#include "dm_services.h"
#include "dc_types.h"
#include "core_types.h"
#include "include/grph_object_id.h"
#include "include/logger_interface.h"
#include "dce_clock_source.h"
#include "clk_mgr.h"
#include "reg_helper.h"
#define REG(reg)\
(clk_src->regs->reg)
#define CTX \
clk_src->base.ctx
#define DC_LOGGER_INIT()
#undef FN
#define FN(reg_name, field_name) \
clk_src->cs_shift->field_name, clk_src->cs_mask->field_name
#define FRACT_FB_DIVIDER_DEC_POINTS_MAX_NUM 6
#define CALC_PLL_CLK_SRC_ERR_TOLERANCE 1
#define MAX_PLL_CALC_ERROR 0xFFFFFFFF
#define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
static const struct spread_spectrum_data *get_ss_data_entry(
struct dce110_clk_src *clk_src,
enum signal_type signal,
uint32_t pix_clk_khz)
{
uint32_t entrys_num;
uint32_t i;
struct spread_spectrum_data *ss_parm = NULL;
struct spread_spectrum_data *ret = NULL;
switch (signal) {
case SIGNAL_TYPE_DVI_SINGLE_LINK:
case SIGNAL_TYPE_DVI_DUAL_LINK:
ss_parm = clk_src->dvi_ss_params;
entrys_num = clk_src->dvi_ss_params_cnt;
break;
case SIGNAL_TYPE_HDMI_TYPE_A:
ss_parm = clk_src->hdmi_ss_params;
entrys_num = clk_src->hdmi_ss_params_cnt;
break;
case SIGNAL_TYPE_LVDS:
ss_parm = clk_src->lvds_ss_params;
entrys_num = clk_src->lvds_ss_params_cnt;
break;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_EDP:
case SIGNAL_TYPE_VIRTUAL:
ss_parm = clk_src->dp_ss_params;
entrys_num = clk_src->dp_ss_params_cnt;
break;
default:
ss_parm = NULL;
entrys_num = 0;
break;
}
if (ss_parm == NULL)
return ret;
for (i = 0; i < entrys_num; ++i, ++ss_parm) {
if (ss_parm->freq_range_khz >= pix_clk_khz) {
ret = ss_parm;
break;
}
}
return ret;
}
static bool calculate_fb_and_fractional_fb_divider(
struct calc_pll_clock_source *calc_pll_cs,
uint32_t target_pix_clk_100hz,
uint32_t ref_divider,
uint32_t post_divider,
uint32_t *feedback_divider_param,
uint32_t *fract_feedback_divider_param)
{
uint64_t feedback_divider;
feedback_divider =
(uint64_t)target_pix_clk_100hz * ref_divider * post_divider;
feedback_divider *= 10;
feedback_divider *= (uint64_t)(calc_pll_cs->fract_fb_divider_factor);
feedback_divider = div_u64(feedback_divider, calc_pll_cs->ref_freq_khz * 10ull);
feedback_divider += 5ULL *
calc_pll_cs->fract_fb_divider_precision_factor;
feedback_divider =
div_u64(feedback_divider,
calc_pll_cs->fract_fb_divider_precision_factor * 10);
feedback_divider *= (uint64_t)
(calc_pll_cs->fract_fb_divider_precision_factor);
*feedback_divider_param =
div_u64_rem(
feedback_divider,
calc_pll_cs->fract_fb_divider_factor,
fract_feedback_divider_param);
if (*feedback_divider_param != 0)
return true;
return false;
}
static bool calc_fb_divider_checking_tolerance(
struct calc_pll_clock_source *calc_pll_cs,
struct pll_settings *pll_settings,
uint32_t ref_divider,
uint32_t post_divider,
uint32_t tolerance)
{
uint32_t feedback_divider;
uint32_t fract_feedback_divider;
uint32_t actual_calculated_clock_100hz;
uint32_t abs_err;
uint64_t actual_calc_clk_100hz;
calculate_fb_and_fractional_fb_divider(
calc_pll_cs,
pll_settings->adjusted_pix_clk_100hz,
ref_divider,
post_divider,
&feedback_divider,
&fract_feedback_divider);
actual_calc_clk_100hz = (uint64_t)feedback_divider *
calc_pll_cs->fract_fb_divider_factor +
fract_feedback_divider;
actual_calc_clk_100hz *= calc_pll_cs->ref_freq_khz * 10;
actual_calc_clk_100hz =
div_u64(actual_calc_clk_100hz,
ref_divider * post_divider *
calc_pll_cs->fract_fb_divider_factor);
actual_calculated_clock_100hz = (uint32_t)(actual_calc_clk_100hz);
abs_err = (actual_calculated_clock_100hz >
pll_settings->adjusted_pix_clk_100hz)
? actual_calculated_clock_100hz -
pll_settings->adjusted_pix_clk_100hz
: pll_settings->adjusted_pix_clk_100hz -
actual_calculated_clock_100hz;
if (abs_err <= tolerance) {
pll_settings->reference_freq = calc_pll_cs->ref_freq_khz;
pll_settings->reference_divider = ref_divider;
pll_settings->feedback_divider = feedback_divider;
pll_settings->fract_feedback_divider = fract_feedback_divider;
pll_settings->pix_clk_post_divider = post_divider;
pll_settings->calculated_pix_clk_100hz =
actual_calculated_clock_100hz;
pll_settings->vco_freq =
div_u64((u64)actual_calculated_clock_100hz * post_divider, 10);
return true;
}
return false;
}
static bool calc_pll_dividers_in_range(
struct calc_pll_clock_source *calc_pll_cs,
struct pll_settings *pll_settings,
uint32_t min_ref_divider,
uint32_t max_ref_divider,
uint32_t min_post_divider,
uint32_t max_post_divider,
uint32_t err_tolerance)
{
uint32_t ref_divider;
uint32_t post_divider;
uint32_t tolerance;
tolerance = (pll_settings->adjusted_pix_clk_100hz * err_tolerance) /
100000;
if (tolerance < CALC_PLL_CLK_SRC_ERR_TOLERANCE)
tolerance = CALC_PLL_CLK_SRC_ERR_TOLERANCE;
for (
post_divider = max_post_divider;
post_divider >= min_post_divider;
--post_divider) {
for (
ref_divider = min_ref_divider;
ref_divider <= max_ref_divider;
++ref_divider) {
if (calc_fb_divider_checking_tolerance(
calc_pll_cs,
pll_settings,
ref_divider,
post_divider,
tolerance)) {
return true;
}
}
}
return false;
}
static uint32_t calculate_pixel_clock_pll_dividers(
struct calc_pll_clock_source *calc_pll_cs,
struct pll_settings *pll_settings)
