// SPDX-License-Identifier: GPL-2.0-or-later
/*
 *	Adaptec AAC series RAID controller driver
 *	(c) Copyright 2001 Red Hat Inc.
 *
 * based on the old aacraid driver that is..
 * Adaptec aacraid device driver for Linux.
 *
 * Copyright (c) 2000-2010 Adaptec, Inc.
 *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
 *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
 *
 * Module Name:
 *  commctrl.c
 *
 * Abstract: Contains all routines for control of the AFA comm layer
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/blkdev.h>
#include <linux/compat.h>
#include <linux/delay.h> /* ssleep prototype */
#include <linux/kthread.h>
#include <linux/uaccess.h>
#include <scsi/scsi_host.h>

#include "aacraid.h"

# define AAC_DEBUG_PREAMBLE	KERN_INFO
# define AAC_DEBUG_POSTAMBLE
/**
 *	ioctl_send_fib	-	send a FIB from userspace
 *	@dev:	adapter is being processed
 *	@arg:	arguments to the ioctl call
 *
 *	This routine sends a fib to the adapter on behalf of a user level
 *	program.
 */
static int ioctl_send_fib(struct aac_dev * dev, void __user *arg)
{
	struct hw_fib * kfib;
	struct fib *fibptr;
	struct hw_fib * hw_fib = (struct hw_fib *)0;
	dma_addr_t hw_fib_pa = (dma_addr_t)0LL;
	unsigned int size, osize;
	int retval;

	if (dev->in_reset) {
		return -EBUSY;
	}
	fibptr = aac_fib_alloc(dev);
	if(fibptr == NULL) {
		return -ENOMEM;
	}

	kfib = fibptr->hw_fib_va;
	/*
	 *	First copy in the header so that we can check the size field.
	 */
	if (copy_from_user((void *)kfib, arg, sizeof(struct aac_fibhdr))) {
		aac_fib_free(fibptr);
		return -EFAULT;
	}
	/*
	 *	Since we copy based on the fib header size, make sure that we
	 *	will not overrun the buffer when we copy the memory. Return
	 *	an error if we would.
	 */
	osize = size = le16_to_cpu(kfib->header.Size) +
		sizeof(struct aac_fibhdr);
	if (size < le16_to_cpu(kfib->header.SenderSize))
		size = le16_to_cpu(kfib->header.SenderSize);
	if (size > dev->max_fib_size) {
		dma_addr_t daddr;

		if (size > 2048) {
			retval = -EINVAL;
			goto cleanup;
		}

		kfib = dma_alloc_coherent(&dev->pdev->dev, size, &daddr,
					  GFP_KERNEL);
		if (!kfib) {
			retval = -ENOMEM;
			goto cleanup;
		}

		/* Highjack the hw_fib */
		hw_fib = fibptr->hw_fib_va;
		hw_fib_pa = fibptr->hw_fib_pa;
		fibptr->hw_fib_va = kfib;
		fibptr->hw_fib_pa = daddr;
		memset(((char *)kfib) + dev->max_fib_size, 0, size - dev->max_fib_size);
		memcpy(kfib, hw_fib, dev->max_fib_size);
	}

	if (copy_from_user(kfib, arg, size)) {
		retval = -EFAULT;
		goto cleanup;
	}

	/* Sanity check the second copy */
	if ((osize != le16_to_cpu(kfib->header.Size) +
		sizeof(struct aac_fibhdr))
		|| (size < le16_to_cpu(kfib->header.SenderSize))) {
		retval = -EINVAL;
		goto cleanup;
	}

	if (kfib->header.Command == cpu_to_le16(TakeABreakPt)) {
		aac_adapter_interrupt(dev);
		/*
		 * Since we didn't really send a fib, zero out the state to allow
		 * cleanup code not to assert.
		 */
		kfib->header.XferState = 0;
	} else {
		retval = aac_fib_send(le16_to_cpu(kfib->header.Command), fibptr,
				le16_to_cpu(kfib->header.Size) , FsaNormal,
				1, 1, NULL, NULL);
		if (retval) {
			goto cleanup;
		}
		if (aac_fib_complete(fibptr) != 0) {
			retval = -EINVAL;
			goto cleanup;
		}
	}
	/*
	 *	Make sure that the size returned by the adapter (which includes
	 *	the header) is less than or equal to the size of a fib, so we
	 *	don't corrupt application data. Then copy that size to the user
	 *	buffer. (Don't try to add the header information again, since it
	 *	was already included by the adapter.)
	 */

	retval = 0;
	if (copy_to_user(arg, (void *)kfib, size))
		retval = -EFAULT;
cleanup:
	if (hw_fib) {
		dma_free_coherent(&dev->pdev->dev, size, kfib,
				  fibptr->hw_fib_pa);
		fibptr->hw_fib_pa = hw_fib_pa;
		fibptr->hw_fib_va = hw_fib;
	}
	if (retval != -ERESTARTSYS)
		aac_fib_free(fibptr);
	return retval;
}

