#include <nvif/push006c.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
#include <nvif/if0020.h>
#include "nouveau_drv.h"
#include "nouveau_dma.h"
#include "nouveau_bo.h"
#include "nouveau_chan.h"
#include "nouveau_fence.h"
#include "nouveau_abi16.h"
#include "nouveau_vmm.h"
#include "nouveau_svm.h"
MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
int nouveau_vram_pushbuf;
module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
void
nouveau_channel_kill(struct nouveau_channel *chan)
{
atomic_set(&chan->killed, 1);
if (chan->fence)
nouveau_fence_context_kill(chan->fence, -ENODEV);
}
static int
nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
{
struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
struct nouveau_cli *cli = (void *)chan->user.client;
NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
if (unlikely(!atomic_read(&chan->killed)))
nouveau_channel_kill(chan);
return NVIF_EVENT_DROP;
}
int
nouveau_channel_idle(struct nouveau_channel *chan)
{
if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
struct nouveau_cli *cli = (void *)chan->user.client;
struct nouveau_fence *fence = NULL;
int ret;
ret = nouveau_fence_new(&fence, chan);
if (!ret) {
ret = nouveau_fence_wait(fence, false, false);
nouveau_fence_unref(&fence);
}
if (ret) {
NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
chan->chid, nvxx_client(&cli->base)->name);
return ret;
}
}
return 0;
}
void
nouveau_channel_del(struct nouveau_channel **pchan)
{
struct nouveau_channel *chan = *pchan;
if (chan) {
struct nouveau_cli *cli = (void *)chan->user.client;
if (chan->fence)
nouveau_fence(chan->drm)->context_del(chan);
if (cli)
nouveau_svmm_part(chan->vmm->svmm, chan->inst);
nvif_object_dtor(&chan->blit);
nvif_object_dtor(&chan->nvsw);
nvif_object_dtor(&chan->gart);
nvif_object_dtor(&chan->vram);
nvif_event_dtor(&chan->kill);
nvif_object_dtor(&chan->user);
nvif_mem_dtor(&chan->mem_userd);
nvif_object_dtor(&chan->push.ctxdma);
nouveau_vma_del(&chan->push.vma);
nouveau_bo_unmap(chan->push.buffer);
if (chan->push.buffer && chan->push.buffer->bo.pin_count)
nouveau_bo_unpin(chan->push.buffer);
nouveau_bo_ref(NULL, &chan->push.buffer);
kfree(chan);
}
*pchan = NULL;
}
static void
nouveau_channel_kick(struct nvif_push *push)
{
struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
FIRE_RING(chan);
chan->chan._push.bgn = chan->chan._push.cur;
}
static int
nouveau_channel_wait(struct nvif_push *push, u32 size)
{
struct nouveau_channel *chan = container_of(push, typeof(*chan), chan._push);
int ret;
chan->dma.cur = chan->dma.cur + (chan->chan._push.cur - chan->chan._push.bgn);
ret = RING_SPACE(chan, size);
if (ret == 0) {
chan->chan._push.bgn = chan->chan._push.mem.object.map.ptr;
chan->chan._push.bgn = chan->chan._push.bgn + chan->dma.cur;
chan->chan._push.cur = chan->chan._push.bgn;
chan->chan._push.end = chan->chan._push.bgn + size;
}
return ret;
}
static int
nouveau_channel_prep(struct nouveau_drm *drm, struct nvif_device *device,
u32 size, struct nouveau_channel **pchan)
{
struct nouveau_cli *cli = (void *)device->object.client;
struct nv_dma_v0 args = {};
struct nouveau_channel *chan;
u32 target;
int ret;
chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
if (!chan)
return -ENOMEM;
chan->device = device;
chan->drm = drm;
chan->vmm = nouveau_cli_vmm(cli);
atomic_set(&chan->killed, 0);
target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
if (nouveau_vram_pushbuf)
target = NOUVEAU_GEM_DOMAIN_VRAM;
ret = nouveau_bo_new(cli, size, 0, target, 0, 0, NULL, NULL,
&chan->push.buffer);
if (ret == 0) {
ret = nouveau_bo_pin(chan->push.buffer, target, false);
if (ret == 0)
ret = nouveau_bo_map(chan->push.buffer);
}
if (ret) {
nouveau_channel_del(pchan);
return ret;
}
chan->chan._push.mem.object.parent = cli->base.object.parent;
chan->chan._push.mem.object.client = &cli->base;
chan->chan._push.mem.object.name = "chanPush";
chan->chan._push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
chan->chan._push.wait = nouveau_channel_wait;
chan->chan._push.kick = nouveau_channel_kick;
chan->chan.push = &chan->chan._push;
chan->push.addr = chan->push.buffer->offset;
if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
&chan->push.vma);
if (ret) {
nouveau_channel_del(pchan);
return ret;
}
chan->push.addr = chan->push.vma->addr;
if (device->info.family >= NV_DEVICE_INFO_V0_FERMI)
