// SPDX-License-Identifier: GPL-2.0+ /* * Driver for USB Mass Storage compliant devices * SCSI layer glue code * * Current development and maintenance by: * (c) 1999-2002 Matthew Dharm (mdharm-usb@one-eyed-alien.net) * * Developed with the assistance of: * (c) 2000 David L. Brown, Jr. (usb-storage@davidb.org) * (c) 2000 Stephen J. Gowdy (SGowdy@lbl.gov) * * Initial work by: * (c) 1999 Michael Gee (michael@linuxspecific.com) * * This driver is based on the 'USB Mass Storage Class' document. This * describes in detail the protocol used to communicate with such * devices. Clearly, the designers had SCSI and ATAPI commands in * mind when they created this document. The commands are all very * similar to commands in the SCSI-II and ATAPI specifications. * * It is important to note that in a number of cases this class * exhibits class-specific exemptions from the USB specification. * Notably the usage of NAK, STALL and ACK differs from the norm, in * that they are used to communicate wait, failed and OK on commands. * * Also, for certain devices, the interrupt endpoint is used to convey * status of a command. */ #include <linux/blkdev.h> #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/mutex.h> #include <scsi/scsi.h> #include <scsi/scsi_cmnd.h> #include <scsi/scsi_devinfo.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include "usb.h" #include <linux/usb/hcd.h> #include "scsiglue.h" #include "debug.h" #include "transport.h" #include "protocol.h" /* * Vendor IDs for companies that seem to include the READ CAPACITY bug * in all their devices */ #define VENDOR_ID_NOKIA 0x0421 #define VENDOR_ID_NIKON 0x04b0 #define VENDOR_ID_PENTAX 0x0a17 #define VENDOR_ID_MOTOROLA 0x22b8 /*********************************************************************** * Host functions ***********************************************************************/ static const char* host_info(struct Scsi_Host *host) { struct us_data *us = host_to_us(host); return us->scsi_name; } static int slave_alloc (struct scsi_device *sdev) { struct us_data *us = host_to_us(sdev->host); /* * Set the INQUIRY transfer length to 36. We don't use any of * the extra data and many devices choke if asked for more or * less than 36 bytes. */ sdev->inquiry_len = 36; /* * Some host controllers may have alignment requirements. * We'll play it safe by requiring 512-byte alignment always. */ blk_queue_update_dma_alignment(sdev->request_queue, (512 - 1)); /* Tell the SCSI layer if we know there is more than one LUN */ if (us->protocol == USB_PR_BULK && us->max_lun > 0) sdev->sdev_bflags |= BLIST_FORCELUN; return 0; } static int slave_configure(struct scsi_device *sdev) { struct us_data *us = host_to_us(sdev->host); struct device *dev = us->pusb_dev->bus->sysdev; /* * Many devices have trouble transferring more than 32KB at a time, * while others have trouble with more than 64K. At this time we * are limiting both to 32K (64 sectores). */ if (us->fflags & (US_FL_MAX_SECTORS_64 | US_FL_MAX_SECTORS_MIN)) { unsigned int max_sectors = 64; if (us->fflags & US_FL_MAX_SECTORS_MIN) max_sectors = PAGE_SIZE >> 9; if (queue_max_hw_sectors(sdev->request_queue) > max_sectors) blk_queue_max_hw_sectors(sdev->request_queue, max_sectors); } else if (sdev->type == TYPE_TAPE) { /* * Tapes need much higher max_sector limits, so just * raise it to the maximum possible (4 GB / 512) and * let the queue segment size sort out the real limit. */ blk_queue_max_hw_sectors(sdev->request_queue, 0x7FFFFF); } else if (us->pusb_dev->speed >= USB_SPEED_SUPER) { /* * USB3 devices will be limited to 2048 sectors. This gives us * better throughput on most devices. */ blk_queue_max_hw_sectors(sdev->request_queue, 2048); } /* * The max_hw_sectors should be up to maximum size of a mapping for * the device. Otherwise, a DMA API might fail on swiotlb environment. */ blk_queue_max_hw_sectors(sdev->request_queue, min_t(size_t, queue_max_hw_sectors(sdev->request_queue), dma_max_mapping_size(dev) >> SECTOR_SHIFT)); /* * Some USB host controllers can't do DMA; they have to use PIO. * For such controllers we need to make sure the block layer sets * up bounce buffers in addressable memory. */ if (!hcd_uses_dma(bus_to_hcd(us->pusb_dev->bus)) || (bus_to_hcd(us->pusb_dev->bus)->localmem_pool != NULL)) blk_queue_bounce_limit(sdev->request_queue, BLK_BOUNCE_HIGH); /* * We can't put these settings in slave_alloc() because that gets * called before the device type is known. Consequently these * settings can't be overridden via the scsi devinfo mechanism. */ if (sdev->type == TYPE_DISK) { /* * Some vendors seem to put the READ CAPACITY bug into * all their devices -- primarily makers of cell phones * and digital cameras. Since these devices always use * flash media and can be expected to have an even number * of sectors, we will always enable the CAPACITY_HEURISTICS * flag unless told otherwise. */ switch (le16_to_cpu(us->pusb_dev->descriptor.idVendor)) { case VENDOR_ID_NOKIA: case VENDOR_ID_NIKON: case VENDOR_ID_PENTAX: case VENDOR_ID_MOTOROLA: if (!(us->fflags & (US_FL_FIX_CAPACITY | US_FL_CAPACITY_OK))) us->fflags |= US_FL_CAPACITY_HEURISTICS; break; } /* * Disk-type devices use MODE SENSE(6) if the protocol * (SubClass) is Transparent SCSI, otherwise they use * MODE SENSE(10). */ if (us->subclass != USB_SC_SCSI && us->subclass != USB_SC_CYP_ATACB) sdev->use_10_for_ms = 1; /* *Many disks only accept MODE SENSE transfer lengths of * 192 bytes (that's what Windows uses). */ sdev->use_192_bytes_for_3f = 1; /* * Some devices don't like MODE SENSE with page=0x3f, * which is the command used for checking if a device * is write-protected. Now that we tell the sd driver * to do a 192-byte transfer with this command the * majority of devices work fine, but a few still can't * handle it. The sd driver will simply assume those * devices are write-enabled. */ if (us->fflags & US_FL_NO_WP_DETECT) sdev->skip_ms_page_3f = 1; /* * A number of devices have problems with MODE SENSE for * page x08, so we will skip it. */ sdev->skip_ms_page_8 = 1; /* * Some devices don't handle VPD pages correctly, so skip vpd * pages if not forced by SCSI layer. */ sdev->skip_vpd_pages = !sdev->try_vpd_pages; /* Do not attempt to use REPORT SUPPORTED OPERATION CODES */ sdev->no_report_opcodes = 1; /* Do not attempt to use WRITE SAME */ sdev->no_write_same = 1; /* * Some disks return the total number of blocks in response * to READ CAPACITY rather than the highest block number. * If this device makes that mistake, tell the sd driver. */ if (us->fflags & US_FL_FIX_CAPACITY) sdev->fix_capacity = 1; /* * A few disks have two indistinguishable version, one of * which reports the correct capacity and the other does not. * The sd driver has to guess which is the case. */ if (us->fflags & US_FL_CAPACITY_HEURISTICS) sdev->guess_capacity = 1; /* Some devices cannot handle READ_CAPACITY_16 */ if (us->fflags & US_FL_NO_READ_CAPACITY_16) sdev->no_read_capacity_16 = 1; /* * Many devices do not respond properly to READ_CAPACITY_16. * Tell the SCSI layer to try READ_CAPACITY_10 first. * However some USB 3.0 drive enclosures return capacity * modulo 2TB. Those must use READ_CAPACITY_16 */ if (!(us->fflags & US_FL_NEEDS_CAP16)) sdev->try_rc_10_first = 1; /* * assume SPC3 or latter devices support sense size > 18 * unless US_FL_BAD_SENSE quirk is specified. */ if (sdev->scsi_level > SCSI_SPC_2 && !