/**
 *	open_getadapter_fib	-	Get the next fib
 *	@dev:	adapter is being processed
 *	@arg:	arguments to the open call
 *
 *	This routine will get the next Fib, if available, from the AdapterFibContext
 *	passed in from the user.
 */
static int open_getadapter_fib(struct aac_dev * dev, void __user *arg)
{
	struct aac_fib_context * fibctx;
	int status;

	fibctx = kmalloc(sizeof(struct aac_fib_context), GFP_KERNEL);
	if (fibctx == NULL) {
		status = -ENOMEM;
	} else {
		unsigned long flags;
		struct list_head * entry;
		struct aac_fib_context * context;

		fibctx->type = FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT;
		fibctx->size = sizeof(struct aac_fib_context);
		/*
		 *	Yes yes, I know this could be an index, but we have a
		 * better guarantee of uniqueness for the locked loop below.
		 * Without the aid of a persistent history, this also helps
		 * reduce the chance that the opaque context would be reused.
		 */
		fibctx->unique = (u32)((ulong)fibctx & 0xFFFFFFFF);
		/*
		 *	Initialize the mutex used to wait for the next AIF.
		 */
		init_completion(&fibctx->completion);
		fibctx->wait = 0;
		/*
		 *	Initialize the fibs and set the count of fibs on
		 *	the list to 0.
		 */
		fibctx->count = 0;
		INIT_LIST_HEAD(&fibctx->fib_list);
		fibctx->jiffies = jiffies/HZ;
		/*
		 *	Now add this context onto the adapter's
		 *	AdapterFibContext list.
		 */
		spin_lock_irqsave(&dev->fib_lock, flags);
		/* Ensure that we have a unique identifier */
		entry = dev->fib_list.next;
		while (entry != &dev->fib_list) {
			context = list_entry(entry, struct aac_fib_context, next);
			if (context->unique == fibctx->unique) {
				/* Not unique (32 bits) */
				fibctx->unique++;
				entry = dev->fib_list.next;
			} else {
				entry = entry->next;
			}
		}
		list_add_tail(&fibctx->next, &dev->fib_list);
		spin_unlock_irqrestore(&dev->fib_lock, flags);
		if (copy_to_user(arg, &fibctx->unique,
						sizeof(fibctx->unique))) {
			status = -EFAULT;
		} else {
			status = 0;
		}
	}
	return status;
}

struct compat_fib_ioctl {
	u32	fibctx;
	s32	wait;
	compat_uptr_t fib;
};

/**
 *	next_getadapter_fib	-	get the next fib
 *	@dev: adapter to use
 *	@arg: ioctl argument
 *
 *	This routine will get the next Fib, if available, from the AdapterFibContext
 *	passed in from the user.
 */
static int next_getadapter_fib(struct aac_dev * dev, void __user *arg)
{
	struct fib_ioctl f;
	struct fib *fib;
	struct aac_fib_context *fibctx;
	int status;
	struct list_head * entry;
	unsigned long flags;

	if (in_compat_syscall()) {
		struct compat_fib_ioctl cf;

		if (copy_from_user(&cf, arg, sizeof(struct compat_fib_ioctl)))
			return -EFAULT;

		f.fibctx = cf.fibctx;
		f.wait = cf.wait;
		f.fib = compat_ptr(cf.fib);
	} else {
		if (copy_from_user(&f, arg, sizeof(struct fib_ioctl)))
			return -EFAULT;
	}
	/*
	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
	 *
	 *	Search the list of AdapterFibContext addresses on the adapter
	 *	to be sure this is a valid address
	 */
	spin_lock_irqsave(&dev->fib_lock, flags);
	entry = dev->fib_list.next;
	fibctx = NULL;

	while (entry != &dev->fib_list) {
		fibctx = list_entry(entry, struct aac_fib_context, next);
		/*
		 *	Extract the AdapterFibContext from the Input parameters.
		 */
		if (fibctx->unique == f.fibctx) { /* We found a winner */
			break;
		}
		entry = entry->next;
		fibctx = NULL;
	}
	if (!fibctx) {
		spin_unlock_irqrestore(&dev->fib_lock, flags);
		dprintk ((KERN_INFO "Fib Context not found\n"));
		return -EINVAL;
	}