return 0;
args.target = NV_DMA_V0_TARGET_VM;
args.access = NV_DMA_V0_ACCESS_VM;
args.start = 0;
args.limit = chan->vmm->vmm.limit - 1;
} else
if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
args.target = NV_DMA_V0_TARGET_PCI;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = nvxx_device(device)->func->
resource_addr(nvxx_device(device), 1);
args.limit = args.start + device->info.ram_user - 1;
} else {
args.target = NV_DMA_V0_TARGET_VRAM;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = 0;
args.limit = device->info.ram_user - 1;
}
} else {
if (chan->drm->agp.bridge) {
args.target = NV_DMA_V0_TARGET_AGP;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = chan->drm->agp.base;
args.limit = chan->drm->agp.base +
chan->drm->agp.size - 1;
} else {
args.target = NV_DMA_V0_TARGET_VM;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = 0;
args.limit = chan->vmm->vmm.limit - 1;
}
}
ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
NV_DMA_FROM_MEMORY, &args, sizeof(args),
&chan->push.ctxdma);
if (ret) {
nouveau_channel_del(pchan);
return ret;
}
return 0;
}
static int
nouveau_channel_ctor(struct nouveau_drm *drm, struct nvif_device *device, bool priv, u64 runm,
struct nouveau_channel **pchan)
{
const struct nvif_mclass hosts[] = {
{ AMPERE_CHANNEL_GPFIFO_B, 0 },
{ AMPERE_CHANNEL_GPFIFO_A, 0 },
{ TURING_CHANNEL_GPFIFO_A, 0 },
{ VOLTA_CHANNEL_GPFIFO_A, 0 },
{ PASCAL_CHANNEL_GPFIFO_A, 0 },
{ MAXWELL_CHANNEL_GPFIFO_A, 0 },
{ KEPLER_CHANNEL_GPFIFO_B, 0 },
{ KEPLER_CHANNEL_GPFIFO_A, 0 },
{ FERMI_CHANNEL_GPFIFO , 0 },
{ G82_CHANNEL_GPFIFO , 0 },
{ NV50_CHANNEL_GPFIFO , 0 },
{ NV40_CHANNEL_DMA , 0 },
{ NV17_CHANNEL_DMA , 0 },
{ NV10_CHANNEL_DMA , 0 },
{ NV03_CHANNEL_DMA , 0 },
{}
};
struct {
struct nvif_chan_v0 chan;
char name[TASK_COMM_LEN+16];
} args;
struct nouveau_cli *cli = (void *)device->object.client;
struct nouveau_channel *chan;
const u64 plength = 0x10000;
const u64 ioffset = plength;
const u64 ilength = 0x02000;
char name[TASK_COMM_LEN];
int cid, ret;
u64 size;
cid = nvif_mclass(&device->object, hosts);
if (cid < 0)
return cid;
if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
size = plength;
else
size = ioffset + ilength;
ret = nouveau_channel_prep(drm, device, size, &chan);
*pchan = chan;
if (ret)
return ret;
args.chan.version = 0;
args.chan.namelen = sizeof(args.name);
args.chan.runlist = __ffs64(runm);
args.chan.runq = 0;
args.chan.priv = priv;
args.chan.devm = BIT(0);
if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
args.chan.vmm = 0;
args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
args.chan.offset = chan->push.addr;
args.chan.length = 0;
} else {
args.chan.vmm = nvif_handle(&chan->vmm->vmm.object);
if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
args.chan.ctxdma = nvif_handle(&chan->push.ctxdma);
else
args.chan.ctxdma = 0;
args.chan.offset = ioffset + chan->push.addr;
args.chan.length = ilength;
}
args.chan.huserd = 0;
args.chan.ouserd = 0;
if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
if (ret)
return ret;
args.chan.huserd = nvif_handle(&chan->mem_userd.object);
args.chan.ouserd = 0;
chan->userd = &chan->mem_userd.object;
} else {
chan->userd = &chan->user;
}
get_task_comm(name, current);
snprintf(args.name, sizeof(args.name), "%s[%d]", name, task_pid_nr(current));
ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
&args, sizeof(args), &chan->user);
if (ret) {
nouveau_channel_del(pchan);
return ret;
}
chan->runlist = args.chan.runlist;
chan->chid = args.chan.chid;
chan->inst = args.chan.inst;
chan->token = args.chan.token;
return 0;
}
static int
nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
{
struct nvif_device *device = chan->device;
struct nouveau_drm *drm = chan->drm;
struct nv_dma_v0 args = {};
int ret, i;
ret = nvif_object_map(chan->userd, NULL, 0);
if (ret)
return ret;
if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
struct {
struct nvif_event_v0 base;
struct nvif_chan_event_v0 host;
} args;
args.host.version = 0;
args.host.type = NVIF_CHAN_EVENT_V0_KILLED;
ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
nouveau_channel_killed, false,
&args.base, sizeof(args), &chan->kill);
if (ret == 0)
ret = nvif_event_allow(&chan->kill);
if (ret) {
NV_ERROR(drm, "Failed to request channel kill "
"notification: %d\n", ret);
return ret;
}
}
if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
