#include <linux/i2c.h>
#include <linux/mutex.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/bitfield.h>
#include <linux/of_graph.h>
#include <drm/drm_bridge.h>
#include <linux/usb/typec_dp.h>
#include <linux/usb/typec_mux.h>
#include <linux/usb/typec_retimer.h>
#include <linux/gpio/consumer.h>
#include <linux/regulator/consumer.h>
#define NB7_CHNA 0
#define NB7_CHNB 1
#define NB7_CHNC 2
#define NB7_CHND 3
#define NB7_IS_CHAN_AD(channel) (channel == NB7_CHNA || channel == NB7_CHND)
#define GEN_DEV_SET_REG 0x00
#define GEN_DEV_SET_CHIP_EN BIT(0)
#define GEN_DEV_SET_CHNA_EN BIT(4)
#define GEN_DEV_SET_CHNB_EN BIT(5)
#define GEN_DEV_SET_CHNC_EN BIT(6)
#define GEN_DEV_SET_CHND_EN BIT(7)
#define GEN_DEV_SET_OP_MODE_MASK GENMASK(3, 1)
#define GEN_DEV_SET_OP_MODE_DP_CC2 0
#define GEN_DEV_SET_OP_MODE_DP_CC1 1
#define GEN_DEV_SET_OP_MODE_DP_4LANE 2
#define GEN_DEV_SET_OP_MODE_USB 5
#define EQ_SETTING_REG_BASE 0x01
#define EQ_SETTING_REG(n) (EQ_SETTING_REG_BASE + (n) * 2)
#define EQ_SETTING_MASK GENMASK(3, 1)
#define OUTPUT_COMPRESSION_AND_POL_REG_BASE 0x02
#define OUTPUT_COMPRESSION_AND_POL_REG(n) (OUTPUT_COMPRESSION_AND_POL_REG_BASE + (n) * 2)
#define OUTPUT_COMPRESSION_MASK GENMASK(2, 1)
#define FLAT_GAIN_REG_BASE 0x18
#define FLAT_GAIN_REG(n) (FLAT_GAIN_REG_BASE + (n) * 2)
#define FLAT_GAIN_MASK GENMASK(1, 0)
#define LOSS_MATCH_REG_BASE 0x19
#define LOSS_MATCH_REG(n) (LOSS_MATCH_REG_BASE + (n) * 2)
#define LOSS_MATCH_MASK GENMASK(1, 0)
#define AUX_CC_REG 0x09
#define CHIP_VERSION_REG 0x17
struct nb7vpq904m {
struct i2c_client *client;
struct gpio_desc *enable_gpio;
struct regulator *vcc_supply;
struct regmap *regmap;
struct typec_switch_dev *sw;
struct typec_retimer *retimer;
bool swap_data_lanes;
struct typec_switch *typec_switch;
struct drm_bridge bridge;
struct mutex lock;
enum typec_orientation orientation;
unsigned long mode;
unsigned int svid;
};
static void nb7vpq904m_set_channel(struct nb7vpq904m *nb7, unsigned int channel, bool dp)
{
u8 eq, out_comp, flat_gain, loss_match;
if (dp) {
eq = NB7_IS_CHAN_AD(channel) ? 0x6 : 0x4;
out_comp = 0x3;
flat_gain = NB7_IS_CHAN_AD(channel) ? 0x2 : 0x1;
loss_match = 0x3;
} else {
eq = 0x4;
out_comp = 0x3;
flat_gain = NB7_IS_CHAN_AD(channel) ? 0x3 : 0x1;
loss_match = NB7_IS_CHAN_AD(channel) ? 0x1 : 0x3;
}
regmap_update_bits(nb7->regmap, EQ_SETTING_REG(channel),
EQ_SETTING_MASK, FIELD_PREP(EQ_SETTING_MASK, eq));
regmap_update_bits(nb7->regmap, OUTPUT_COMPRESSION_AND_POL_REG(channel),
