#include <drv_types.h>
#include <rtw_debug.h>
#include <hal_data.h>
#include <linux/kernel.h>
u8 PHY_GetTxPowerByRateBase(struct adapter *Adapter, u8 RfPath,
enum rate_section RateSection)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 value = 0;
if (RfPath >= RF_PATH_MAX)
return 0;
switch (RateSection) {
case CCK:
value = pHalData->TxPwrByRateBase2_4G[RfPath][0];
break;
case OFDM:
value = pHalData->TxPwrByRateBase2_4G[RfPath][1];
break;
case HT_MCS0_MCS7:
value = pHalData->TxPwrByRateBase2_4G[RfPath][2];
break;
default:
break;
}
return value;
}
static void
phy_SetTxPowerByRateBase(struct adapter *Adapter, u8 RfPath,
enum rate_section RateSection, u8 Value)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
if (RfPath >= RF_PATH_MAX)
return;
switch (RateSection) {
case CCK:
pHalData->TxPwrByRateBase2_4G[RfPath][0] = Value;
break;
case OFDM:
pHalData->TxPwrByRateBase2_4G[RfPath][1] = Value;
break;
case HT_MCS0_MCS7:
pHalData->TxPwrByRateBase2_4G[RfPath][2] = Value;
break;
default:
break;
}
}
static void
phy_StoreTxPowerByRateBase(
struct adapter *padapter
)
{
u8 path, base;
for (path = RF_PATH_A; path <= RF_PATH_B; ++path) {
base = PHY_GetTxPowerByRate(padapter, path, MGN_11M);
phy_SetTxPowerByRateBase(padapter, path, CCK, base);
base = PHY_GetTxPowerByRate(padapter, path, MGN_54M);
phy_SetTxPowerByRateBase(padapter, path, OFDM, base);
base = PHY_GetTxPowerByRate(padapter, path, MGN_MCS7);
phy_SetTxPowerByRateBase(padapter, path, HT_MCS0_MCS7, base);
}
}
u8 PHY_GetRateSectionIndexOfTxPowerByRate(
struct adapter *padapter, u32 RegAddr, u32 BitMask
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct dm_odm_t *pDM_Odm = &pHalData->odmpriv;
u8 index = 0;
if (pDM_Odm->PhyRegPgVersion == 0) {
switch (RegAddr) {
case rTxAGC_A_Rate18_06:
index = 0;
break;
case rTxAGC_A_Rate54_24:
index = 1;
break;
case rTxAGC_A_CCK1_Mcs32:
index = 6;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if (BitMask == bMaskH3Bytes)
index = 7;
else if (BitMask == 0x000000ff)
index = 15;
break;
case rTxAGC_A_Mcs03_Mcs00:
index = 2;
break;
case rTxAGC_A_Mcs07_Mcs04:
index = 3;
break;
case rTxAGC_B_Rate18_06:
index = 8;
break;
case rTxAGC_B_Rate54_24:
index = 9;
break;
case rTxAGC_B_CCK1_55_Mcs32:
index = 14;
break;
case rTxAGC_B_Mcs03_Mcs00:
index = 10;
break;
case rTxAGC_B_Mcs07_Mcs04:
index = 11;
break;
default:
break;
}
}
return index;
}
void
PHY_GetRateValuesOfTxPowerByRate(
struct adapter *padapter,
u32 RegAddr,
u32 BitMask,
u32 Value,
u8 *RateIndex,
s8 *PwrByRateVal,
u8 *RateNum
)
{
u8 i = 0;
switch (RegAddr) {
case rTxAGC_A_Rate18_06:
case rTxAGC_B_Rate18_06:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Rate54_24:
case rTxAGC_B_Rate54_24:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_CCK1_Mcs32:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
PwrByRateVal[0] = (s8) ((((Value >> (8 + 4)) & 0xF)) * 10 +
((Value >> 8) & 0xF));
*RateNum = 1;
break;
case rTxAGC_B_CCK11_A_CCK2_11:
if (BitMask == 0xffffff00) {
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
} else if (BitMask == 0x000000ff) {
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
PwrByRateVal[0] = (s8) ((((Value >> 4) & 0xF)) * 10 + (Value & 0xF));
*RateNum = 1;
}
break;
case rTxAGC_A_Mcs03_Mcs00:
case rTxAGC_B_Mcs03_Mcs00:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_A_Mcs07_Mcs04:
