#include "core_types.h"
#include "clk_mgr_internal.h"
#include "dce/dce_11_0_d.h"
#include "dce/dce_11_0_sh_mask.h"
#include "dce110_clk_mgr.h"
#include "../clk_mgr/dce100/dce_clk_mgr.h"
#define SR(reg_name)\
.reg_name = mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = mm ## block ## id ## _ ## reg_name
static const struct clk_mgr_registers disp_clk_regs = {
CLK_COMMON_REG_LIST_DCE_BASE()
};
static const struct clk_mgr_shift disp_clk_shift = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct clk_mgr_mask disp_clk_mask = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct state_dependent_clocks dce110_max_clks_by_state[] = {
{ .display_clk_khz = 0, .pixel_clk_khz = 0 },
{ .display_clk_khz = 352000, .pixel_clk_khz = 330000 },
{ .display_clk_khz = 352000, .pixel_clk_khz = 330000 },
{ .display_clk_khz = 467000, .pixel_clk_khz = 400000 },
{ .display_clk_khz = 643000, .pixel_clk_khz = 400000 } };
static int determine_sclk_from_bounding_box(
const struct dc *dc,
int required_sclk)
{
int i;
if (dc->sclk_lvls.num_levels == 0)
return required_sclk;
for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
return dc->sclk_lvls.clocks_in_khz[i];
}
ASSERT(0);
return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
}
uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context)
{
uint8_t j;
uint32_t min_vertical_blank_time = -1;
for (j = 0; j < context->stream_count; j++) {
struct dc_stream_state *stream = context->streams[j];
uint32_t vertical_blank_in_pixels = 0;
uint32_t vertical_blank_time = 0;
uint32_t vertical_total_min = stream->timing.v_total;
struct dc_crtc_timing_adjust adjust = stream->adjust;
if (adjust.v_total_max != adjust.v_total_min)
vertical_total_min = adjust.v_total_min;
vertical_blank_in_pixels = stream->timing.h_total *
(vertical_total_min
- stream->timing.v_addressable);
vertical_blank_time = vertical_blank_in_pixels
* 10000 / stream->timing.pix_clk_100hz;
if (min_vertical_blank_time > vertical_blank_time)
min_vertical_blank_time = vertical_blank_time;
}
return min_vertical_blank_time;
}
void dce110_fill_display_configs(
const struct dc_state *context,
struct dm_pp_display_configuration *pp_display_cfg)
{
int j;
int num_cfgs = 0;
for (j = 0; j < context->stream_count; j++) {
int k;
const struct dc_stream_state *stream = context->streams[j];
struct dm_pp_single_disp_config *cfg =
&pp_display_cfg->disp_configs[num_cfgs];
const struct pipe_ctx *pipe_ctx = NULL;
for (k = 0; k < MAX_PIPES; k++)
if (stream == context->res_ctx.pipe_ctx[k].stream) {
pipe_ctx = &context->res_ctx.pipe_ctx[k];
break;
}
ASSERT(pipe_ctx != NULL);
if (stream->dpms_off)
continue;
num_cfgs++;
cfg->signal = pipe_ctx->stream->signal;
cfg->pipe_idx = pipe_ctx->stream_res.tg->inst;
cfg->src_height = stream->src.height;
cfg->src_width = stream->src.width;
cfg->ddi_channel_mapping =
stream->link->ddi_channel_mapping.raw;
cfg->transmitter =
stream->link->link_enc->transmitter;
cfg->link_settings.lane_count =
stream->link->cur_link_settings.lane_count;
cfg->link_settings.link_rate =
stream->link->cur_link_settings.link_rate;
cfg->link_settings.link_spread =
stream->link->cur_link_settings.link_spread;
cfg->sym_clock = stream->phy_pix_clk;
cfg->v_refresh = stream->timing.pix_clk_100hz * 100;
cfg->v_refresh /= stream->timing.h_total;
cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2)
/ stream->timing.v_total;
}
pp_display_cfg->display_count = num_cfgs;
}
void dce11_pplib_apply_display_requirements(
struct dc *dc,
struct dc_state *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
int memory_type_multiplier = MEMORY_TYPE_MULTIPLIER_CZ;
if (dc->bw_vbios && dc->bw_vbios->memory_type == bw_def_hbm)
memory_type_multiplier = MEMORY_TYPE_HBM;
pp_display_cfg->all_displays_in_sync =
context->bw_ctx.bw.dce.all_displays_in_sync;
pp_display_cfg->nb_pstate_switch_disable =
context->bw_ctx.bw.dce.nbp_state_change_enable == false;
pp_display_cfg->cpu_cc6_disable =
context->bw_ctx.bw.dce.cpuc_state_change_enable == false;
pp_display_cfg->cpu_pstate_disable =
context->bw_ctx.bw.dce.cpup_state_change_enable == false;
pp_display_cfg->cpu_pstate_separation_time =
context->bw_ctx.bw.dce.blackout_recovery_time_us;
if ((dc->ctx->asic_id.chip_family == FAMILY_AI) &&
ASICREV_IS_VEGA20_P(dc->ctx->asic_id.hw_internal_rev) && (context->stream_count >= 2)) {
pp_display_cfg->min_memory_clock_khz = max(pp_display_cfg->min_memory_clock_khz,
(uint32_t) div64_s64(
div64_s64(dc->bw_vbios->high_yclk.value,
memory_type_multiplier), 10000));
} else {
pp_display_cfg->min_memory_clock_khz = context->bw_ctx.bw.dce.yclk_khz
/ memory_type_multiplier;
}
pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
dc,
context->bw_ctx.bw.dce.sclk_khz);
pp_display_cfg->min_dcfclock_khz = (context->stream_count > 4) ?