args.target = NV_DMA_V0_TARGET_VM;
args.access = NV_DMA_V0_ACCESS_VM;
args.start = 0;
args.limit = chan->vmm->vmm.limit - 1;
} else {
args.target = NV_DMA_V0_TARGET_VRAM;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = 0;
args.limit = device->info.ram_user - 1;
}
ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
NV_DMA_IN_MEMORY, &args, sizeof(args),
&chan->vram);
if (ret)
return ret;
if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
args.target = NV_DMA_V0_TARGET_VM;
args.access = NV_DMA_V0_ACCESS_VM;
args.start = 0;
args.limit = chan->vmm->vmm.limit - 1;
} else
if (chan->drm->agp.bridge) {
args.target = NV_DMA_V0_TARGET_AGP;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = chan->drm->agp.base;
args.limit = chan->drm->agp.base +
chan->drm->agp.size - 1;
} else {
args.target = NV_DMA_V0_TARGET_VM;
args.access = NV_DMA_V0_ACCESS_RDWR;
args.start = 0;
args.limit = chan->vmm->vmm.limit - 1;
}
ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
NV_DMA_IN_MEMORY, &args, sizeof(args),
&chan->gart);
if (ret)
return ret;
}
switch (chan->user.oclass) {
case NV03_CHANNEL_DMA:
case NV10_CHANNEL_DMA:
case NV17_CHANNEL_DMA:
case NV40_CHANNEL_DMA:
chan->user_put = 0x40;
chan->user_get = 0x44;
chan->dma.max = (0x10000 / 4) - 2;
break;
default:
chan->user_put = 0x40;
chan->user_get = 0x44;
chan->user_get_hi = 0x60;
chan->dma.ib_base = 0x10000 / 4;
chan->dma.ib_max = NV50_DMA_IB_MAX;
chan->dma.ib_put = 0;
chan->dma.ib_free = chan->dma.ib_max - chan->dma.ib_put;
chan->dma.max = chan->dma.ib_base;
break;
}
chan->dma.put = 0;
chan->dma.cur = chan->dma.put;
chan->dma.free = chan->dma.max - chan->dma.cur;
ret = PUSH_WAIT(chan->chan.push, NOUVEAU_DMA_SKIPS);
if (ret)
return ret;
for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
PUSH_DATA(chan->chan.push, 0x00000000);
if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
NVIF_CLASS_SW_NV04,
NULL, 0, &chan->nvsw);
if (ret)
return ret;
ret = PUSH_WAIT(chan->chan.push, 2);
if (ret)
return ret;
PUSH_NVSQ(chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
PUSH_KICK(chan->chan.push);
}
return nouveau_fence(chan->drm)->context_new(chan);
}
int
nouveau_channel_new(struct nouveau_drm *drm, struct nvif_device *device,
bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
{
struct nouveau_cli *cli = (void *)device->object.client;
int ret;
ret = nouveau_channel_ctor(drm, device, priv, runm, pchan);
if (ret) {
NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
return ret;
}
ret = nouveau_channel_init(*pchan, vram, gart);
if (ret) {
NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
nouveau_channel_del(pchan);
return ret;
}
ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
if (ret)
nouveau_channel_del(pchan);
return ret;
}
void
nouveau_channels_fini(struct nouveau_drm *drm)
{
kfree(drm->runl);
}
int
nouveau_channels_init(struct nouveau_drm *drm)
{
struct {
struct nv_device_info_v1 m;
struct {
struct nv_device_info_v1_data channels;
struct nv_device_info_v1_data runlists;
} v;
} args = {
.m.version = 1,
.m.count = sizeof(args.v) / sizeof(args.v.channels),
.v.channels.mthd = NV_DEVICE_HOST_CHANNELS,
.v.runlists.mthd = NV_DEVICE_HOST_RUNLISTS,
};
struct nvif_object *device = &drm->client.device.object;
int ret, i;
ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
if (ret ||
args.v.runlists.mthd == NV_DEVICE_INFO_INVALID || !args.v.runlists.data ||
args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
return -ENODEV;
drm->chan_nr = drm->chan_total = args.v.channels.data;
drm->runl_nr = fls64(args.v.runlists.data);
drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
if (!drm->runl)
return -ENOMEM;
if (drm->chan_nr == 0) {
for (i = 0; i < drm->runl_nr; i++) {
if (!(args.v.runlists.data & BIT(i)))
continue;
args.v.channels.mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
args.v.channels.data = i;
ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, &args, sizeof(args));
if (ret || args.v.channels.mthd == NV_DEVICE_INFO_INVALID)
return -ENODEV;
drm->runl[i].chan_nr = args.v.channels.data;
drm->runl[i].chan_id_base = drm->chan_total;
drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
drm->chan_total += drm->runl[i].chan_nr;
}
} else {
drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
for (i = 1; i < drm->runl_nr; i++)
drm->runl[i].context_base = drm->runl[0].context_base;
}
return 0;
}