case rTxAGC_B_Mcs07_Mcs04:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case rTxAGC_B_CCK1_55_Mcs32:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
for (i = 1; i < 4; ++i) {
PwrByRateVal[i - 1] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 3;
break;
case 0xC20:
case 0xE20:
case 0x1820:
case 0x1a20:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_1M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_2M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_5_5M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_11M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC24:
case 0xE24:
case 0x1824:
case 0x1a24:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_6M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_9M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_12M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_18M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC28:
case 0xE28:
case 0x1828:
case 0x1a28:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_24M);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_36M);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_48M);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_54M);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC2C:
case 0xE2C:
case 0x182C:
case 0x1a2C:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS0);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS1);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS2);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS3);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
case 0xC30:
case 0xE30:
case 0x1830:
case 0x1a30:
RateIndex[0] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS4);
RateIndex[1] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS5);
RateIndex[2] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS6);
RateIndex[3] = PHY_GetRateIndexOfTxPowerByRate(MGN_MCS7);
for (i = 0; i < 4; ++i) {
PwrByRateVal[i] = (s8) ((((Value >> (i * 8 + 4)) & 0xF)) * 10 +
((Value >> (i * 8)) & 0xF));
}
*RateNum = 4;
break;
default:
break;
}
}
static void PHY_StoreTxPowerByRateNew(struct adapter *padapter, u32 RfPath,
u32 RegAddr, u32 BitMask, u32 Data)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 i = 0, rateIndex[4] = {0}, rateNum = 0;
s8 PwrByRateVal[4] = {0};
PHY_GetRateValuesOfTxPowerByRate(padapter, RegAddr, BitMask, Data, rateIndex, PwrByRateVal, &rateNum);
if (RfPath >= RF_PATH_MAX)
return;
for (i = 0; i < rateNum; ++i) {
pHalData->TxPwrByRateOffset[RfPath][rateIndex[i]] = PwrByRateVal[i];
}
}
static void PHY_StoreTxPowerByRateOld(
struct adapter *padapter, u32 RegAddr, u32 BitMask, u32 Data
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 index = PHY_GetRateSectionIndexOfTxPowerByRate(padapter, RegAddr, BitMask);
pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][index] = Data;
}
void PHY_InitTxPowerByRate(struct adapter *padapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 rfPath, rate;
for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath)
for (rate = 0; rate < TX_PWR_BY_RATE_NUM_RATE; ++rate)
pHalData->TxPwrByRateOffset[rfPath][rate] = 0;
}
void PHY_StoreTxPowerByRate(
struct adapter *padapter,
u32 RfPath,
u32 RegAddr,
u32 BitMask,
u32 Data
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct dm_odm_t *pDM_Odm = &pHalData->odmpriv;
if (pDM_Odm->PhyRegPgVersion > 0)