	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
		 (fibctx->size != sizeof(struct aac_fib_context))) {
		spin_unlock_irqrestore(&dev->fib_lock, flags);
		dprintk ((KERN_INFO "Fib Context corrupt?\n"));
		return -EINVAL;
	}
	status = 0;
	/*
	 *	If there are no fibs to send back, then either wait or return
	 *	-EAGAIN
	 */
return_fib:
	if (!list_empty(&fibctx->fib_list)) {
		/*
		 *	Pull the next fib from the fibs
		 */
		entry = fibctx->fib_list.next;
		list_del(entry);

		fib = list_entry(entry, struct fib, fiblink);
		fibctx->count--;
		spin_unlock_irqrestore(&dev->fib_lock, flags);
		if (copy_to_user(f.fib, fib->hw_fib_va, sizeof(struct hw_fib))) {
			kfree(fib->hw_fib_va);
			kfree(fib);
			return -EFAULT;
		}
		/*
		 *	Free the space occupied by this copy of the fib.
		 */
		kfree(fib->hw_fib_va);
		kfree(fib);
		status = 0;
	} else {
		spin_unlock_irqrestore(&dev->fib_lock, flags);
		/* If someone killed the AIF aacraid thread, restart it */
		status = !dev->aif_thread;
		if (status && !dev->in_reset && dev->queues && dev->fsa_dev) {
			/* Be paranoid, be very paranoid! */
			kthread_stop(dev->thread);
			ssleep(1);
			dev->aif_thread = 0;
			dev->thread = kthread_run(aac_command_thread, dev,
						  "%s", dev->name);
			ssleep(1);
		}
		if (f.wait) {
			if (wait_for_completion_interruptible(&fibctx->completion) < 0) {
				status = -ERESTARTSYS;
			} else {
				/* Lock again and retry */
				spin_lock_irqsave(&dev->fib_lock, flags);
				goto return_fib;
			}
		} else {
			status = -EAGAIN;
		}
	}
	fibctx->jiffies = jiffies/HZ;
	return status;
}

int aac_close_fib_context(struct aac_dev * dev, struct aac_fib_context * fibctx)
{
	struct fib *fib;

	/*
	 *	First free any FIBs that have not been consumed.
	 */
	while (!list_empty(&fibctx->fib_list)) {
		struct list_head * entry;
		/*
		 *	Pull the next fib from the fibs
		 */
		entry = fibctx->fib_list.next;
		list_del(entry);
		fib = list_entry(entry, struct fib, fiblink);
		fibctx->count--;
		/*
		 *	Free the space occupied by this copy of the fib.
		 */
		kfree(fib->hw_fib_va);
		kfree(fib);
	}
	/*
	 *	Remove the Context from the AdapterFibContext List
	 */
	list_del(&fibctx->next);
	/*
	 *	Invalidate context
	 */
	fibctx->type = 0;
	/*
	 *	Free the space occupied by the Context
	 */
	kfree(fibctx);
	return 0;
}

/**
 *	close_getadapter_fib	-	close down user fib context
 *	@dev: adapter
 *	@arg: ioctl arguments
 *
 *	This routine will close down the fibctx passed in from the user.
 */

static int close_getadapter_fib(struct aac_dev * dev, void __user *arg)
{
	struct aac_fib_context *fibctx;
	int status;
	unsigned long flags;
	struct list_head * entry;

	/*
	 *	Verify that the HANDLE passed in was a valid AdapterFibContext
	 *
	 *	Search the list of AdapterFibContext addresses on the adapter
	 *	to be sure this is a valid address
	 */

	entry = dev->fib_list.next;
	fibctx = NULL;

	while(entry != &dev->fib_list) {
		fibctx = list_entry(entry, struct aac_fib_context, next);
		/*
		 *	Extract the fibctx from the input parameters
		 */
		if (fibctx->unique == (u32)(uintptr_t)arg) /* We found a winner */
			break;
		entry = entry->next;
		fibctx = NULL;
	}

	if (!fibctx)
		return 0; /* Already gone */

	if((fibctx->type != FSAFS_NTC_GET_ADAPTER_FIB_CONTEXT) ||
		 (fibctx->size != sizeof(struct aac_fib_context)))
		return -EINVAL;
	spin_lock_irqsave(&dev->fib_lock, flags);
	status = aac_close_fib_context(dev, fibctx);
	spin_unlock_irqrestore(&dev->fib_lock, flags);
	return status;
}

/**
 *	check_revision	-	close down user fib context
 *	@dev: adapter
 *	@arg: ioctl arguments
 *
 *	This routine returns the driver version.
 *	Under Linux, there have been no version incompatibilities, so this is
 *	simple!
 */

static int check_revision(struct aac_dev *dev, void __user *arg)
{
	struct revision response;
	char *driver_version = aac_driver_version;
	u32 version;

	response.compat = 1;
	version = (simple_strtol(driver_version,
				&driver_version, 10) << 24) | 0x00000400;
	version += simple_strtol(driver_version + 1, &driver_version, 10) << 16;
	version += simple_strtol(driver_version + 1, NULL, 10);
	response.version = cpu_to_le32(version);
#	ifdef AAC_DRIVER_BUILD
		response.build = cpu_to_le32(AAC_DRIVER_BUILD);
#	else
		response.build = cpu_to_le32(9999);
#	endif

	if (copy_to_user(arg, &response, sizeof(response)))
		return -EFAULT;
	return 0;
}