{
uint32_t err_tolerance;
uint32_t min_post_divider;
uint32_t max_post_divider;
uint32_t min_ref_divider;
uint32_t max_ref_divider;
if (pll_settings->adjusted_pix_clk_100hz == 0) {
DC_LOG_ERROR(
"%s Bad requested pixel clock", __func__);
return MAX_PLL_CALC_ERROR;
}
if (pll_settings->pix_clk_post_divider) {
min_post_divider = pll_settings->pix_clk_post_divider;
max_post_divider = pll_settings->pix_clk_post_divider;
} else {
min_post_divider = calc_pll_cs->min_pix_clock_pll_post_divider;
if (min_post_divider * pll_settings->adjusted_pix_clk_100hz <
calc_pll_cs->min_vco_khz * 10) {
min_post_divider = calc_pll_cs->min_vco_khz * 10 /
pll_settings->adjusted_pix_clk_100hz;
if ((min_post_divider *
pll_settings->adjusted_pix_clk_100hz) <
calc_pll_cs->min_vco_khz * 10)
min_post_divider++;
}
max_post_divider = calc_pll_cs->max_pix_clock_pll_post_divider;
if (max_post_divider * pll_settings->adjusted_pix_clk_100hz
> calc_pll_cs->max_vco_khz * 10)
max_post_divider = calc_pll_cs->max_vco_khz * 10 /
pll_settings->adjusted_pix_clk_100hz;
}
if (pll_settings->reference_divider) {
min_ref_divider = pll_settings->reference_divider;
max_ref_divider = pll_settings->reference_divider;
} else {
min_ref_divider = ((calc_pll_cs->ref_freq_khz
/ calc_pll_cs->max_pll_input_freq_khz)
> calc_pll_cs->min_pll_ref_divider)
? calc_pll_cs->ref_freq_khz
/ calc_pll_cs->max_pll_input_freq_khz
: calc_pll_cs->min_pll_ref_divider;
max_ref_divider = ((calc_pll_cs->ref_freq_khz
/ calc_pll_cs->min_pll_input_freq_khz)
< calc_pll_cs->max_pll_ref_divider)
? calc_pll_cs->ref_freq_khz /
calc_pll_cs->min_pll_input_freq_khz
: calc_pll_cs->max_pll_ref_divider;
}
if (min_post_divider > max_post_divider) {
DC_LOG_ERROR(
"%s Post divider range is invalid", __func__);
return MAX_PLL_CALC_ERROR;
}
if (min_ref_divider > max_ref_divider) {
DC_LOG_ERROR(
"%s Reference divider range is invalid", __func__);
return MAX_PLL_CALC_ERROR;
}
err_tolerance = MAX_PLL_CALC_ERROR;
while (!calc_pll_dividers_in_range(
calc_pll_cs,
pll_settings,
min_ref_divider,
max_ref_divider,
min_post_divider,
max_post_divider,
err_tolerance))
err_tolerance += (err_tolerance > 10)
? (err_tolerance / 10)
: 1;
return err_tolerance;
}
static bool pll_adjust_pix_clk(
struct dce110_clk_src *clk_src,
struct pixel_clk_params *pix_clk_params,
struct pll_settings *pll_settings)
{
uint32_t actual_pix_clk_100hz = 0;
uint32_t requested_clk_100hz = 0;
struct bp_adjust_pixel_clock_parameters bp_adjust_pixel_clock_params = {
0 };
enum bp_result bp_result;
switch (pix_clk_params->signal_type) {
case SIGNAL_TYPE_HDMI_TYPE_A: {
requested_clk_100hz = pix_clk_params->requested_pix_clk_100hz;
if (pix_clk_params->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
switch (pix_clk_params->color_depth) {
case COLOR_DEPTH_101010:
requested_clk_100hz = (requested_clk_100hz * 5) >> 2;
break;
case COLOR_DEPTH_121212:
requested_clk_100hz = (requested_clk_100hz * 6) >> 2;
break;
case COLOR_DEPTH_161616:
requested_clk_100hz = requested_clk_100hz * 2;
break;
default:
break;
}
}
actual_pix_clk_100hz = requested_clk_100hz;
}
break;
case SIGNAL_TYPE_DISPLAY_PORT:
case SIGNAL_TYPE_DISPLAY_PORT_MST:
case SIGNAL_TYPE_EDP:
requested_clk_100hz = pix_clk_params->requested_sym_clk * 10;
actual_pix_clk_100hz = pix_clk_params->requested_pix_clk_100hz;
break;
default:
requested_clk_100hz = pix_clk_params->requested_pix_clk_100hz;
actual_pix_clk_100hz = pix_clk_params->requested_pix_clk_100hz;
break;
}
bp_adjust_pixel_clock_params.pixel_clock = requested_clk_100hz / 10;
bp_adjust_pixel_clock_params.
encoder_object_id = pix_clk_params->encoder_object_id;
bp_adjust_pixel_clock_params.signal_type = pix_clk_params->signal_type;
bp_adjust_pixel_clock_params.
ss_enable = pix_clk_params->flags.ENABLE_SS;
bp_result = clk_src->bios->funcs->adjust_pixel_clock(
clk_src->bios, &bp_adjust_pixel_clock_params);
if (bp_result == BP_RESULT_OK) {
pll_settings->actual_pix_clk_100hz = actual_pix_clk_100hz;
pll_settings->adjusted_pix_clk_100hz =
bp_adjust_pixel_clock_params.adjusted_pixel_clock * 10;
pll_settings->reference_divider =
bp_adjust_pixel_clock_params.reference_divider;
pll_settings->pix_clk_post_divider =
bp_adjust_pixel_clock_params.pixel_clock_post_divider;
return true;
}
return false;
}
static uint32_t dce110_get_pix_clk_dividers_helper (
struct dce110_clk_src *clk_src,
struct pll_settings *pll_settings,
struct pixel_clk_params *pix_clk_params)
{
uint32_t field = 0;
uint32_t pll_calc_error = MAX_PLL_CALC_ERROR;
DC_LOGGER_INIT();
REG_GET(PLL_CNTL, PLL_REF_DIV_SRC, &field);
pll_settings->use_external_clk = (field > 1);
if ((pix_clk_params->flags.ENABLE_SS) ||
(dc_is_dp_signal(pix_clk_params->signal_type))) {
const struct spread_spectrum_data *ss_data = get_ss_data_entry(
clk_src,
pix_clk_params->signal_type,
pll_settings->adjusted_pix_clk_100hz / 10);
if (NULL != ss_data)
pll_settings->ss_percentage = ss_data->percentage;
}
if (!pll_adjust_pix_clk(clk_src, pix_clk_params, pll_settings)) {
DC_LOG_ERROR(
"%s: Failed to adjust pixel clock!!", __func__);
pll_settings->actual_pix_clk_100hz =
pix_clk_params->requested_pix_clk_100hz;