PHY_StoreTxPowerByRateNew(padapter, RfPath, RegAddr, BitMask, Data);
else if (pDM_Odm->PhyRegPgVersion == 0) {
PHY_StoreTxPowerByRateOld(padapter, RegAddr, BitMask, Data);
}
}
static void
phy_ConvertTxPowerByRateInDbmToRelativeValues(
struct adapter *padapter
)
{
u8 base = 0, i = 0, value = 0, path = 0;
u8 cckRates[4] = {
MGN_1M, MGN_2M, MGN_5_5M, MGN_11M
};
u8 ofdmRates[8] = {
MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M
};
u8 mcs0_7Rates[8] = {
MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7
};
for (path = RF_PATH_A; path < RF_PATH_MAX; ++path) {
base = PHY_GetTxPowerByRate(padapter, path, MGN_11M);
for (i = 0; i < ARRAY_SIZE(cckRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, path, cckRates[i]);
PHY_SetTxPowerByRate(padapter, path, cckRates[i], value - base);
}
base = PHY_GetTxPowerByRate(padapter, path, MGN_54M);
for (i = 0; i < sizeof(ofdmRates); ++i) {
value = PHY_GetTxPowerByRate(padapter, path, ofdmRates[i]);
PHY_SetTxPowerByRate(padapter, path, ofdmRates[i], value - base);
}
base = PHY_GetTxPowerByRate(padapter, path, MGN_MCS7);
for (i = 0; i < sizeof(mcs0_7Rates); ++i) {
value = PHY_GetTxPowerByRate(padapter, path, mcs0_7Rates[i]);
PHY_SetTxPowerByRate(padapter, path, mcs0_7Rates[i], value - base);
}
}
}
void PHY_TxPowerByRateConfiguration(struct adapter *padapter)
{
phy_StoreTxPowerByRateBase(padapter);
phy_ConvertTxPowerByRateInDbmToRelativeValues(padapter);
}
void PHY_SetTxPowerIndexByRateSection(
struct adapter *padapter, u8 RFPath, u8 Channel, u8 RateSection
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
if (RateSection == CCK) {
u8 cckRates[] = {MGN_1M, MGN_2M, MGN_5_5M, MGN_11M};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath,
pHalData->CurrentChannelBW,
Channel, cckRates,
ARRAY_SIZE(cckRates));
} else if (RateSection == OFDM) {
u8 ofdmRates[] = {MGN_6M, MGN_9M, MGN_12M, MGN_18M, MGN_24M, MGN_36M, MGN_48M, MGN_54M};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath,
pHalData->CurrentChannelBW,
Channel, ofdmRates,
ARRAY_SIZE(ofdmRates));
} else if (RateSection == HT_MCS0_MCS7) {
u8 htRates1T[] = {MGN_MCS0, MGN_MCS1, MGN_MCS2, MGN_MCS3, MGN_MCS4, MGN_MCS5, MGN_MCS6, MGN_MCS7};
PHY_SetTxPowerIndexByRateArray(padapter, RFPath,
pHalData->CurrentChannelBW,
Channel, htRates1T,
ARRAY_SIZE(htRates1T));
}
}
u8 PHY_GetTxPowerIndexBase(
struct adapter *padapter,
u8 RFPath,
u8 Rate,
enum channel_width BandWidth,
u8 Channel
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 txPower = 0;
u8 chnlIdx = (Channel-1);
if (HAL_IsLegalChannel(padapter, Channel) == false)
chnlIdx = 0;
if (IS_CCK_RATE(Rate))
txPower = pHalData->Index24G_CCK_Base[RFPath][chnlIdx];
else if (MGN_6M <= Rate)
txPower = pHalData->Index24G_BW40_Base[RFPath][chnlIdx];
if ((MGN_6M <= Rate && Rate <= MGN_54M) && !IS_CCK_RATE(Rate))
txPower += pHalData->OFDM_24G_Diff[RFPath][TX_1S];
if (BandWidth == CHANNEL_WIDTH_20) {
if (MGN_MCS0 <= Rate && Rate <= MGN_MCS7)
txPower += pHalData->BW20_24G_Diff[RFPath][TX_1S];
} else if (BandWidth == CHANNEL_WIDTH_40) {
if (MGN_MCS0 <= Rate && Rate <= MGN_MCS7)
txPower += pHalData->BW40_24G_Diff[RFPath][TX_1S];
}
return txPower;
}
s8 PHY_GetTxPowerTrackingOffset(struct adapter *padapter, u8 RFPath, u8 Rate)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
struct dm_odm_t *pDM_Odm = &pHalData->odmpriv;
s8 offset = 0;
if (pDM_Odm->RFCalibrateInfo.TxPowerTrackControl == false)