/**
 * aac_send_raw_srb()
 *	@dev:	adapter is being processed
 *	@arg:	arguments to the send call
 */
static int aac_send_raw_srb(struct aac_dev* dev, void __user * arg)
{
	struct fib* srbfib;
	int status;
	struct aac_srb *srbcmd = NULL;
	struct aac_hba_cmd_req *hbacmd = NULL;
	struct user_aac_srb *user_srbcmd = NULL;
	struct user_aac_srb __user *user_srb = arg;
	struct aac_srb_reply __user *user_reply;
	u32 chn;
	u32 fibsize = 0;
	u32 flags = 0;
	s32 rcode = 0;
	u32 data_dir;
	void __user *sg_user[HBA_MAX_SG_EMBEDDED];
	void *sg_list[HBA_MAX_SG_EMBEDDED];
	u32 sg_count[HBA_MAX_SG_EMBEDDED];
	u32 sg_indx = 0;
	u32 byte_count = 0;
	u32 actual_fibsize64, actual_fibsize = 0;
	int i;
	int is_native_device;
	u64 address;


	if (dev->in_reset) {
		dprintk((KERN_DEBUG"aacraid: send raw srb -EBUSY\n"));
		return -EBUSY;
	}
	if (!capable(CAP_SYS_ADMIN)){
		dprintk((KERN_DEBUG"aacraid: No permission to send raw srb\n"));
		return -EPERM;
	}
	/*
	 *	Allocate and initialize a Fib then setup a SRB command
	 */
	if (!(srbfib = aac_fib_alloc(dev))) {
		return -ENOMEM;
	}

	memset(sg_list, 0, sizeof(sg_list)); /* cleanup may take issue */
	if(copy_from_user(&fibsize, &user_srb->count,sizeof(u32))){
		dprintk((KERN_DEBUG"aacraid: Could not copy data size from user\n"));
		rcode = -EFAULT;
		goto cleanup;
	}

	if ((fibsize < (sizeof(struct user_aac_srb) - sizeof(struct user_sgentry))) ||
	    (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))) {
		rcode = -EINVAL;
		goto cleanup;
	}

	user_srbcmd = memdup_user(user_srb, fibsize);
	if (IS_ERR(user_srbcmd)) {
		rcode = PTR_ERR(user_srbcmd);
		user_srbcmd = NULL;
		goto cleanup;
	}

	flags = user_srbcmd->flags; /* from user in cpu order */
	switch (flags & (SRB_DataIn | SRB_DataOut)) {
	case SRB_DataOut:
		data_dir = DMA_TO_DEVICE;
		break;
	case (SRB_DataIn | SRB_DataOut):
		data_dir = DMA_BIDIRECTIONAL;
		break;
	case SRB_DataIn:
		data_dir = DMA_FROM_DEVICE;
		break;
	default:
		data_dir = DMA_NONE;
	}
	if (user_srbcmd->sg.count > ARRAY_SIZE(sg_list)) {
		dprintk((KERN_DEBUG"aacraid: too many sg entries %d\n",
			user_srbcmd->sg.count));
		rcode = -EINVAL;
		goto cleanup;
	}
	if ((data_dir == DMA_NONE) && user_srbcmd->sg.count) {
		dprintk((KERN_DEBUG"aacraid:SG with no direction specified\n"));
		rcode = -EINVAL;
		goto cleanup;
	}
	actual_fibsize = sizeof(struct aac_srb) - sizeof(struct sgentry) +
		((user_srbcmd->sg.count & 0xff) * sizeof(struct sgentry));
	actual_fibsize64 = actual_fibsize + (user_srbcmd->sg.count & 0xff) *
	  (sizeof(struct sgentry64) - sizeof(struct sgentry));
	/* User made a mistake - should not continue */
	if ((actual_fibsize != fibsize) && (actual_fibsize64 != fibsize)) {
		dprintk((KERN_DEBUG"aacraid: Bad Size specified in "
		  "Raw SRB command calculated fibsize=%lu;%lu "
		  "user_srbcmd->sg.count=%d aac_srb=%lu sgentry=%lu;%lu "
		  "issued fibsize=%d\n",
		  actual_fibsize, actual_fibsize64, user_srbcmd->sg.count,
		  sizeof(struct aac_srb), sizeof(struct sgentry),
		  sizeof(struct sgentry64), fibsize));
		rcode = -EINVAL;
		goto cleanup;
	}

	chn = user_srbcmd->channel;
	if (chn < AAC_MAX_BUSES && user_srbcmd->id < AAC_MAX_TARGETS &&
		dev->hba_map[chn][user_srbcmd->id].devtype ==
		AAC_DEVTYPE_NATIVE_RAW) {
		is_native_device = 1;
		hbacmd = (struct aac_hba_cmd_req *)srbfib->hw_fib_va;
		memset(hbacmd, 0, 96);	/* sizeof(*hbacmd) is not necessary */