pll_settings->adjusted_pix_clk_100hz =
pix_clk_params->requested_pix_clk_100hz;
if (dc_is_dp_signal(pix_clk_params->signal_type))
pll_settings->adjusted_pix_clk_100hz = 1000000;
}
if (pix_clk_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A)
pll_calc_error =
calculate_pixel_clock_pll_dividers(
&clk_src->calc_pll_hdmi,
pll_settings);
else
pll_calc_error =
calculate_pixel_clock_pll_dividers(
&clk_src->calc_pll,
pll_settings);
return pll_calc_error;
}
static void dce112_get_pix_clk_dividers_helper (
struct dce110_clk_src *clk_src,
struct pll_settings *pll_settings,
struct pixel_clk_params *pix_clk_params)
{
uint32_t actual_pixel_clock_100hz;
actual_pixel_clock_100hz = pix_clk_params->requested_pix_clk_100hz;
if (pix_clk_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A) {
switch (pix_clk_params->color_depth) {
case COLOR_DEPTH_101010:
actual_pixel_clock_100hz = (actual_pixel_clock_100hz * 5) >> 2;
actual_pixel_clock_100hz -= actual_pixel_clock_100hz % 10;
break;
case COLOR_DEPTH_121212:
actual_pixel_clock_100hz = (actual_pixel_clock_100hz * 6) >> 2;
actual_pixel_clock_100hz -= actual_pixel_clock_100hz % 10;
break;
case COLOR_DEPTH_161616:
actual_pixel_clock_100hz = actual_pixel_clock_100hz * 2;
break;
default:
break;
}
}
pll_settings->actual_pix_clk_100hz = actual_pixel_clock_100hz;
pll_settings->adjusted_pix_clk_100hz = actual_pixel_clock_100hz;
pll_settings->calculated_pix_clk_100hz = pix_clk_params->requested_pix_clk_100hz;
}
static uint32_t dce110_get_pix_clk_dividers(
struct clock_source *cs,
struct pixel_clk_params *pix_clk_params,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(cs);
uint32_t pll_calc_error = MAX_PLL_CALC_ERROR;
DC_LOGGER_INIT();
if (pix_clk_params == NULL || pll_settings == NULL
|| pix_clk_params->requested_pix_clk_100hz == 0) {
DC_LOG_ERROR(
"%s: Invalid parameters!!\n", __func__);
return pll_calc_error;
}
memset(pll_settings, 0, sizeof(*pll_settings));
if (cs->id == CLOCK_SOURCE_ID_DP_DTO ||
cs->id == CLOCK_SOURCE_ID_EXTERNAL) {
pll_settings->adjusted_pix_clk_100hz = clk_src->ext_clk_khz * 10;
pll_settings->calculated_pix_clk_100hz = clk_src->ext_clk_khz * 10;
pll_settings->actual_pix_clk_100hz =
pix_clk_params->requested_pix_clk_100hz;
return 0;
}
pll_calc_error = dce110_get_pix_clk_dividers_helper(clk_src,
pll_settings, pix_clk_params);
return pll_calc_error;
}
static uint32_t dce112_get_pix_clk_dividers(
struct clock_source *cs,
struct pixel_clk_params *pix_clk_params,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(cs);
DC_LOGGER_INIT();
if (pix_clk_params == NULL || pll_settings == NULL
|| pix_clk_params->requested_pix_clk_100hz == 0) {
DC_LOG_ERROR(
"%s: Invalid parameters!!\n", __func__);
return -1;
}
memset(pll_settings, 0, sizeof(*pll_settings));
if (cs->id == CLOCK_SOURCE_ID_DP_DTO ||
cs->id == CLOCK_SOURCE_ID_EXTERNAL) {
pll_settings->adjusted_pix_clk_100hz = clk_src->ext_clk_khz * 10;
pll_settings->calculated_pix_clk_100hz = clk_src->ext_clk_khz * 10;
pll_settings->actual_pix_clk_100hz =
pix_clk_params->requested_pix_clk_100hz;
return -1;
}
dce112_get_pix_clk_dividers_helper(clk_src,
pll_settings, pix_clk_params);
return 0;
}
static bool disable_spread_spectrum(struct dce110_clk_src *clk_src)
{
enum bp_result result;
struct bp_spread_spectrum_parameters bp_ss_params = {0};
bp_ss_params.pll_id = clk_src->base.id;
result = clk_src->bios->funcs->enable_spread_spectrum_on_ppll(
clk_src->bios,
&bp_ss_params,
false);
return result == BP_RESULT_OK;
}
static bool calculate_ss(
const struct pll_settings *pll_settings,
const struct spread_spectrum_data *ss_data,
struct delta_sigma_data *ds_data)
{
struct fixed31_32 fb_div;
struct fixed31_32 ss_amount;
struct fixed31_32 ss_nslip_amount;
struct fixed31_32 ss_ds_frac_amount;
struct fixed31_32 ss_step_size;
struct fixed31_32 modulation_time;
if (ds_data == NULL)
return false;
if (ss_data == NULL)
return false;
if (ss_data->percentage == 0)
return false;
if (pll_settings == NULL)
return false;
memset(ds_data, 0, sizeof(struct delta_sigma_data));
fb_div = dc_fixpt_from_fraction(
pll_settings->fract_feedback_divider, 1000000);
fb_div = dc_fixpt_add_int(fb_div, pll_settings->feedback_divider);
ds_data->ds_frac_amount = 0;
ss_amount = dc_fixpt_mul(
fb_div, dc_fixpt_from_fraction(ss_data->percentage,
100 * ss_data->percentage_divider));
ds_data->feedback_amount = dc_fixpt_floor(ss_amount);
ss_nslip_amount = dc_fixpt_sub(ss_amount,
dc_fixpt_from_int(ds_data->feedback_amount));
ss_nslip_amount = dc_fixpt_mul_int(ss_nslip_amount, 10);
ds_data->nfrac_amount = dc_fixpt_floor(ss_nslip_amount);
ss_ds_frac_amount = dc_fixpt_sub(ss_nslip_amount,
dc_fixpt_from_int(ds_data->nfrac_amount));
ss_ds_frac_amount = dc_fixpt_mul_int(ss_ds_frac_amount, 65536);
ds_data->ds_frac_amount = dc_fixpt_floor(ss_ds_frac_amount);
modulation_time = dc_fixpt_from_fraction(
pll_settings->reference_freq * 1000,
pll_settings->reference_divider * ss_data->modulation_freq_hz);
if (ss_data->flags.CENTER_SPREAD)
modulation_time = dc_fixpt_div_int(modulation_time, 4);
else
modulation_time = dc_fixpt_div_int(modulation_time, 2);
ss_step_size = dc_fixpt_div(ss_amount, modulation_time);