return offset;
if ((Rate == MGN_1M) || (Rate == MGN_2M) || (Rate == MGN_5_5M) || (Rate == MGN_11M))
offset = pDM_Odm->Remnant_CCKSwingIdx;
else
offset = pDM_Odm->Remnant_OFDMSwingIdx[RFPath];
return offset;
}
u8 PHY_GetRateIndexOfTxPowerByRate(u8 Rate)
{
u8 index = 0;
switch (Rate) {
case MGN_1M:
index = 0;
break;
case MGN_2M:
index = 1;
break;
case MGN_5_5M:
index = 2;
break;
case MGN_11M:
index = 3;
break;
case MGN_6M:
index = 4;
break;
case MGN_9M:
index = 5;
break;
case MGN_12M:
index = 6;
break;
case MGN_18M:
index = 7;
break;
case MGN_24M:
index = 8;
break;
case MGN_36M:
index = 9;
break;
case MGN_48M:
index = 10;
break;
case MGN_54M:
index = 11;
break;
case MGN_MCS0:
index = 12;
break;
case MGN_MCS1:
index = 13;
break;
case MGN_MCS2:
index = 14;
break;
case MGN_MCS3:
index = 15;
break;
case MGN_MCS4:
index = 16;
break;
case MGN_MCS5:
index = 17;
break;
case MGN_MCS6:
index = 18;
break;
case MGN_MCS7:
index = 19;
break;
default:
break;
}
return index;
}
s8 PHY_GetTxPowerByRate(struct adapter *padapter, u8 RFPath, u8 Rate)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
s8 value = 0;
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if ((padapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory == 2) ||
padapter->registrypriv.RegEnableTxPowerByRate == 0)
return 0;
if (RFPath >= RF_PATH_MAX)
return value;
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE)
return value;
return pHalData->TxPwrByRateOffset[RFPath][rateIndex];
}
void PHY_SetTxPowerByRate(
struct adapter *padapter,
u8 RFPath,
u8 Rate,
s8 Value
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
u8 rateIndex = PHY_GetRateIndexOfTxPowerByRate(Rate);
if (RFPath >= RF_PATH_MAX)
return;
if (rateIndex >= TX_PWR_BY_RATE_NUM_RATE)
return;
pHalData->TxPwrByRateOffset[RFPath][rateIndex] = Value;
}
void PHY_SetTxPowerLevelByPath(struct adapter *Adapter, u8 channel, u8 path)
{
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, CCK);
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, OFDM);
PHY_SetTxPowerIndexByRateSection(Adapter, path, channel, HT_MCS0_MCS7);
}
void PHY_SetTxPowerIndexByRateArray(
struct adapter *padapter,
u8 RFPath,
enum channel_width BandWidth,
u8 Channel,
u8 *Rates,
u8 RateArraySize
)
{
u32 powerIndex = 0;
int i = 0;
for (i = 0; i < RateArraySize; ++i) {
powerIndex = PHY_GetTxPowerIndex(padapter, RFPath, Rates[i], BandWidth, Channel);
PHY_SetTxPowerIndex(padapter, powerIndex, RFPath, Rates[i]);
}
}
static s8 phy_GetWorldWideLimit(s8 *LimitTable)
{
s8 min = LimitTable[0];
u8 i = 0;
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
if (LimitTable[i] < min)
min = LimitTable[i];
}
return min;
}
static s8 phy_GetChannelIndexOfTxPowerLimit(u8 Channel)
{
return Channel - 1;
}
static s16 get_bandwidth_idx(const enum channel_width bandwidth)
{
switch (bandwidth) {
case CHANNEL_WIDTH_20:
return 0;
case CHANNEL_WIDTH_40:
return 1;
default:
return -1;
}
}
static s16 get_rate_sctn_idx(const u8 rate)
{
switch (rate) {
case MGN_1M: case MGN_2M: case MGN_5_5M: case MGN_11M:
return 0;
case MGN_6M: case MGN_9M: case MGN_12M: case MGN_18M:
case MGN_24M: case MGN_36M: case MGN_48M: case MGN_54M:
return 1;
case MGN_MCS0: case MGN_MCS1: case MGN_MCS2: case MGN_MCS3:
case MGN_MCS4: case MGN_MCS5: case MGN_MCS6: case MGN_MCS7:
return 2;
default:
return -1;
}
}