OUTPUT_COMPRESSION_MASK, FIELD_PREP(OUTPUT_COMPRESSION_MASK, out_comp));
regmap_update_bits(nb7->regmap, FLAT_GAIN_REG(channel),
FLAT_GAIN_MASK, FIELD_PREP(FLAT_GAIN_MASK, flat_gain));
regmap_update_bits(nb7->regmap, LOSS_MATCH_REG(channel),
LOSS_MATCH_MASK, FIELD_PREP(LOSS_MATCH_MASK, loss_match));
}
static int nb7vpq904m_set(struct nb7vpq904m *nb7)
{
bool reverse = (nb7->orientation == TYPEC_ORIENTATION_REVERSE);
switch (nb7->mode) {
case TYPEC_STATE_SAFE:
regmap_write(nb7->regmap, GEN_DEV_SET_REG,
GEN_DEV_SET_CHIP_EN |
GEN_DEV_SET_CHNA_EN |
GEN_DEV_SET_CHNB_EN |
GEN_DEV_SET_CHNC_EN |
GEN_DEV_SET_CHND_EN |
FIELD_PREP(GEN_DEV_SET_OP_MODE_MASK,
GEN_DEV_SET_OP_MODE_USB));
nb7vpq904m_set_channel(nb7, NB7_CHNA, false);
nb7vpq904m_set_channel(nb7, NB7_CHNB, false);
nb7vpq904m_set_channel(nb7, NB7_CHNC, false);
nb7vpq904m_set_channel(nb7, NB7_CHND, false);
regmap_write(nb7->regmap, AUX_CC_REG, 0x2);
return 0;
case TYPEC_STATE_USB:
if (reverse ^ nb7->swap_data_lanes) {
regmap_write(nb7->regmap, GEN_DEV_SET_REG,
GEN_DEV_SET_CHIP_EN |
GEN_DEV_SET_CHNA_EN |
GEN_DEV_SET_CHNB_EN |
FIELD_PREP(GEN_DEV_SET_OP_MODE_MASK,
GEN_DEV_SET_OP_MODE_USB));
nb7vpq904m_set_channel(nb7, NB7_CHNA, false);
nb7vpq904m_set_channel(nb7, NB7_CHNB, false);
} else {
regmap_write(nb7->regmap, GEN_DEV_SET_REG,
GEN_DEV_SET_CHIP_EN |
GEN_DEV_SET_CHNC_EN |
GEN_DEV_SET_CHND_EN |
FIELD_PREP(GEN_DEV_SET_OP_MODE_MASK,
GEN_DEV_SET_OP_MODE_USB));
nb7vpq904m_set_channel(nb7, NB7_CHNC, false);
nb7vpq904m_set_channel(nb7, NB7_CHND, false);
}
regmap_write(nb7->regmap, AUX_CC_REG, 0x2);
return 0;
default:
if (nb7->svid != USB_TYPEC_DP_SID)
return -EINVAL;
break;
}
regmap_write(nb7->regmap, AUX_CC_REG, reverse ? 0x1 : 0x0);
switch (nb7->mode) {
case TYPEC_DP_STATE_C:
case TYPEC_DP_STATE_E:
regmap_write(nb7->regmap, GEN_DEV_SET_REG,
GEN_DEV_SET_CHIP_EN |
GEN_DEV_SET_CHNA_EN |
GEN_DEV_SET_CHNB_EN |
GEN_DEV_SET_CHNC_EN |
GEN_DEV_SET_CHND_EN |
FIELD_PREP(GEN_DEV_SET_OP_MODE_MASK,
GEN_DEV_SET_OP_MODE_DP_4LANE));
nb7vpq904m_set_channel(nb7, NB7_CHNA, true);
nb7vpq904m_set_channel(nb7, NB7_CHNB, true);
nb7vpq904m_set_channel(nb7, NB7_CHNC, true);
nb7vpq904m_set_channel(nb7, NB7_CHND, true);
break;
case TYPEC_DP_STATE_D:
case TYPEC_DP_STATE_F:
regmap_write(nb7->regmap, GEN_DEV_SET_REG,
GEN_DEV_SET_CHIP_EN |
GEN_DEV_SET_CHNA_EN |
GEN_DEV_SET_CHNB_EN |
GEN_DEV_SET_CHNC_EN |
GEN_DEV_SET_CHND_EN |
FIELD_PREP(GEN_DEV_SET_OP_MODE_MASK,
reverse ^ nb7->swap_data_lanes ?