		/* iu_type is a parameter of aac_hba_send */
		switch (data_dir) {
		case DMA_TO_DEVICE:
			hbacmd->byte1 = 2;
			break;
		case DMA_FROM_DEVICE:
		case DMA_BIDIRECTIONAL:
			hbacmd->byte1 = 1;
			break;
		case DMA_NONE:
		default:
			break;
		}
		hbacmd->lun[1] = cpu_to_le32(user_srbcmd->lun);
		hbacmd->it_nexus = dev->hba_map[chn][user_srbcmd->id].rmw_nexus;

		/*
		 * we fill in reply_qid later in aac_src_deliver_message
		 * we fill in iu_type, request_id later in aac_hba_send
		 * we fill in emb_data_desc_count, data_length later
		 * in sg list build
		 */

		memcpy(hbacmd->cdb, user_srbcmd->cdb, sizeof(hbacmd->cdb));

		address = (u64)srbfib->hw_error_pa;
		hbacmd->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
		hbacmd->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
		hbacmd->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
		hbacmd->emb_data_desc_count =
					cpu_to_le32(user_srbcmd->sg.count);
		srbfib->hbacmd_size = 64 +
			user_srbcmd->sg.count * sizeof(struct aac_hba_sgl);

	} else {
		is_native_device = 0;
		aac_fib_init(srbfib);

		/* raw_srb FIB is not FastResponseCapable */
		srbfib->hw_fib_va->header.XferState &=
			~cpu_to_le32(FastResponseCapable);

		srbcmd = (struct aac_srb *) fib_data(srbfib);

		// Fix up srb for endian and force some values

		srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); // Force this
		srbcmd->channel	 = cpu_to_le32(user_srbcmd->channel);
		srbcmd->id	 = cpu_to_le32(user_srbcmd->id);
		srbcmd->lun	 = cpu_to_le32(user_srbcmd->lun);
		srbcmd->timeout	 = cpu_to_le32(user_srbcmd->timeout);
		srbcmd->flags	 = cpu_to_le32(flags);
		srbcmd->retry_limit = 0; // Obsolete parameter
		srbcmd->cdb_size = cpu_to_le32(user_srbcmd->cdb_size);
		memcpy(srbcmd->cdb, user_srbcmd->cdb, sizeof(srbcmd->cdb));
	}

	byte_count = 0;
	if (is_native_device) {
		struct user_sgmap *usg32 = &user_srbcmd->sg;
		struct user_sgmap64 *usg64 =
			(struct user_sgmap64 *)&user_srbcmd->sg;

		for (i = 0; i < usg32->count; i++) {
			void *p;
			u64 addr;

			sg_count[i] = (actual_fibsize64 == fibsize) ?
				usg64->sg[i].count : usg32->sg[i].count;
			if (sg_count[i] >
				(dev->scsi_host_ptr->max_sectors << 9)) {
				pr_err("aacraid: upsg->sg[%d].count=%u>%u\n",
					i, sg_count[i],
					dev->scsi_host_ptr->max_sectors << 9);
				rcode = -EINVAL;
				goto cleanup;
			}

			p = kmalloc(sg_count[i], GFP_KERNEL);
			if (!p) {
				rcode = -ENOMEM;
				goto cleanup;
			}

			if (actual_fibsize64 == fibsize) {
				addr = (u64)usg64->sg[i].addr[0];
				addr += ((u64)usg64->sg[i].addr[1]) << 32;
			} else {
				addr = (u64)usg32->sg[i].addr;
			}

			sg_user[i] = (void __user *)(uintptr_t)addr;
			sg_list[i] = p; // save so we can clean up later
			sg_indx = i;

			if (flags & SRB_DataOut) {
				if (copy_from_user(p, sg_user[i],
					sg_count[i])) {
					rcode = -EFAULT;
					goto cleanup;
				}
			}
			addr = dma_map_single(&dev->pdev->dev, p, sg_count[i],
					      data_dir);
			hbacmd->sge[i].addr_hi = cpu_to_le32((u32)(addr>>32));
			hbacmd->sge[i].addr_lo = cpu_to_le32(
						(u32)(addr & 0xffffffff));
			hbacmd->sge[i].len = cpu_to_le32(sg_count[i]);
			hbacmd->sge[i].flags = 0;
			byte_count += sg_count[i];
		}

		if (usg32->count > 0)	/* embedded sglist */
			hbacmd->sge[usg32->count-1].flags =
				cpu_to_le32(0x40000000);
		hbacmd->data_length = cpu_to_le32(byte_count);

		status = aac_hba_send(HBA_IU_TYPE_SCSI_CMD_REQ, srbfib,
					NULL, NULL);