s8 phy_get_tx_pwr_lmt(struct adapter *adapter, u32 reg_pwr_tbl_sel,
enum channel_width bandwidth,
u8 rf_path, u8 data_rate, u8 channel)
{
s16 idx_regulation = -1;
s16 idx_bandwidth = -1;
s16 idx_rate_sctn = -1;
s16 idx_channel = -1;
s8 pwr_lmt = MAX_POWER_INDEX;
struct hal_com_data *hal_data = GET_HAL_DATA(adapter);
s8 limits[10] = {0}; u8 i = 0;
if (((adapter->registrypriv.RegEnableTxPowerLimit == 2) &&
(hal_data->EEPROMRegulatory != 1)) ||
(adapter->registrypriv.RegEnableTxPowerLimit == 0))
return MAX_POWER_INDEX;
switch (adapter->registrypriv.RegPwrTblSel) {
case 1:
idx_regulation = TXPWR_LMT_ETSI;
break;
case 2:
idx_regulation = TXPWR_LMT_MKK;
break;
case 3:
idx_regulation = TXPWR_LMT_FCC;
break;
case 4:
idx_regulation = TXPWR_LMT_WW;
break;
default:
idx_regulation = hal_data->Regulation2_4G;
break;
}
idx_bandwidth = get_bandwidth_idx(bandwidth);
idx_rate_sctn = get_rate_sctn_idx(data_rate);
if (idx_rate_sctn == 0 || idx_rate_sctn == 1)
idx_bandwidth = 0;
channel = phy_GetChannelIndexOfTxPowerLimit(channel);
if (idx_regulation == -1 || idx_bandwidth == -1 ||
idx_rate_sctn == -1 || idx_channel == -1)
return MAX_POWER_INDEX;
for (i = 0; i < MAX_REGULATION_NUM; i++)
limits[i] = hal_data->TxPwrLimit_2_4G[i]
[idx_bandwidth]
[idx_rate_sctn]
[idx_channel]
[rf_path];
pwr_lmt = (idx_regulation == TXPWR_LMT_WW) ?
phy_GetWorldWideLimit(limits) :
hal_data->TxPwrLimit_2_4G[idx_regulation]
[idx_bandwidth]
[idx_rate_sctn]
[idx_channel]
[rf_path];
return pwr_lmt;
}
void PHY_ConvertTxPowerLimitToPowerIndex(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 BW40PwrBasedBm2_4G = 0x2E;
u8 regulation, bw, channel, rateSection;
s8 tempValue = 0, tempPwrLmt = 0;
u8 rfPath = 0;
for (regulation = 0; regulation < MAX_REGULATION_NUM; ++regulation) {
for (bw = 0; bw < MAX_2_4G_BANDWIDTH_NUM; ++bw) {
for (channel = 0; channel < CHANNEL_MAX_NUMBER_2G; ++channel) {
for (rateSection = 0; rateSection < MAX_RATE_SECTION_NUM; ++rateSection) {
tempPwrLmt = pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][RF_PATH_A];
for (rfPath = RF_PATH_A; rfPath < MAX_RF_PATH_NUM; ++rfPath) {
if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) {
if (rateSection == 2)
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, rfPath, HT_MCS0_MCS7);
else if (rateSection == 1)
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, rfPath, OFDM);
else if (rateSection == 0)
BW40PwrBasedBm2_4G = PHY_GetTxPowerByRateBase(Adapter, rfPath, CCK);
} else
BW40PwrBasedBm2_4G = Adapter->registrypriv.RegPowerBase * 2;
if (tempPwrLmt != MAX_POWER_INDEX) {
tempValue = tempPwrLmt - BW40PwrBasedBm2_4G;
pHalData->TxPwrLimit_2_4G[regulation][bw][rateSection][channel][rfPath] = tempValue;
}
}
}
}
}
}
}
void PHY_InitTxPowerLimit(struct adapter *Adapter)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 i, j, k, l, m;
for (i = 0; i < MAX_REGULATION_NUM; ++i) {
for (j = 0; j < MAX_2_4G_BANDWIDTH_NUM; ++j)
for (k = 0; k < MAX_RATE_SECTION_NUM; ++k)
for (m = 0; m < CHANNEL_MAX_NUMBER_2G; ++m)
for (l = 0; l < MAX_RF_PATH_NUM; ++l)
pHalData->TxPwrLimit_2_4G[i][j][k][m][l] = MAX_POWER_INDEX;
}
}
void PHY_SetTxPowerLimit(
struct adapter *Adapter,
u8 *Regulation,
u8 *Bandwidth,
u8 *RateSection,
u8 *RfPath,
u8 *Channel,
u8 *PowerLimit
)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
u8 regulation = 0, bandwidth = 0, rateSection = 0, channel;
s8 powerLimit = 0, prevPowerLimit, channelIndex;
