
THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) {
table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift;
table->ThermOutPolarity =
(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
(1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot) &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CombinePCCWithThermalSignal))
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
} else {
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) {
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
smu_data->bif_sclk_table[i], ÷rs);
PP_ASSERT_WITH_CODE(!result,
"Can not find DFS divide id for Sclk",
return result);
if (i == 0)
table->Ulv.BifSclkDfs =
PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
else
table->LinkLevel[i - 1].BifSclkDfs =
PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider));
}
for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++)
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
result = smu7_copy_bytes_to_smc(hwmgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(!result,
"Failed to upload dpm data to SMC memory!", return result);
result = vegam_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to populate PM fuses to SMC memory!", return result);
result = vegam_enable_reconfig_cus(hwmgr);
PP_ASSERT_WITH_CODE(!result,
"Failed to enable reconfigurable CUs!", return result);
return 0;
}
static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member)
{
switch (type) {
case SMU_SoftRegisters:
switch (member) {
case HandshakeDisables:
return offsetof(SMU75_SoftRegisters, HandshakeDisables);
case VoltageChangeTimeout:
return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout);
case AverageGraphicsActivity:
return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity);
case AverageMemoryActivity:
return offsetof(SMU75_SoftRegisters, AverageMemoryActivity);
case PreVBlankGap:
return offsetof(SMU75_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU75_SoftRegisters, VBlankTimeout);
case UcodeLoadStatus:
return offsetof(SMU75_SoftRegisters, UcodeLoadStatus);
case DRAM_LOG_ADDR_H:
return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H);
case DRAM_LOG_ADDR_L:
return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L);
case DRAM_LOG_PHY_ADDR_H:
return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
case DRAM_LOG_PHY_ADDR_L:
return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
case DRAM_LOG_BUFF_SIZE:
return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE);
}
break;
case SMU_Discrete_DpmTable:
switch (member) {
case UvdBootLevel:
return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU75_Discrete_DpmTable, VceBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold);
}
break;
}
pr_warn("can't get the offset of type %x member %x\n", type, member);
return 0;
}
static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK +
DPMTABLE_UPDATE_SCLK +
DPMTABLE_UPDATE_MCLK))
return vegam_program_memory_timing_parameters(hwmgr);
return 0;
}
static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct vegam_smumgr *smu_data =
(struct vegam_smumgr *)(hwmgr->smu_backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (data->low_sclk_interrupt_threshold != 0)) {
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = smu7_copy_bytes_to_smc(
hwmgr,
smu_data->smu7_data.dpm_table_start +
offsetof(SMU75_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
SMC_RAM_END);
}
PP_ASSERT_WITH_CODE((result == 0),
"Failed to update SCLK threshold!", return result);
result = vegam_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((result == 0),
"Failed to program memory timing parameters!",
);
return result;
}
static int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int ret;
if (!hwmgr->avfs_supported)
return 0;
ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs, NULL);
if (!ret) {
if (data->apply_avfs_cks_off_voltage)
ret = smum_send_msg_to_smc(hwmgr,
PPSMC_MSG_ApplyAvfsCksOffVoltage,
NULL);
}
return ret;
}
static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan,
"VBIOS fan info is not correct!",
);
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
const struct pp_smumgr_func vegam_smu_funcs = {
.name = "vegam_smu",
.smu_init = vegam_smu_init,
.smu_fini = smu7_smu_fini,
.start_smu = vegam_start_smu,
.check_fw_load_finish = smu7_check_fw_load_finish,
.request_smu_load_fw = smu7_reload_firmware,
.request_smu_load_specific_fw = NULL,
.send_msg_to_smc = smu7_send_msg_to_smc,
.send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter,
.get_argument = smu7_get_argument,
.process_firmware_header = vegam_process_firmware_header,
.is_dpm_running = vegam_is_dpm_running,
.get_mac_definition = vegam_get_mac_definition,
.update_smc_table = vegam_update_smc_table,
.init_smc_table = vegam_init_smc_table,
.get_offsetof = vegam_get_offsetof,
.populate_all_graphic_levels = vegam_populate_all_graphic_levels,
.populate_all_memory_levels = vegam_populate_all_memory_levels,
.update_sclk_threshold = vegam_update_sclk_threshold,
.is_hw_avfs_present = vegam_is_hw_avfs_present,
.thermal_avfs_enable = vegam_thermal_avfs_enable,
.thermal_setup_fan_table = vegam_thermal_setup_fan_table,
}