	} else if (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64) {
		struct user_sgmap64* upsg = (struct user_sgmap64*)&user_srbcmd->sg;
		struct sgmap64* psg = (struct sgmap64*)&srbcmd->sg;

		/*
		 * This should also catch if user used the 32 bit sgmap
		 */
		if (actual_fibsize64 == fibsize) {
			actual_fibsize = actual_fibsize64;
			for (i = 0; i < upsg->count; i++) {
				u64 addr;
				void* p;

				sg_count[i] = upsg->sg[i].count;
				if (sg_count[i] >
				    ((dev->adapter_info.options &
				     AAC_OPT_NEW_COMM) ?
				      (dev->scsi_host_ptr->max_sectors << 9) :
				      65536)) {
					rcode = -EINVAL;
					goto cleanup;
				}

				p = kmalloc(sg_count[i], GFP_KERNEL);
				if(!p) {
					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
					  sg_count[i], i, upsg->count));
					rcode = -ENOMEM;
					goto cleanup;
				}
				addr = (u64)upsg->sg[i].addr[0];
				addr += ((u64)upsg->sg[i].addr[1]) << 32;
				sg_user[i] = (void __user *)(uintptr_t)addr;
				sg_list[i] = p; // save so we can clean up later
				sg_indx = i;

				if (flags & SRB_DataOut) {
					if (copy_from_user(p, sg_user[i],
						sg_count[i])){
						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
						rcode = -EFAULT;
						goto cleanup;
					}
				}
				addr = dma_map_single(&dev->pdev->dev, p,
						      sg_count[i], data_dir);

				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
				byte_count += sg_count[i];
				psg->sg[i].count = cpu_to_le32(sg_count[i]);
			}
		} else {
			struct user_sgmap* usg;
			usg = kmemdup(upsg,
				      actual_fibsize - sizeof(struct aac_srb)
				      + sizeof(struct sgmap), GFP_KERNEL);
			if (!usg) {
				dprintk((KERN_DEBUG"aacraid: Allocation error in Raw SRB command\n"));
				rcode = -ENOMEM;
				goto cleanup;
			}
			actual_fibsize = actual_fibsize64;

			for (i = 0; i < usg->count; i++) {
				u64 addr;
				void* p;

				sg_count[i] = usg->sg[i].count;
				if (sg_count[i] >
				    ((dev->adapter_info.options &
				     AAC_OPT_NEW_COMM) ?
				      (dev->scsi_host_ptr->max_sectors << 9) :
				      65536)) {
					kfree(usg);
					rcode = -EINVAL;
					goto cleanup;
				}

				p = kmalloc(sg_count[i], GFP_KERNEL);
				if(!p) {
					dprintk((KERN_DEBUG "aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
						sg_count[i], i, usg->count));
					kfree(usg);
					rcode = -ENOMEM;
					goto cleanup;
				}
				sg_user[i] = (void __user *)(uintptr_t)usg->sg[i].addr;
				sg_list[i] = p; // save so we can clean up later
				sg_indx = i;

				if (flags & SRB_DataOut) {
					if (copy_from_user(p, sg_user[i],
						sg_count[i])) {
						kfree (usg);
						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
						rcode = -EFAULT;
						goto cleanup;
					}
				}
				addr = dma_map_single(&dev->pdev->dev, p,
						      sg_count[i], data_dir);

				psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
				psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
				byte_count += sg_count[i];
				psg->sg[i].count = cpu_to_le32(sg_count[i]);
			}
			kfree (usg);
		}
		srbcmd->count = cpu_to_le32(byte_count);
		if (user_srbcmd->sg.count)
			psg->count = cpu_to_le32(sg_indx+1);
		else
			psg->count = 0;
		status = aac_fib_send(ScsiPortCommand64, srbfib, actual_fibsize, FsaNormal, 1, 1,NULL,NULL);
	} else {
		struct user_sgmap* upsg = &user_srbcmd->sg;
		struct sgmap* psg = &srbcmd->sg;

		if (actual_fibsize64 == fibsize) {
			struct user_sgmap64* usg = (struct user_sgmap64 *)upsg;
			for (i = 0; i < upsg->count; i++) {
				uintptr_t addr;
				void* p;