pp_display_cfg->min_engine_clock_khz : 0;
pp_display_cfg->min_engine_clock_deep_sleep_khz
= context->bw_ctx.bw.dce.sclk_deep_sleep_khz;
pp_display_cfg->avail_mclk_switch_time_us =
dce110_get_min_vblank_time_us(context);
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
pp_display_cfg->disp_clk_khz = dc->clk_mgr->clks.dispclk_khz;
dce110_fill_display_configs(context, pp_display_cfg);
if (pp_display_cfg->display_count == 1) {
const struct dc_crtc_timing *timing =
&context->streams[0]->timing;
pp_display_cfg->crtc_index =
pp_display_cfg->disp_configs[0].pipe_idx;
pp_display_cfg->line_time_in_us = timing->h_total * 10000 / timing->pix_clk_100hz;
}
if (memcmp(&dc->current_state->pp_display_cfg, pp_display_cfg, sizeof(*pp_display_cfg)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
}
static void dce11_update_clocks(struct clk_mgr *clk_mgr_base,
struct dc_state *context,
bool safe_to_lower)
{
struct clk_mgr_internal *clk_mgr_dce = TO_CLK_MGR_INTERNAL(clk_mgr_base);
struct dm_pp_power_level_change_request level_change_req;
int patched_disp_clk = context->bw_ctx.bw.dce.dispclk_khz;
if (!clk_mgr_dce->dfs_bypass_active)
patched_disp_clk = patched_disp_clk * 115 / 100;
level_change_req.power_level = dce_get_required_clocks_state(clk_mgr_base, context);
if ((level_change_req.power_level < clk_mgr_dce->cur_min_clks_state && safe_to_lower)
|| level_change_req.power_level > clk_mgr_dce->cur_min_clks_state) {
if (dm_pp_apply_power_level_change_request(clk_mgr_base->ctx, &level_change_req))
clk_mgr_dce->cur_min_clks_state = level_change_req.power_level;
}
if (should_set_clock(safe_to_lower, patched_disp_clk, clk_mgr_base->clks.dispclk_khz)) {
context->bw_ctx.bw.dce.dispclk_khz = dce_set_clock(clk_mgr_base, patched_disp_clk);
clk_mgr_base->clks.dispclk_khz = patched_disp_clk;
}
dce11_pplib_apply_display_requirements(clk_mgr_base->ctx->dc, context);
}
static struct clk_mgr_funcs dce110_funcs = {
.get_dp_ref_clk_frequency = dce_get_dp_ref_freq_khz,
.update_clocks = dce11_update_clocks
};
void dce110_clk_mgr_construct(
struct dc_context *ctx,
struct clk_mgr_internal *clk_mgr)
{
dce_clk_mgr_construct(ctx, clk_mgr);
memcpy(clk_mgr->max_clks_by_state,
dce110_max_clks_by_state,
sizeof(dce110_max_clks_by_state));
clk_mgr->regs = &disp_clk_regs;
clk_mgr->clk_mgr_shift = &disp_clk_shift;
clk_mgr->clk_mgr_mask = &disp_clk_mask;
clk_mgr->base.funcs = &dce110_funcs;
}