ss_step_size = dc_fixpt_mul_int(ss_step_size, 65536 * 10);
ds_data->ds_frac_size = dc_fixpt_floor(ss_step_size);
return true;
}
static bool enable_spread_spectrum(
struct dce110_clk_src *clk_src,
enum signal_type signal, struct pll_settings *pll_settings)
{
struct bp_spread_spectrum_parameters bp_params = {0};
struct delta_sigma_data d_s_data;
const struct spread_spectrum_data *ss_data = NULL;
ss_data = get_ss_data_entry(
clk_src,
signal,
pll_settings->calculated_pix_clk_100hz / 10);
if (ss_data != NULL && pll_settings->ss_percentage != 0) {
if (calculate_ss(pll_settings, ss_data, &d_s_data)) {
bp_params.ds.feedback_amount =
d_s_data.feedback_amount;
bp_params.ds.nfrac_amount =
d_s_data.nfrac_amount;
bp_params.ds.ds_frac_size = d_s_data.ds_frac_size;
bp_params.ds_frac_amount =
d_s_data.ds_frac_amount;
bp_params.flags.DS_TYPE = 1;
bp_params.pll_id = clk_src->base.id;
bp_params.percentage = ss_data->percentage;
if (ss_data->flags.CENTER_SPREAD)
bp_params.flags.CENTER_SPREAD = 1;
if (ss_data->flags.EXTERNAL_SS)
bp_params.flags.EXTERNAL_SS = 1;
if (BP_RESULT_OK !=
clk_src->bios->funcs->
enable_spread_spectrum_on_ppll(
clk_src->bios,
&bp_params,
true))
return false;
} else
return false;
}
return true;
}
static void dce110_program_pixel_clk_resync(
struct dce110_clk_src *clk_src,
enum signal_type signal_type,
enum dc_color_depth colordepth)
{
REG_UPDATE(RESYNC_CNTL,
DCCG_DEEP_COLOR_CNTL1, 0);
if (signal_type != SIGNAL_TYPE_HDMI_TYPE_A)
return;
switch (colordepth) {
case COLOR_DEPTH_888:
REG_UPDATE(RESYNC_CNTL,
DCCG_DEEP_COLOR_CNTL1, 0);
break;
case COLOR_DEPTH_101010:
REG_UPDATE(RESYNC_CNTL,
DCCG_DEEP_COLOR_CNTL1, 1);
break;
case COLOR_DEPTH_121212:
REG_UPDATE(RESYNC_CNTL,
DCCG_DEEP_COLOR_CNTL1, 2);
break;
case COLOR_DEPTH_161616:
REG_UPDATE(RESYNC_CNTL,
DCCG_DEEP_COLOR_CNTL1, 3);
break;
default:
break;
}
}
static void dce112_program_pixel_clk_resync(
struct dce110_clk_src *clk_src,
enum signal_type signal_type,
enum dc_color_depth colordepth,
bool enable_ycbcr420)
{
uint32_t deep_color_cntl = 0;
uint32_t double_rate_enable = 0;
if (signal_type == SIGNAL_TYPE_HDMI_TYPE_A) {
double_rate_enable = enable_ycbcr420 ? 1 : 0;
switch (colordepth) {
case COLOR_DEPTH_888:
deep_color_cntl = 0;
break;
case COLOR_DEPTH_101010:
deep_color_cntl = 1;
break;
case COLOR_DEPTH_121212:
deep_color_cntl = 2;
break;
case COLOR_DEPTH_161616:
deep_color_cntl = 3;
break;
default:
break;
}
}
if (clk_src->cs_mask->PHYPLLA_PIXCLK_DOUBLE_RATE_ENABLE)
REG_UPDATE_2(PIXCLK_RESYNC_CNTL,
PHYPLLA_DCCG_DEEP_COLOR_CNTL, deep_color_cntl,
PHYPLLA_PIXCLK_DOUBLE_RATE_ENABLE, double_rate_enable);
else
REG_UPDATE(PIXCLK_RESYNC_CNTL,
PHYPLLA_DCCG_DEEP_COLOR_CNTL, deep_color_cntl);
}
static bool dce110_program_pix_clk(
struct clock_source *clock_source,
struct pixel_clk_params *pix_clk_params,
enum dp_link_encoding encoding,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
struct bp_pixel_clock_parameters bp_pc_params = {0};
if (clock_source->id != CLOCK_SOURCE_ID_EXTERNAL &&
!dc_is_dp_signal(pix_clk_params->signal_type) &&
clock_source->ctx->dce_version <= DCE_VERSION_11_0)
disable_spread_spectrum(clk_src);
bp_pc_params.controller_id = pix_clk_params->controller_id;
bp_pc_params.pll_id = clock_source->id;
bp_pc_params.target_pixel_clock_100hz = pll_settings->actual_pix_clk_100hz;
bp_pc_params.encoder_object_id = pix_clk_params->encoder_object_id;
bp_pc_params.signal_type = pix_clk_params->signal_type;
bp_pc_params.reference_divider = pll_settings->reference_divider;
bp_pc_params.feedback_divider = pll_settings->feedback_divider;
bp_pc_params.fractional_feedback_divider =
pll_settings->fract_feedback_divider;
bp_pc_params.pixel_clock_post_divider =
pll_settings->pix_clk_post_divider;
bp_pc_params.flags.SET_EXTERNAL_REF_DIV_SRC =
pll_settings->use_external_clk;
switch (pix_clk_params->color_depth) {
case COLOR_DEPTH_101010:
bp_pc_params.color_depth = TRANSMITTER_COLOR_DEPTH_30;
break;
case COLOR_DEPTH_121212:
bp_pc_params.color_depth = TRANSMITTER_COLOR_DEPTH_36;
break;
case COLOR_DEPTH_161616:
bp_pc_params.color_depth = TRANSMITTER_COLOR_DEPTH_48;
break;
default:
break;
}
if (clk_src->bios->funcs->set_pixel_clock(
clk_src->bios, &bp_pc_params) != BP_RESULT_OK)
return false;
if (clock_source->id != CLOCK_SOURCE_ID_EXTERNAL
&& !dc_is_dp_signal(pix_clk_params->signal_type)) {
if (pix_clk_params->flags.ENABLE_SS)
if (!enable_spread_spectrum(clk_src,
pix_clk_params->signal_type,
pll_settings))
return false;
dce110_program_pixel_clk_resync(clk_src,
pix_clk_params->signal_type,
pix_clk_params->color_depth);
}
return true;
}
static bool dce112_program_pix_clk(
struct clock_source *clock_source,
struct pixel_clk_params *pix_clk_params,
enum dp_link_encoding encoding,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
struct bp_pixel_clock_parameters bp_pc_params = {0};
if (clock_source->id != CLOCK_SOURCE_ID_EXTERNAL &&
!dc_is_dp_signal(pix_clk_params->signal_type) &&
clock_source->ctx->dce_version <= DCE_VERSION_11_0)
disable_spread_spectrum(clk_src);
bp_pc_params.controller_id = pix_clk_params->controller_id;
bp_pc_params.pll_id = clock_source->id;