GetU1ByteIntegerFromStringInDecimal((s8 *)Channel, &channel);
GetU1ByteIntegerFromStringInDecimal((s8 *)PowerLimit, &powerLimit);
powerLimit = powerLimit > MAX_POWER_INDEX ? MAX_POWER_INDEX : powerLimit;
if (eqNByte(Regulation, (u8 *)("FCC"), 3))
regulation = 0;
else if (eqNByte(Regulation, (u8 *)("MKK"), 3))
regulation = 1;
else if (eqNByte(Regulation, (u8 *)("ETSI"), 4))
regulation = 2;
else if (eqNByte(Regulation, (u8 *)("WW13"), 4))
regulation = 3;
if (eqNByte(RateSection, (u8 *)("CCK"), 3) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 0;
else if (eqNByte(RateSection, (u8 *)("OFDM"), 4) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 1;
else if (eqNByte(RateSection, (u8 *)("HT"), 2) && eqNByte(RfPath, (u8 *)("1T"), 2))
rateSection = 2;
else
return;
if (eqNByte(Bandwidth, (u8 *)("20M"), 3))
bandwidth = 0;
else if (eqNByte(Bandwidth, (u8 *)("40M"), 3))
bandwidth = 1;
channelIndex = phy_GetChannelIndexOfTxPowerLimit(channel);
if (channelIndex == -1)
return;
prevPowerLimit = pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A];
if (powerLimit < prevPowerLimit)
pHalData->TxPwrLimit_2_4G[regulation][bandwidth][rateSection][channelIndex][RF_PATH_A] = powerLimit;
}
void Hal_ChannelPlanToRegulation(struct adapter *Adapter, u16 ChannelPlan)
{
struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
pHalData->Regulation2_4G = TXPWR_LMT_WW;
switch (ChannelPlan) {
case RT_CHANNEL_DOMAIN_WORLD_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_WW;
break;
case RT_CHANNEL_DOMAIN_ETSI1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_ETSI2_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK1:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_WORLD_KCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC4:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC5:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_FCC6:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC7:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK2:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_MKK1_MKK3:
pHalData->Regulation2_4G = TXPWR_LMT_MKK;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC1:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_GLOBAL_NULL:
pHalData->Regulation2_4G = TXPWR_LMT_WW;
break;
case RT_CHANNEL_DOMAIN_ETSI1_ETSI4:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC2:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC3:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI5:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC8:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI6:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI7:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI8:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI9:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI10:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI11:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_NCC4:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI12:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC9:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_WORLD_ETSI13:
pHalData->Regulation2_4G = TXPWR_LMT_ETSI;
break;
case RT_CHANNEL_DOMAIN_FCC1_FCC10:
pHalData->Regulation2_4G = TXPWR_LMT_FCC;
break;
case RT_CHANNEL_DOMAIN_REALTEK_DEFINE:
pHalData->Regulation2_4G = TXPWR_LMT_WW;
break;
default:
break;
}
}