				sg_count[i] = usg->sg[i].count;
				if (sg_count[i] >
				    ((dev->adapter_info.options &
				     AAC_OPT_NEW_COMM) ?
				      (dev->scsi_host_ptr->max_sectors << 9) :
				      65536)) {
					rcode = -EINVAL;
					goto cleanup;
				}
				p = kmalloc(sg_count[i], GFP_KERNEL);
				if (!p) {
					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
						sg_count[i], i, usg->count));
					rcode = -ENOMEM;
					goto cleanup;
				}
				addr = (u64)usg->sg[i].addr[0];
				addr += ((u64)usg->sg[i].addr[1]) << 32;
				sg_user[i] = (void __user *)addr;
				sg_list[i] = p; // save so we can clean up later
				sg_indx = i;

				if (flags & SRB_DataOut) {
					if (copy_from_user(p, sg_user[i],
						sg_count[i])){
						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
						rcode = -EFAULT;
						goto cleanup;
					}
				}
				addr = dma_map_single(&dev->pdev->dev, p,
						      usg->sg[i].count,
						      data_dir);

				psg->sg[i].addr = cpu_to_le32(addr & 0xffffffff);
				byte_count += usg->sg[i].count;
				psg->sg[i].count = cpu_to_le32(sg_count[i]);
			}
		} else {
			for (i = 0; i < upsg->count; i++) {
				dma_addr_t addr;
				void* p;

				sg_count[i] = upsg->sg[i].count;
				if (sg_count[i] >
				    ((dev->adapter_info.options &
				     AAC_OPT_NEW_COMM) ?
				      (dev->scsi_host_ptr->max_sectors << 9) :
				      65536)) {
					rcode = -EINVAL;
					goto cleanup;
				}
				p = kmalloc(sg_count[i], GFP_KERNEL);
				if (!p) {
					dprintk((KERN_DEBUG"aacraid: Could not allocate SG buffer - size = %d buffer number %d of %d\n",
					  sg_count[i], i, upsg->count));
					rcode = -ENOMEM;
					goto cleanup;
				}
				sg_user[i] = (void __user *)(uintptr_t)upsg->sg[i].addr;
				sg_list[i] = p; // save so we can clean up later
				sg_indx = i;

				if (flags & SRB_DataOut) {
					if (copy_from_user(p, sg_user[i],
						sg_count[i])) {
						dprintk((KERN_DEBUG"aacraid: Could not copy sg data from user\n"));
						rcode = -EFAULT;
						goto cleanup;
					}
				}
				addr = dma_map_single(&dev->pdev->dev, p,
						      sg_count[i], data_dir);

				psg->sg[i].addr = cpu_to_le32(addr);
				byte_count += sg_count[i];
				psg->sg[i].count = cpu_to_le32(sg_count[i]);
			}
		}
		srbcmd->count = cpu_to_le32(byte_count);
		if (user_srbcmd->sg.count)
			psg->count = cpu_to_le32(sg_indx+1);
		else
			psg->count = 0;
		status = aac_fib_send(ScsiPortCommand, srbfib, actual_fibsize, FsaNormal, 1, 1, NULL, NULL);
	}

	if (status == -ERESTARTSYS) {
		rcode = -ERESTARTSYS;
		goto cleanup;
	}

	if (status != 0) {
		dprintk((KERN_DEBUG"aacraid: Could not send raw srb fib to hba\n"));
		rcode = -ENXIO;
		goto cleanup;
	}

	if (flags & SRB_DataIn) {
		for(i = 0 ; i <= sg_indx; i++){
			if (copy_to_user(sg_user[i], sg_list[i], sg_count[i])) {
				dprintk((KERN_DEBUG"aacraid: Could not copy sg data to user\n"));
				rcode = -EFAULT;
				goto cleanup;

			}
		}
	}

	user_reply = arg + fibsize;
	if (is_native_device) {
		struct aac_hba_resp *err =
			&((struct aac_native_hba *)srbfib->hw_fib_va)->resp.err;
		struct aac_srb_reply reply;

		memset(&reply, 0, sizeof(reply));
		reply.status = ST_OK;
		if (srbfib->flags & FIB_CONTEXT_FLAG_FASTRESP) {
			/* fast response */
			reply.srb_status = SRB_STATUS_SUCCESS;
			reply.scsi_status = 0;
			reply.data_xfer_length = byte_count;
			reply.sense_data_size = 0;
			memset(reply.sense_data, 0, AAC_SENSE_BUFFERSIZE);
		} else {
			reply.srb_status = err->service_response;
			reply.scsi_status = err->status;
			reply.data_xfer_length = byte_count -
				le32_to_cpu(err->residual_count);
			reply.sense_data_size = err->sense_response_data_len;
			memcpy(reply.sense_data, err->sense_response_buf,
				AAC_SENSE_BUFFERSIZE);
		}
		if (copy_to_user(user_reply, &reply,
			sizeof(struct aac_srb_reply))) {
			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
			rcode = -EFAULT;
			goto cleanup;
		}
	} else {
		struct aac_srb_reply *reply;