bp_pc_params.target_pixel_clock_100hz = pll_settings->actual_pix_clk_100hz;
bp_pc_params.encoder_object_id = pix_clk_params->encoder_object_id;
bp_pc_params.signal_type = pix_clk_params->signal_type;
if (clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
bp_pc_params.flags.SET_GENLOCK_REF_DIV_SRC =
pll_settings->use_external_clk;
bp_pc_params.flags.SET_XTALIN_REF_SRC =
!pll_settings->use_external_clk;
if (pix_clk_params->flags.SUPPORT_YCBCR420) {
bp_pc_params.flags.SUPPORT_YUV_420 = 1;
}
}
if (clk_src->bios->funcs->set_pixel_clock(
clk_src->bios, &bp_pc_params) != BP_RESULT_OK)
return false;
if (clock_source->id != CLOCK_SOURCE_ID_DP_DTO)
dce112_program_pixel_clk_resync(clk_src,
pix_clk_params->signal_type,
pix_clk_params->color_depth,
pix_clk_params->flags.SUPPORT_YCBCR420);
return true;
}
static bool dcn31_program_pix_clk(
struct clock_source *clock_source,
struct pixel_clk_params *pix_clk_params,
enum dp_link_encoding encoding,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
unsigned int inst = pix_clk_params->controller_id - CONTROLLER_ID_D0;
unsigned int dp_dto_ref_khz = clock_source->ctx->dc->clk_mgr->dprefclk_khz;
const struct pixel_rate_range_table_entry *e =
look_up_in_video_optimized_rate_tlb(pix_clk_params->requested_pix_clk_100hz / 10);
struct bp_pixel_clock_parameters bp_pc_params = {0};
enum transmitter_color_depth bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_24;
if (dc_is_dp_signal(pix_clk_params->signal_type) || dc_is_virtual_signal(pix_clk_params->signal_type)) {
if (e) {
REG_WRITE(PHASE[inst], e->target_pixel_rate_khz * e->mult_factor);
REG_WRITE(MODULO[inst], dp_dto_ref_khz * e->div_factor);
} else {
REG_WRITE(PHASE[inst], pll_settings->actual_pix_clk_100hz * 100);
REG_WRITE(MODULO[inst], dp_dto_ref_khz * 1000);
}
if (clk_src->cs_mask->PIPE0_DTO_SRC_SEL)
if (encoding == DP_128b_132b_ENCODING)
REG_UPDATE_2(PIXEL_RATE_CNTL[inst],
DP_DTO0_ENABLE, 1,
PIPE0_DTO_SRC_SEL, 2);
else
REG_UPDATE_2(PIXEL_RATE_CNTL[inst],
DP_DTO0_ENABLE, 1,
PIPE0_DTO_SRC_SEL, 1);
else
REG_UPDATE(PIXEL_RATE_CNTL[inst],
DP_DTO0_ENABLE, 1);
} else {
if (clk_src->cs_mask->PIPE0_DTO_SRC_SEL)
REG_UPDATE(PIXEL_RATE_CNTL[inst],
PIPE0_DTO_SRC_SEL, 0);
bp_pc_params.controller_id = pix_clk_params->controller_id;
bp_pc_params.pll_id = clock_source->id;
bp_pc_params.target_pixel_clock_100hz = pll_settings->actual_pix_clk_100hz;
bp_pc_params.encoder_object_id = pix_clk_params->encoder_object_id;
bp_pc_params.signal_type = pix_clk_params->signal_type;
if (pix_clk_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A) {
switch (pix_clk_params->color_depth) {
case COLOR_DEPTH_888:
bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_24;
break;
case COLOR_DEPTH_101010:
bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_30;
break;
case COLOR_DEPTH_121212:
bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_36;
break;
case COLOR_DEPTH_161616:
bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_48;
break;
default:
bp_pc_colour_depth = TRANSMITTER_COLOR_DEPTH_24;
break;
}
bp_pc_params.color_depth = bp_pc_colour_depth;
}
if (clock_source->id != CLOCK_SOURCE_ID_DP_DTO) {
bp_pc_params.flags.SET_GENLOCK_REF_DIV_SRC =
pll_settings->use_external_clk;
bp_pc_params.flags.SET_XTALIN_REF_SRC =
!pll_settings->use_external_clk;
if (pix_clk_params->flags.SUPPORT_YCBCR420) {
bp_pc_params.flags.SUPPORT_YUV_420 = 1;
}
}
if (clk_src->bios->funcs->set_pixel_clock(
clk_src->bios, &bp_pc_params) != BP_RESULT_OK)
return false;
if (clock_source->id != CLOCK_SOURCE_ID_DP_DTO)
dce112_program_pixel_clk_resync(clk_src,
pix_clk_params->signal_type,
pix_clk_params->color_depth,
pix_clk_params->flags.SUPPORT_YCBCR420);
}
return true;
}
static bool dce110_clock_source_power_down(
struct clock_source *clk_src)
{
struct dce110_clk_src *dce110_clk_src = TO_DCE110_CLK_SRC(clk_src);
enum bp_result bp_result;
struct bp_pixel_clock_parameters bp_pixel_clock_params = {0};
if (clk_src->dp_clk_src)
return true;
bp_pixel_clock_params.controller_id = CONTROLLER_ID_UNDEFINED;
bp_pixel_clock_params.pll_id = clk_src->id;
bp_pixel_clock_params.flags.FORCE_PROGRAMMING_OF_PLL = 1;
bp_result = dce110_clk_src->bios->funcs->set_pixel_clock(
dce110_clk_src->bios,
&bp_pixel_clock_params);
return bp_result == BP_RESULT_OK;
}
static bool get_pixel_clk_frequency_100hz(
const struct clock_source *clock_source,
unsigned int inst,
unsigned int *pixel_clk_khz)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
unsigned int clock_hz = 0;
unsigned int modulo_hz = 0;
if (clock_source->id == CLOCK_SOURCE_ID_DP_DTO) {
clock_hz = REG_READ(PHASE[inst]);
if (clock_source->ctx->dc->hwss.enable_vblanks_synchronization &&
clock_source->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0) {
modulo_hz = REG_READ(MODULO[inst]);
if (modulo_hz)
*pixel_clk_khz = div_u64((uint64_t)clock_hz*
clock_source->ctx->dc->clk_mgr->dprefclk_khz*10,
modulo_hz);
else
*pixel_clk_khz = 0;
} else {
*pixel_clk_khz = clock_hz / 100;
}
return true;
}
return false;
}
const struct pixel_rate_range_table_entry video_optimized_pixel_rates[] = {
{25170, 25180, 25200, 1000, 1001},
{59340, 59350, 59400, 1000, 1001},