GEN_DEV_SET_OP_MODE_DP_CC2
: GEN_DEV_SET_OP_MODE_DP_CC1));
if (nb7->swap_data_lanes) {
nb7vpq904m_set_channel(nb7, NB7_CHNA, !reverse);
nb7vpq904m_set_channel(nb7, NB7_CHNB, !reverse);
nb7vpq904m_set_channel(nb7, NB7_CHNC, reverse);
nb7vpq904m_set_channel(nb7, NB7_CHND, reverse);
} else {
nb7vpq904m_set_channel(nb7, NB7_CHNA, reverse);
nb7vpq904m_set_channel(nb7, NB7_CHNB, reverse);
nb7vpq904m_set_channel(nb7, NB7_CHNC, !reverse);
nb7vpq904m_set_channel(nb7, NB7_CHND, !reverse);
}
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int nb7vpq904m_sw_set(struct typec_switch_dev *sw, enum typec_orientation orientation)
{
struct nb7vpq904m *nb7 = typec_switch_get_drvdata(sw);
int ret;
ret = typec_switch_set(nb7->typec_switch, orientation);
if (ret)
return ret;
mutex_lock(&nb7->lock);
if (nb7->orientation != orientation) {
nb7->orientation = orientation;
ret = nb7vpq904m_set(nb7);
}
mutex_unlock(&nb7->lock);
return ret;
}
static int nb7vpq904m_retimer_set(struct typec_retimer *retimer, struct typec_retimer_state *state)
{
struct nb7vpq904m *nb7 = typec_retimer_get_drvdata(retimer);
int ret = 0;
mutex_lock(&nb7->lock);
if (nb7->mode != state->mode) {
nb7->mode = state->mode;
if (state->alt)
nb7->svid = state->alt->svid;
else
nb7->svid = 0;
ret = nb7vpq904m_set(nb7);
}
mutex_unlock(&nb7->lock);
return ret;
}
#if IS_ENABLED(CONFIG_OF) && IS_ENABLED(CONFIG_DRM_PANEL_BRIDGE)
static int nb7vpq904m_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct nb7vpq904m *nb7 = container_of(bridge, struct nb7vpq904m, bridge);
struct drm_bridge *next_bridge;
if (!(flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR))
return -EINVAL;
next_bridge = devm_drm_of_get_bridge(&nb7->client->dev, nb7->client->dev.of_node, 0, 0);
if (IS_ERR(next_bridge)) {
dev_err(&nb7->client->dev, "failed to acquire drm_bridge: %pe\n", next_bridge);
return PTR_ERR(next_bridge);
}
return drm_bridge_attach(bridge->encoder, next_bridge, bridge,
DRM_BRIDGE_ATTACH_NO_CONNECTOR);
}
static const struct drm_bridge_funcs nb7vpq904m_bridge_funcs = {
.attach = nb7vpq904m_bridge_attach,
};
static int nb7vpq904m_register_bridge(struct nb7vpq904m *nb7)
{
nb7->bridge.funcs = &nb7vpq904m_bridge_funcs;
nb7->bridge.of_node = nb7->client->dev.of_node;
return devm_drm_bridge_add(&nb7->client->dev, &nb7->bridge);
}
#else
static int nb7vpq904m_register_bridge(struct nb7vpq904m *nb7)
{
return 0;
}
#endif
static const struct regmap_config nb7_regmap = {
.max_register = 0x1f,
.reg_bits = 8,
.val_bits = 8,
};
enum {
NORMAL_LANE_MAPPING,
INVERT_LANE_MAPPING,
};
#define DATA_LANES_COUNT 4
static const int supported_data_lane_mapping[][DATA_LANES_COUNT] = {
[NORMAL_LANE_MAPPING] = { 0, 1, 2, 3 },
[INVERT_LANE_MAPPING] = { 3, 2, 1, 0 },
};
static int nb7vpq904m_parse_data_lanes_mapping(struct nb7vpq904m *nb7)
{
struct device_node *ep;
u32 data_lanes[4];
int ret, i, j;
ep = of_graph_get_endpoint_by_regs(nb7->client->dev.of_node, 1, 0);
if (ep) {
ret = of_property_count_u32_elems(ep, "data-lanes");
if (ret == -EINVAL)
goto out_done;
if (ret < 0)
goto out_error;
if (ret != DATA_LANES_COUNT) {
dev_err(&nb7->client->dev, "expected 4 data lanes\n");
ret = -EINVAL;
goto out_error;
}
ret = of_property_read_u32_array(ep, "data-lanes", data_lanes, DATA_LANES_COUNT);
if (ret)
goto out_error;
for (i = 0; i < ARRAY_SIZE(supported_data_lane_mapping); i++) {
for (j = 0; j < DATA_LANES_COUNT; j++) {
if (data_lanes[j] != supported_data_lane_mapping[i][j])