		reply = (struct aac_srb_reply *) fib_data(srbfib);
		if (copy_to_user(user_reply, reply,
			sizeof(struct aac_srb_reply))) {
			dprintk((KERN_DEBUG"aacraid: Copy to user failed\n"));
			rcode = -EFAULT;
			goto cleanup;
		}
	}

cleanup:
	kfree(user_srbcmd);
	if (rcode != -ERESTARTSYS) {
		for (i = 0; i <= sg_indx; i++)
			kfree(sg_list[i]);
		aac_fib_complete(srbfib);
		aac_fib_free(srbfib);
	}

	return rcode;
}

struct aac_pci_info {
	u32 bus;
	u32 slot;
};


static int aac_get_pci_info(struct aac_dev* dev, void __user *arg)
{
	struct aac_pci_info pci_info;

	pci_info.bus = dev->pdev->bus->number;
	pci_info.slot = PCI_SLOT(dev->pdev->devfn);

	if (copy_to_user(arg, &pci_info, sizeof(struct aac_pci_info))) {
		dprintk((KERN_DEBUG "aacraid: Could not copy pci info\n"));
		return -EFAULT;
	}
	return 0;
}

static int aac_get_hba_info(struct aac_dev *dev, void __user *arg)
{
	struct aac_hba_info hbainfo;

	memset(&hbainfo, 0, sizeof(hbainfo));
	hbainfo.adapter_number		= (u8) dev->id;
	hbainfo.system_io_bus_number	= dev->pdev->bus->number;
	hbainfo.device_number		= (dev->pdev->devfn >> 3);
	hbainfo.function_number		= (dev->pdev->devfn & 0x0007);

	hbainfo.vendor_id		= dev->pdev->vendor;
	hbainfo.device_id		= dev->pdev->device;
	hbainfo.sub_vendor_id		= dev->pdev->subsystem_vendor;
	hbainfo.sub_system_id		= dev->pdev->subsystem_device;

	if (copy_to_user(arg, &hbainfo, sizeof(struct aac_hba_info))) {
		dprintk((KERN_DEBUG "aacraid: Could not copy hba info\n"));
		return -EFAULT;
	}

	return 0;
}

struct aac_reset_iop {
	u8	reset_type;
};

static int aac_send_reset_adapter(struct aac_dev *dev, void __user *arg)
{
	struct aac_reset_iop reset;
	int retval;

	if (copy_from_user((void *)&reset, arg, sizeof(struct aac_reset_iop)))
		return -EFAULT;

	dev->adapter_shutdown = 1;

	mutex_unlock(&dev->ioctl_mutex);
	retval = aac_reset_adapter(dev, 0, reset.reset_type);
	mutex_lock(&dev->ioctl_mutex);

	return retval;
}

int aac_do_ioctl(struct aac_dev *dev, unsigned int cmd, void __user *arg)
{
	int status;

	mutex_lock(&dev->ioctl_mutex);

	if (dev->adapter_shutdown) {
		status = -EACCES;
		goto cleanup;
	}

	/*
	 *	HBA gets first crack
	 */

	status = aac_dev_ioctl(dev, cmd, arg);
	if (status != -ENOTTY)
		goto cleanup;

	switch (cmd) {
	case FSACTL_MINIPORT_REV_CHECK:
		status = check_revision(dev, arg);
		break;
	case FSACTL_SEND_LARGE_FIB:
	case FSACTL_SENDFIB:
		status = ioctl_send_fib(dev, arg);
		break;
	case FSACTL_OPEN_GET_ADAPTER_FIB:
		status = open_getadapter_fib(dev, arg);
		break;
	case FSACTL_GET_NEXT_ADAPTER_FIB:
		status = next_getadapter_fib(dev, arg);
		break;
	case FSACTL_CLOSE_GET_ADAPTER_FIB:
		status = close_getadapter_fib(dev, arg);
		break;
	case FSACTL_SEND_RAW_SRB:
		status = aac_send_raw_srb(dev,arg);
		break;
	case FSACTL_GET_PCI_INFO:
		status = aac_get_pci_info(dev,arg);
		break;
	case FSACTL_GET_HBA_INFO:
		status = aac_get_hba_info(dev, arg);
		break;
	case FSACTL_RESET_IOP:
		status = aac_send_reset_adapter(dev, arg);
		break;

	default:
		status = -ENOTTY;
		break;
	}

cleanup:
	mutex_unlock(&dev->ioctl_mutex);

	return status;
}