{74170, 74180, 74250, 1000, 1001},
{89910, 90000, 90000, 1000, 1001},
{125870, 125880, 126000, 1000, 1001},
{148350, 148360, 148500, 1000, 1001},
{167830, 167840, 168000, 1000, 1001},
{222520, 222530, 222750, 1000, 1001},
{257140, 257150, 257400, 1000, 1001},
{296700, 296710, 297000, 1000, 1001},
{342850, 342860, 343200, 1000, 1001},
{395600, 395610, 396000, 1000, 1001},
{409090, 409100, 409500, 1000, 1001},
{445050, 445060, 445500, 1000, 1001},
{467530, 467540, 468000, 1000, 1001},
{519230, 519240, 519750, 1000, 1001},
{525970, 525980, 526500, 1000, 1001},
{545450, 545460, 546000, 1000, 1001},
{593400, 593410, 594000, 1000, 1001},
{623370, 623380, 624000, 1000, 1001},
{692300, 692310, 693000, 1000, 1001},
{701290, 701300, 702000, 1000, 1001},
{791200, 791210, 792000, 1000, 1001},
{890100, 890110, 891000, 1000, 1001},
{1186810, 1186820, 1188000, 1000, 1001},
{27020, 27030, 27000, 1001, 1000},
{54050, 54060, 54000, 1001, 1000},
{108100, 108110, 108000, 1001, 1000},
};
const struct pixel_rate_range_table_entry *look_up_in_video_optimized_rate_tlb(
unsigned int pixel_rate_khz)
{
int i;
for (i = 0; i < NUM_ELEMENTS(video_optimized_pixel_rates); i++) {
const struct pixel_rate_range_table_entry *e = &video_optimized_pixel_rates[i];
if (e->range_min_khz <= pixel_rate_khz && pixel_rate_khz <= e->range_max_khz) {
return e;
}
}
return NULL;
}
static bool dcn20_program_pix_clk(
struct clock_source *clock_source,
struct pixel_clk_params *pix_clk_params,
enum dp_link_encoding encoding,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
unsigned int inst = pix_clk_params->controller_id - CONTROLLER_ID_D0;
dce112_program_pix_clk(clock_source, pix_clk_params, encoding, pll_settings);
if (clock_source->ctx->dc->hwss.enable_vblanks_synchronization &&
clock_source->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0) {
REG_WRITE(MODULO[inst],
clock_source->ctx->dc->clk_mgr->dprefclk_khz*1000);
}
return true;
}
static bool dcn20_override_dp_pix_clk(
struct clock_source *clock_source,
unsigned int inst,
unsigned int pixel_clk,
unsigned int ref_clk)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
REG_UPDATE(PIXEL_RATE_CNTL[inst], DP_DTO0_ENABLE, 0);
REG_WRITE(PHASE[inst], pixel_clk);
REG_WRITE(MODULO[inst], ref_clk);
REG_UPDATE(PIXEL_RATE_CNTL[inst], DP_DTO0_ENABLE, 1);
return true;
}
static const struct clock_source_funcs dcn20_clk_src_funcs = {
.cs_power_down = dce110_clock_source_power_down,
.program_pix_clk = dcn20_program_pix_clk,
.get_pix_clk_dividers = dce112_get_pix_clk_dividers,
.get_pixel_clk_frequency_100hz = get_pixel_clk_frequency_100hz,
.override_dp_pix_clk = dcn20_override_dp_pix_clk
};
static bool dcn3_program_pix_clk(
struct clock_source *clock_source,
struct pixel_clk_params *pix_clk_params,
enum dp_link_encoding encoding,
struct pll_settings *pll_settings)
{
struct dce110_clk_src *clk_src = TO_DCE110_CLK_SRC(clock_source);
unsigned int inst = pix_clk_params->controller_id - CONTROLLER_ID_D0;
unsigned int dp_dto_ref_khz = clock_source->ctx->dc->clk_mgr->dprefclk_khz;
const struct pixel_rate_range_table_entry *e =
look_up_in_video_optimized_rate_tlb(pix_clk_params->requested_pix_clk_100hz / 10);
if (dc_is_dp_signal(pix_clk_params->signal_type)) {
if (e) {
REG_WRITE(PHASE[inst], e->target_pixel_rate_khz * e->mult_factor);
REG_WRITE(MODULO[inst], dp_dto_ref_khz * e->div_factor);
} else {
REG_WRITE(PHASE[inst], pll_settings->actual_pix_clk_100hz * 100);
REG_WRITE(MODULO[inst], dp_dto_ref_khz * 1000);
}
if (clk_src->cs_mask->PIPE0_DTO_SRC_SEL)
REG_UPDATE_2(PIXEL_RATE_CNTL[inst],
DP_DTO0_ENABLE, 1,
PIPE0_DTO_SRC_SEL, 1);
else
REG_UPDATE(PIXEL_RATE_CNTL[inst],
DP_DTO0_ENABLE, 1);
} else
dce112_program_pix_clk(clock_source, pix_clk_params, encoding, pll_settings);
return true;
}
static uint32_t dcn3_get_pix_clk_dividers(
struct clock_source *cs,
struct pixel_clk_params *pix_clk_params,
struct pll_settings *pll_settings)
{
unsigned long long actual_pix_clk_100Hz = pix_clk_params ? pix_clk_params->requested_pix_clk_100hz : 0;
DC_LOGGER_INIT();
if (pix_clk_params == NULL || pll_settings == NULL
|| pix_clk_params->requested_pix_clk_100hz == 0) {
DC_LOG_ERROR(
"%s: Invalid parameters!!\n", __func__);
return -1;
}
memset(pll_settings, 0, sizeof(*pll_settings));
if (pix_clk_params->signal_type == SIGNAL_TYPE_HDMI_TYPE_A) {
switch (pix_clk_params->color_depth) {
case COLOR_DEPTH_101010:
actual_pix_clk_100Hz = (actual_pix_clk_100Hz * 5) >> 2;
break;
case COLOR_DEPTH_121212:
actual_pix_clk_100Hz = (actual_pix_clk_100Hz * 6) >> 2;
break;
case COLOR_DEPTH_161616:
actual_pix_clk_100Hz = actual_pix_clk_100Hz * 2;
break;
default:
break;
}
}
pll_settings->actual_pix_clk_100hz = (unsigned int) actual_pix_clk_100Hz;
pll_settings->adjusted_pix_clk_100hz = (unsigned int) actual_pix_clk_100Hz;
pll_settings->calculated_pix_clk_100hz = (unsigned int) actual_pix_clk_100Hz;
return 0;
}
static const struct clock_source_funcs dcn3_clk_src_funcs = {
.cs_power_down = dce110_clock_source_power_down,
.program_pix_clk = dcn3_program_pix_clk,
.get_pix_clk_dividers = dcn3_get_pix_clk_dividers,
.get_pixel_clk_frequency_100hz = get_pixel_clk_frequency_100hz