(us->fflags & US_FL_BAD_SENSE)) us->fflags |= US_FL_SANE_SENSE; /* * USB-IDE bridges tend to report SK = 0x04 (Non-recoverable * Hardware Error) when any low-level error occurs, * recoverable or not. Setting this flag tells the SCSI * midlayer to retry such commands, which frequently will * succeed and fix the error. The worst this can lead to * is an occasional series of retries that will all fail. */ sdev->retry_hwerror = 1; /* * USB disks should allow restart. Some drives spin down * automatically, requiring a START-STOP UNIT command. */ sdev->allow_restart = 1; /* * Some USB cardreaders have trouble reading an sdcard's last * sector in a larger then 1 sector read, since the performance * impact is negligible we set this flag for all USB disks */ sdev->last_sector_bug = 1; /* * Enable last-sector hacks for single-target devices using * the Bulk-only transport, unless we already know the * capacity will be decremented or is correct. */ if (!(us->fflags & (US_FL_FIX_CAPACITY | US_FL_CAPACITY_OK | US_FL_SCM_MULT_TARG)) && us->protocol == USB_PR_BULK) us->use_last_sector_hacks = 1; /* Check if write cache default on flag is set or not */ if (us->fflags & US_FL_WRITE_CACHE) sdev->wce_default_on = 1; /* A few buggy USB-ATA bridges don't understand FUA */ if (us->fflags & US_FL_BROKEN_FUA) sdev->broken_fua = 1; /* Some even totally fail to indicate a cache */ if (us->fflags & US_FL_ALWAYS_SYNC) { /* don't read caching information */ sdev->skip_ms_page_8 = 1; sdev->skip_ms_page_3f = 1; /* assume sync is needed */ sdev->wce_default_on = 1; } } else { /* * Non-disk-type devices don't need to ignore any pages * or to force 192-byte transfer lengths for MODE SENSE. * But they do need to use MODE SENSE(10). */ sdev->use_10_for_ms = 1; /* Some (fake) usb cdrom devices don't like READ_DISC_INFO */ if (us->fflags & US_FL_NO_READ_DISC_INFO) sdev->no_read_disc_info = 1; } /* * The CB and CBI transports have no way to pass LUN values * other than the bits in the second byte of a CDB. But those * bits don't get set to the LUN value if the device reports * scsi_level == 0 (UNKNOWN). Hence such devices must necessarily * be single-LUN. */ if ((us->protocol == USB_PR_CB || us->protocol == USB_PR_CBI) && sdev->scsi_level == SCSI_UNKNOWN) us->max_lun = 0; /* * Some devices choke when they receive a PREVENT-ALLOW MEDIUM * REMOVAL command, so suppress those commands. */ if (us->fflags & US_FL_NOT_LOCKABLE) sdev->lockable = 0; /* * this is to satisfy the compiler, tho I don't think the * return code is ever checked anywhere. */ return 0; } static int target_alloc(struct scsi_target *starget) { struct us_data *us = host_to_us(dev_to_shost(starget->dev.parent)); /* * Some USB drives don't support REPORT LUNS, even though they * report a SCSI revision level above 2. Tell the SCSI layer * not to issue that command; it will perform a normal sequential * scan instead. */ starget->no_report_luns = 1; /* * The UFI spec treats the Peripheral Qualifier bits in an * INQUIRY result as reserved and requires devices to set them * to 0. However the SCSI spec requires these bits to be set * to 3 to indicate when a LUN is not present. * * Let the scanning code know if this target merely sets * Peripheral Device Type to 0x1f to indicate no LUN. */ if (us->subclass == USB_SC_UFI) starget->pdt_1f_for_no_lun = 1; return 0; } /* queue a command */ /* This is always called with scsi_lock(host) held */ static int queuecommand_lck(struct scsi_cmnd *srb) { void (*done)(struct scsi_cmnd *) = scsi_done; struct us_data *us = host_to_us(srb->device->host); /* check for state-transition errors */ if (us->srb != NULL) { dev_err(&us->pusb_intf->dev, "Error in %s: us->srb = %p\n", __func__, us->srb); return SCSI_MLQUEUE_HOST_BUSY; } /* fail the command if we are disconnecting */ if (test_bit(US_FLIDX_DISCONNECTING, &us->dflags)) { usb_stor_dbg(us, "Fail command during disconnect\n"); srb->result = DID_NO_CONNECT << 16; done(srb); return 0; } if ((us->fflags & US_FL_NO_ATA_1X) && (srb->cmnd[0] == ATA_12 || srb->cmnd[0] == ATA_16)) { memcpy(srb->sense_buffer, usb_stor_sense_invalidCDB, sizeof(usb_stor_sense_invalidCDB)); srb->result = SAM_STAT_CHECK_CONDITION; done(srb); return 0; } /* enqueue the command and wake up the control thread */ us->srb = srb; complete(&us->cmnd_ready); return 