break;
}
if (j == DATA_LANES_COUNT)
break;
}
switch (i) {
case NORMAL_LANE_MAPPING:
break;
case INVERT_LANE_MAPPING:
nb7->swap_data_lanes = true;
dev_info(&nb7->client->dev, "using inverted data lanes mapping\n");
break;
default:
dev_err(&nb7->client->dev, "invalid data lanes mapping\n");
ret = -EINVAL;
goto out_error;
}
}
out_done:
ret = 0;
out_error:
of_node_put(ep);
return ret;
}
static int nb7vpq904m_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct typec_switch_desc sw_desc = { };
struct typec_retimer_desc retimer_desc = { };
struct nb7vpq904m *nb7;
int ret;
nb7 = devm_kzalloc(dev, sizeof(*nb7), GFP_KERNEL);
if (!nb7)
return -ENOMEM;
nb7->client = client;
nb7->regmap = devm_regmap_init_i2c(client, &nb7_regmap);
if (IS_ERR(nb7->regmap)) {
dev_err(&client->dev, "Failed to allocate register map\n");
return PTR_ERR(nb7->regmap);
}
nb7->mode = TYPEC_STATE_SAFE;
nb7->orientation = TYPEC_ORIENTATION_NONE;
mutex_init(&nb7->lock);
nb7->enable_gpio = devm_gpiod_get_optional(dev, "enable", GPIOD_OUT_LOW);
if (IS_ERR(nb7->enable_gpio))
return dev_err_probe(dev, PTR_ERR(nb7->enable_gpio),
"unable to acquire enable gpio\n");
nb7->vcc_supply = devm_regulator_get_optional(dev, "vcc");
if (IS_ERR(nb7->vcc_supply))
return PTR_ERR(nb7->vcc_supply);
nb7->typec_switch = fwnode_typec_switch_get(dev->fwnode);
if (IS_ERR(nb7->typec_switch))
return dev_err_probe(dev, PTR_ERR(nb7->typec_switch),
"failed to acquire orientation-switch\n");
ret = nb7vpq904m_parse_data_lanes_mapping(nb7);
if (ret)
return ret;
ret = regulator_enable(nb7->vcc_supply);
if (ret)
dev_warn(dev, "Failed to enable vcc: %d\n", ret);
gpiod_set_value(nb7->enable_gpio, 1);
ret = nb7vpq904m_register_bridge(nb7);
if (ret)
goto err_disable_gpio;
sw_desc.drvdata = nb7;
sw_desc.fwnode = dev->fwnode;
sw_desc.set = nb7vpq904m_sw_set;
nb7->sw = typec_switch_register(dev, &sw_desc);
if (IS_ERR(nb7->sw)) {
ret = dev_err_probe(dev, PTR_ERR(nb7->sw),
"Error registering typec switch\n");
goto err_disable_gpio;
}
retimer_desc.drvdata = nb7;
retimer_desc.fwnode = dev->fwnode;
retimer_desc.set = nb7vpq904m_retimer_set;
nb7->retimer = typec_retimer_register(dev, &retimer_desc);
if (IS_ERR(nb7->retimer)) {
ret = dev_err_probe(dev, PTR_ERR(nb7->retimer),
"Error registering typec retimer\n");
goto err_switch_unregister;
}
return 0;
err_switch_unregister:
typec_switch_unregister(nb7->sw);
err_disable_gpio:
gpiod_set_value(nb7->enable_gpio, 0);
regulator_disable(nb7->vcc_supply);
return ret;
}
static void nb7vpq904m_remove(struct i2c_client *client)
{
struct nb7vpq904m *nb7 = i2c_get_clientdata(client);
typec_retimer_unregister(nb7->retimer);
typec_switch_unregister(nb7->sw);
gpiod_set_value(nb7->enable_gpio, 0);
regulator_disable(nb7->vcc_supply);
}
static const struct i2c_device_id nb7vpq904m_table[] = {
{ "nb7vpq904m" },
{ }
};
MODULE_DEVICE_TABLE(i2c, nb7vpq904m_table);
static const struct of_device_id nb7vpq904m_of_table[] = {
{ .compatible = "onnn,nb7vpq904m" },
{ }
};
MODULE_DEVICE_TABLE(of, nb7vpq904m_of_table);
static struct i2c_driver nb7vpq904m_driver = {
.driver = {
.name = "nb7vpq904m",
.of_match_table = nb7vpq904m_of_table,
},
.probe = nb7vpq904m_probe,
.remove = nb7vpq904m_remove,
.id_table = nb7vpq904m_table,
};
module_i2c_driver(nb7vpq904m_driver);
MODULE_AUTHOR("Dmitry Baryshkov <dmitry.baryshkov@linaro.org>");
MODULE_DESCRIPTION("OnSemi NB7VPQ904M Type-C driver");
MODULE_LICENSE("GPL"