};
static const struct clock_source_funcs dcn31_clk_src_funcs = {
.cs_power_down = dce110_clock_source_power_down,
.program_pix_clk = dcn31_program_pix_clk,
.get_pix_clk_dividers = dcn3_get_pix_clk_dividers,
.get_pixel_clk_frequency_100hz = get_pixel_clk_frequency_100hz
};
static const struct clock_source_funcs dce112_clk_src_funcs = {
.cs_power_down = dce110_clock_source_power_down,
.program_pix_clk = dce112_program_pix_clk,
.get_pix_clk_dividers = dce112_get_pix_clk_dividers,
.get_pixel_clk_frequency_100hz = get_pixel_clk_frequency_100hz
};
static const struct clock_source_funcs dce110_clk_src_funcs = {
.cs_power_down = dce110_clock_source_power_down,
.program_pix_clk = dce110_program_pix_clk,
.get_pix_clk_dividers = dce110_get_pix_clk_dividers,
.get_pixel_clk_frequency_100hz = get_pixel_clk_frequency_100hz
};
static void get_ss_info_from_atombios(
struct dce110_clk_src *clk_src,
enum as_signal_type as_signal,
struct spread_spectrum_data *spread_spectrum_data[],
uint32_t *ss_entries_num)
{
enum bp_result bp_result = BP_RESULT_FAILURE;
struct spread_spectrum_info *ss_info;
struct spread_spectrum_data *ss_data;
struct spread_spectrum_info *ss_info_cur;
struct spread_spectrum_data *ss_data_cur;
uint32_t i;
DC_LOGGER_INIT();
if (ss_entries_num == NULL) {
DC_LOG_SYNC(
"Invalid entry !!!\n");
return;
}
if (spread_spectrum_data == NULL) {
DC_LOG_SYNC(
"Invalid array pointer!!!\n");
return;
}
spread_spectrum_data[0] = NULL;
*ss_entries_num = 0;
*ss_entries_num = clk_src->bios->funcs->get_ss_entry_number(
clk_src->bios,
as_signal);
if (*ss_entries_num == 0)
return;
ss_info = kcalloc(*ss_entries_num,
sizeof(struct spread_spectrum_info),
GFP_KERNEL);
ss_info_cur = ss_info;
if (ss_info == NULL)
return;
ss_data = kcalloc(*ss_entries_num,
sizeof(struct spread_spectrum_data),
GFP_KERNEL);
if (ss_data == NULL)
goto out_free_info;
for (i = 0, ss_info_cur = ss_info;
i < (*ss_entries_num);
++i, ++ss_info_cur) {
bp_result = clk_src->bios->funcs->get_spread_spectrum_info(
clk_src->bios,
as_signal,
i,
ss_info_cur);
if (bp_result != BP_RESULT_OK)
goto out_free_data;
}
for (i = 0, ss_info_cur = ss_info, ss_data_cur = ss_data;
i < (*ss_entries_num);
++i, ++ss_info_cur, ++ss_data_cur) {
if (ss_info_cur->type.STEP_AND_DELAY_INFO != false) {
DC_LOG_SYNC(
"Invalid ATOMBIOS SS Table!!!\n");
goto out_free_data;
}
if (as_signal == AS_SIGNAL_TYPE_HDMI
&& ss_info_cur->spread_spectrum_percentage > 6){
DC_LOG_SYNC(
"Invalid SS percentage ");
DC_LOG_SYNC(
"for HDMI in ATOMBIOS info Table!!!\n");
continue;
}
if (ss_info_cur->spread_percentage_divider == 1000) {
ss_info_cur->spread_spectrum_percentage /= 10;
ss_info_cur->spread_percentage_divider = 100;
}
ss_data_cur->freq_range_khz = ss_info_cur->target_clock_range;
ss_data_cur->percentage =
ss_info_cur->spread_spectrum_percentage;
ss_data_cur->percentage_divider =
ss_info_cur->spread_percentage_divider;
ss_data_cur->modulation_freq_hz =
ss_info_cur->spread_spectrum_range;
if (ss_info_cur->type.CENTER_MODE)
ss_data_cur->flags.CENTER_SPREAD = 1;
if (ss_info_cur->type.EXTERNAL)
ss_data_cur->flags.EXTERNAL_SS = 1;
}
*spread_spectrum_data = ss_data;
kfree(ss_info);
return;
out_free_data:
kfree(ss_data);
*ss_entries_num = 0;
out_free_info:
kfree(ss_info);
}
static void ss_info_from_atombios_create(
struct dce110_clk_src *clk_src)
{
get_ss_info_from_atombios(
clk_src,
AS_SIGNAL_TYPE_DISPLAY_PORT,
&clk_src->dp_ss_params,
&clk_src->dp_ss_params_cnt);
get_ss_info_from_atombios(
clk_src,
AS_SIGNAL_TYPE_HDMI,
&clk_src->hdmi_ss_params,
&clk_src->hdmi_ss_params_cnt);
get_ss_info_from_atombios(
clk_src,
AS_SIGNAL_TYPE_DVI,
&clk_src->dvi_ss_params,
&clk_src->dvi_ss_params_cnt);
get_ss_info_from_atombios(
clk_src,
AS_SIGNAL_TYPE_LVDS,
&clk_src->lvds_ss_params,
&clk_src->lvds_ss_params_cnt);
}
static bool calc_pll_max_vco_construct(
struct calc_pll_clock_source *calc_pll_cs,
struct calc_pll_clock_source_init_data *init_data)
{
uint32_t i;
struct dc_firmware_info *fw_info;
if (calc_pll_cs == NULL ||
init_data == NULL ||
init_data->bp == NULL)
return false;
if (!init_data->bp->fw_info_valid)
return false;
fw_info = &init_data->bp->fw_info;
calc_pll_cs->ctx = init_data->ctx;
calc_pll_cs->ref_freq_khz = fw_info->pll_info.crystal_frequency;
calc_pll_cs->min_vco_khz =
fw_info->pll_info.min_output_pxl_clk_pll_frequency;
calc_pll_cs->max_vco_khz =
fw_info->pll_info.max_output_pxl_clk_pll_frequency;
if (init_data->max_override_input_pxl_clk_pll_freq_khz != 0)
calc_pll_cs->max_pll_input_freq_khz =
init_data->max_override_input_pxl_clk_pll_freq_khz;
else
calc_pll_cs->max_pll_input_freq_khz =
fw_info->pll_info.max_input_pxl_clk_pll_frequency;
if (init_data->min_override_input_pxl_clk_pll_freq_khz != 0)
calc_pll_cs->min_pll_input_freq_khz =
init_data->min_override_input_pxl_clk_pll_freq_khz;
else
calc_pll_cs->min_pll_input_freq_khz =
fw_info->pll_info.min_input_pxl_clk_pll_frequency;
calc_pll_cs->min_pix_clock_pll_post_divider =
init_data->min_pix_clk_pll_post_divider;
calc_pll_cs->max_pix_clock_pll_post_divider =
init_data->max_pix_clk_pll_post_divider;
calc_pll_cs->min_pll_ref_divider =
init_data->min_pll_ref_divider;