0; } static DEF_SCSI_QCMD(queuecommand) /*********************************************************************** * Error handling functions ***********************************************************************/ /* Command timeout and abort */ static int command_abort_matching(struct us_data *us, struct scsi_cmnd *srb_match) { /* * us->srb together with the TIMED_OUT, RESETTING, and ABORTING * bits are protected by the host lock. */ scsi_lock(us_to_host(us)); /* is there any active pending command to abort ? */ if (!us->srb) { scsi_unlock(us_to_host(us)); usb_stor_dbg(us, "-- nothing to abort\n"); return SUCCESS; } /* Does the command match the passed srb if any ? */ if (srb_match && us->srb != srb_match) { scsi_unlock(us_to_host(us)); usb_stor_dbg(us, "-- pending command mismatch\n"); return FAILED; } /* * Set the TIMED_OUT bit. Also set the ABORTING bit, but only if * a device reset isn't already in progress (to avoid interfering * with the reset). Note that we must retain the host lock while * calling usb_stor_stop_transport(); otherwise it might interfere * with an auto-reset that begins as soon as we release the lock. */ set_bit(US_FLIDX_TIMED_OUT, &us->dflags); if (!test_bit(US_FLIDX_RESETTING, &us->dflags)) { set_bit(US_FLIDX_ABORTING, &us->dflags); usb_stor_stop_transport(us); } scsi_unlock(us_to_host(us)); /* Wait for the aborted command to finish */ wait_for_completion(&us->notify); return SUCCESS; } static int command_abort(struct scsi_cmnd *srb) { struct us_data *us = host_to_us(srb->device->host); usb_stor_dbg(us, "%s called\n", __func__); return command_abort_matching(us, srb); } /* * This invokes the transport reset mechanism to reset the state of the * device */ static int device_reset(struct scsi_cmnd *srb) { struct us_data *us = host_to_us(srb->device->host); int result; usb_stor_dbg(us, "%s called\n", __func__); /* abort any pending command before reset */ command_abort_matching(us, NULL); /* lock the device pointers and do the reset */ mutex_lock(&(us->dev_mutex)); result = us->transport_reset(us); mutex_unlock(&us->dev_mutex); return result < 0 ? FAILED : SUCCESS; } /* Simulate a SCSI bus reset by resetting the device's USB port. */ static int bus_reset(struct scsi_cmnd *srb) { struct us_data *us = host_to_us(srb->device->host); int result; usb_stor_dbg(us, "%s called\n", __func__); result = usb_stor_port_reset(us); return result < 0 ? FAILED : SUCCESS; } /* * Report a driver-initiated device reset to the SCSI layer. * Calling this for a SCSI-initiated reset is unnecessary but harmless. * The caller must own the SCSI host lock. */ void usb_stor_report_device_reset(struct us_data *us) { int i; struct Scsi_Host *host = us_to_host(us); scsi_report_device_reset(host, 0, 0); if (us->fflags & US_FL_SCM_MULT_TARG) { for (i = 1; i < host->max_id; ++i) scsi_report_device_reset(host, 0, i); } } /* * Report a driver-initiated bus reset to the SCSI layer. * Calling this for a SCSI-initiated reset is unnecessary but harmless. * The caller must not own the SCSI host lock. */ void usb_stor_report_bus_reset(struct us_data *us) { struct Scsi_Host *host = us_to_host(us); scsi_lock(host); scsi_report_bus_reset(host, 0); scsi_unlock(host); } /*********************************************************************** * /proc/scsi/ functions ***********************************************************************/ static int write_info(struct Scsi_Host *host, char *buffer, int length) { /* if someone is sending us data, just throw it away */ return length; } static int show_info (struct seq_file *m, struct Scsi_Host *host) { struct us_data *us = host_to_us(host); const char *string; /* print the controller name */ seq_printf(m, " Host scsi%d: usb-storage\n", host->host_no); /* print product, vendor, and serial number strings */ if (us->pusb_dev->manufacturer) string = us->pusb_dev->manufacturer; else if (us->unusual_dev->vendorName) string = us->unusual_dev->vendorName; else string = "Unknown"; seq_printf(m, " Vendor: %s\n", string); if (us->pusb_dev->product) string = us->pusb_dev->product; else if (us->unusual_dev->productName) string = us->unusual_dev->productName; else string = "Unknown"; seq_printf(m, " Product: %s\n", string); if (us->pusb_dev->serial) string = us->pusb_dev->serial; else string = "None"; seq_printf(m, "Serial Number: %s\n", string); /* show the protocol and transport */ seq_printf(m, " Protocol: %s\n", us->protocol_name); seq_printf(m, " Transport: %s\n", us->transport_name); /* show the device flags */ seq_printf(m, " Quirks:"); #define US_FLAG(name, value) \ if (us->fflags & value) seq_printf(m, " " #name); US_DO_ALL_FLAGS #undef US_FLAG seq_putc(m, '\n'); return 0; } /*********************************************************************** * Sysfs interface ***********************************************************************/ /* Output routine for the sysfs max_sectors file */ static ssize_t max_sectors_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); return sprintf(buf, "%u\n", queue_max_hw_sectors(sdev->request_queue)); } /* Input routine for the sysfs max_sectors file */ static ssize_t max_sectors_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct scsi_device *sdev = to_scsi_device(dev); unsigned short ms; if (sscanf(buf, "%hu", &ms) > 0) { blk_queue_max_hw_sectors(sdev->request_queue, ms); return count; } return -EINVAL; } static DEVICE_ATTR_RW(max_sectors); static struct attribute *usb_sdev_attrs[] = { &dev_attr_max_sectors.attr, NULL, }; ATTRIBUTE_GROUPS(usb_sdev); /* * this defines our host template, with which we'll allocate hosts */ static const struct scsi_host_template usb_stor_host_template = { /* basic userland interface stuff */ .name = "usb-storage", .proc_name = "usb-storage", .show_info = show_info, .write_info = write_info, .info = host_info, /* command interface -- queued only */ .queuecommand = queuecommand, /* error and abort handlers */ .eh_abort_handler = command_abort, .eh_device_reset_handler = device_reset, .eh_bus_reset_handler = bus_reset, /* queue commands only, only one command per LUN */ .can_queue = 1, /* unknown initiator id */ .this_id = -1, .slave_alloc = slave_alloc, .slave_configure = slave_configure, .target_alloc = target_alloc, /* lots of sg segments can be handled */ .sg_tablesize = SG_MAX_SEGMENTS, /* * Limit the total size of a transfer to 120 KB. * * Some devices are known to choke with anything larger. It seems like * the problem stems from the fact that original IDE controllers had * only an 8-bit register to hold the number of sectors in one transfer * and even those couldn't handle a full 256 sectors. * * Because we want to make sure we interoperate with as many devices as * possible, we will maintain a 240 sector transfer size limit for USB * Mass Storage devices. * * Tests show that other operating have similar limits with Microsoft * Windows 7 limiting transfers to 128 sectors for both USB2 and USB3 * and Apple Mac OS X 10.11 limiting transfers to 256 sectors for USB2 * and 2048 for USB3 devices. */ .max_sectors = 240, /* emulated HBA */ .emulated = 1, /* we do our own delay after a device or bus reset */ .skip_settle_delay = 1, /* sysfs device attributes */ .sdev_groups = usb_sdev_groups, /* module management */ .module = THIS_MODULE }; void usb_stor_host_template_init(struct scsi_host_template *sht, const char *name, struct module *owner) { *sht = usb_stor_host_template; sht->name = name; sht->proc_name = name; sht->module = owner; } EXPORT_SYMBOL_GPL(usb_stor_host_template_init); /* To Report "Illegal Request: Invalid Field in CDB */ unsigned char usb_stor_sense_invalidCDB[18] = { [0] = 0x70, /* current error */ [2] = ILLEGAL_REQUEST, /* Illegal Request = 0x05 */ [7] = 0x0a, /* additional length */ [12] = 0x24 /* Invalid Field in CDB */ }; EXPORT_SYMBOL_GPL