calc_pll_cs->max_pll_ref_divider =
init_data->max_pll_ref_divider;
if (init_data->num_fract_fb_divider_decimal_point == 0 ||
init_data->num_fract_fb_divider_decimal_point_precision >
init_data->num_fract_fb_divider_decimal_point) {
DC_LOG_ERROR(
"The dec point num or precision is incorrect!");
return false;
}
if (init_data->num_fract_fb_divider_decimal_point_precision == 0) {
DC_LOG_ERROR(
"Incorrect fract feedback divider precision num!");
return false;
}
calc_pll_cs->fract_fb_divider_decimal_points_num =
init_data->num_fract_fb_divider_decimal_point;
calc_pll_cs->fract_fb_divider_precision =
init_data->num_fract_fb_divider_decimal_point_precision;
calc_pll_cs->fract_fb_divider_factor = 1;
for (i = 0; i < calc_pll_cs->fract_fb_divider_decimal_points_num; ++i)
calc_pll_cs->fract_fb_divider_factor *= 10;
calc_pll_cs->fract_fb_divider_precision_factor = 1;
for (
i = 0;
i < (calc_pll_cs->fract_fb_divider_decimal_points_num -
calc_pll_cs->fract_fb_divider_precision);
++i)
calc_pll_cs->fract_fb_divider_precision_factor *= 10;
return true;
}
bool dce110_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
struct calc_pll_clock_source_init_data calc_pll_cs_init_data_hdmi;
struct calc_pll_clock_source_init_data calc_pll_cs_init_data;
clk_src->base.ctx = ctx;
clk_src->bios = bios;
clk_src->base.id = id;
clk_src->base.funcs = &dce110_clk_src_funcs;
clk_src->regs = regs;
clk_src->cs_shift = cs_shift;
clk_src->cs_mask = cs_mask;
if (!clk_src->bios->fw_info_valid) {
ASSERT_CRITICAL(false);
goto unexpected_failure;
}
clk_src->ext_clk_khz = clk_src->bios->fw_info.external_clock_source_frequency_for_dp;
calc_pll_cs_init_data.bp = bios;
calc_pll_cs_init_data.min_pix_clk_pll_post_divider = 1;
calc_pll_cs_init_data.max_pix_clk_pll_post_divider =
clk_src->cs_mask->PLL_POST_DIV_PIXCLK;
calc_pll_cs_init_data.min_pll_ref_divider = 1;
calc_pll_cs_init_data.max_pll_ref_divider = clk_src->cs_mask->PLL_REF_DIV;
calc_pll_cs_init_data.min_override_input_pxl_clk_pll_freq_khz = 0;
calc_pll_cs_init_data.max_override_input_pxl_clk_pll_freq_khz = 0;
calc_pll_cs_init_data.num_fract_fb_divider_decimal_point =
FRACT_FB_DIVIDER_DEC_POINTS_MAX_NUM;
calc_pll_cs_init_data.num_fract_fb_divider_decimal_point_precision =
FRACT_FB_DIVIDER_DEC_POINTS_MAX_NUM;
calc_pll_cs_init_data.ctx = ctx;
calc_pll_cs_init_data_hdmi.bp = bios;
calc_pll_cs_init_data_hdmi.min_pix_clk_pll_post_divider = 1;
calc_pll_cs_init_data_hdmi.max_pix_clk_pll_post_divider =
clk_src->cs_mask->PLL_POST_DIV_PIXCLK;
calc_pll_cs_init_data_hdmi.min_pll_ref_divider = 1;
calc_pll_cs_init_data_hdmi.max_pll_ref_divider = clk_src->cs_mask->PLL_REF_DIV;
calc_pll_cs_init_data_hdmi.min_override_input_pxl_clk_pll_freq_khz = 13500;
calc_pll_cs_init_data_hdmi.max_override_input_pxl_clk_pll_freq_khz = 27000;
calc_pll_cs_init_data_hdmi.num_fract_fb_divider_decimal_point =
FRACT_FB_DIVIDER_DEC_POINTS_MAX_NUM;
calc_pll_cs_init_data_hdmi.num_fract_fb_divider_decimal_point_precision =
FRACT_FB_DIVIDER_DEC_POINTS_MAX_NUM;
calc_pll_cs_init_data_hdmi.ctx = ctx;
clk_src->ref_freq_khz = clk_src->bios->fw_info.pll_info.crystal_frequency;
if (clk_src->base.id == CLOCK_SOURCE_ID_EXTERNAL)
return true;
ss_info_from_atombios_create(clk_src);
if (!calc_pll_max_vco_construct(
&clk_src->calc_pll,
&calc_pll_cs_init_data)) {
ASSERT_CRITICAL(false);
goto unexpected_failure;
}
calc_pll_cs_init_data_hdmi.
min_override_input_pxl_clk_pll_freq_khz = clk_src->ref_freq_khz/2;
calc_pll_cs_init_data_hdmi.
max_override_input_pxl_clk_pll_freq_khz = clk_src->ref_freq_khz;
if (!calc_pll_max_vco_construct(
&clk_src->calc_pll_hdmi, &calc_pll_cs_init_data_hdmi)) {
ASSERT_CRITICAL(false);
goto unexpected_failure;
}
return true;
unexpected_failure:
return false;
}
bool dce112_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
clk_src->base.ctx = ctx;
clk_src->bios = bios;
clk_src->base.id = id;
clk_src->base.funcs = &dce112_clk_src_funcs;
clk_src->regs = regs;
clk_src->cs_shift = cs_shift;
clk_src->cs_mask = cs_mask;
if (!clk_src->bios->fw_info_valid) {
ASSERT_CRITICAL(false);
return false;
}
clk_src->ext_clk_khz = clk_src->bios->fw_info.external_clock_source_frequency_for_dp;
return true;
}
bool dcn20_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
bool ret = dce112_clk_src_construct(clk_src, ctx, bios, id, regs, cs_shift, cs_mask);
clk_src->base.funcs = &dcn20_clk_src_funcs;
return ret;
}
bool dcn3_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
bool ret = dce112_clk_src_construct(clk_src, ctx, bios, id, regs, cs_shift, cs_mask);
clk_src->base.funcs = &dcn3_clk_src_funcs;
return ret;
}
bool dcn31_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
bool ret = dce112_clk_src_construct(clk_src, ctx, bios, id, regs, cs_shift, cs_mask);
clk_src->base.funcs = &dcn31_clk_src_funcs;
return ret;
}
bool dcn301_clk_src_construct(
struct dce110_clk_src *clk_src,
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
const struct dce110_clk_src_shift *cs_shift,
const struct dce110_clk_src_mask *cs_mask)
{
bool ret = dce112_clk_src_construct(clk_src, ctx, bios, id, regs, cs_shift, cs_mask);
clk_src->base.funcs = &dcn3_clk_src_funcs;
return ret;
}