// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
 */
 
/* Does not work. Warning may block system in capture mode */
/* #define USE_VAR48KRATE */

#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
MODULE_LICENSE("GPL");

#if IS_REACHABLE(CONFIG_GAMEPORT)
#define SUPPORT_JOYSTICK 1
#endif

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
module_param_hw_array(fm_port, long, ioport, NULL, 0444);
MODULE_PARM_DESC(fm_port, "FM port.");
module_param_array(soft_ac3, bool, NULL, 0444);
MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
#ifdef SUPPORT_JOYSTICK
module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
#endif

/*
 * CM8x38 registers definition
 */

#define CM_REG_FUNCTRL0		0x00
#define CM_RST_CH1		0x00080000
#define CM_RST_CH0		0x00040000
#define CM_CHEN1		0x00020000	/* ch1: enable */
#define CM_CHEN0		0x00010000	/* ch0: enable */
#define CM_PAUSE1		0x00000008	/* ch1: pause */
#define CM_PAUSE0		0x00000004	/* ch0: pause */
#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */

#define CM_REG_FUNCTRL1		0x04
#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
#define CM_DSFC_SHIFT		13
#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
#define CM_ASFC_SHIFT		10
#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
#define CM_BREQ			0x00000010	/* bus master enabled */
#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
#define CM_UART_EN		0x00000004	/* legacy UART */
#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
#define CM_ZVPORT		0x00000001	/* ZVPORT */

#define CM_REG_CHFORMAT		0x08

#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
#define CM_CHB3D		0x20000000	/* 4 channels */

#define CM_CHIP_MASK1		0x1f000000
#define CM_CHIP_037		0x01000000
#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */

#define CM_ADCBITLEN_MASK	0x0000C000	
#define CM_ADCBITLEN_16		0x00000000
#define CM_ADCBITLEN_15		0x00004000
#define CM_ADCBITLEN_14		0x00008000
#define CM_ADCBITLEN_13		0x0000C000

#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
#define CM_ADCDACLEN_060	0x00000000
#define CM_ADCDACLEN_066	0x00001000
#define CM_ADCDACLEN_130	0x00002000
#define CM_ADCDACLEN_280	0x00003000

#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
#define CM_ADCDLEN_ORIGINAL	0x00000000
#define CM_ADCDLEN_EXTRA	0x00001000
#define CM_ADCDLEN_24K		0x00002000
#define CM_ADCDLEN_WEIGHT	0x00003000

#define CM_CH1_SRATE_176K	0x00000800
#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
#define CM_CH1_SRATE_88K	0x00000400
#define CM_CH0_SRATE_176K	0x00000200
#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
#define CM_CH0_SRATE_88K	0x00000100
#define CM_CH0_SRATE_128K	0x00000300
#define CM_CH0_SRATE_MASK	0x00000300

#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
#define CM_SPDLOCKED		0x00000010

#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
#define CM_CH1FMT_SHIFT		2
#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
#define CM_CH0FMT_SHIFT		0

#define CM_REG_INT_HLDCLR	0x0C
#define CM_CHIP_MASK2		0xff000000
#define CM_CHIP_8768		0x20000000
#define CM_CHIP_055		0x08000000
#define CM_CHIP_039		0x04000000
#define CM_CHIP_039_6CH		0x01000000
#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
#define CM_TDMA_INT_EN		0x00040000
#define CM_CH1_INT_EN		0x00020000
#define CM_CH0_INT_EN		0x00010000

#define CM_REG_INT_STATUS	0x10
#define CM_INTR			0x80000000
#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
#define CM_UARTINT		0x00010000
#define CM_LTDMAINT		0x00008000
#define CM_HTDMAINT		0x00004000
#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
#define CM_CH1BUSY		0x00000008
#define CM_CH0BUSY		0x00000004
#define CM_CHINT1		0x00000002
#define CM_CHINT0		0x00000001

#define CM_REG_LEGACY_CTRL	0x14
#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
#define CM_VMPU_330		0x00000000
#define CM_VMPU_320		0x20000000
#define CM_VMPU_310		0x40000000
#define CM_VMPU_300		0x60000000
#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
#define CM_VSBSEL_220		0x00000000
#define CM_VSBSEL_240		0x04000000
#define CM_VSBSEL_260		0x08000000
#define CM_VSBSEL_280		0x0C000000
#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
#define CM_FMSEL_388		0x00000000
#define CM_FMSEL_3C8		0x01000000
#define CM_FMSEL_3E0		0x02000000
#define CM_FMSEL_3E8		0x03000000
#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
#define CM_C_EECS		0x00040000
#define CM_C_EEDI46		0x00020000
#define CM_C_EECK46		0x00010000
#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
#define CM_EXBASEN		0x00001000	/* external bass input enable */

#define CM_REG_MISC_CTRL	0x18
#define CM_PWD			0x80000000	/* power down */
#define CM_RESET		0x40000000
#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
#define CM_TXVX			0x08000000	/* model 037? */
#define CM_N4SPK3D		0x04000000	/* copy front to rear */
#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
#define CM_SPDIF48K		0x01000000	/* write */
#define CM_SPATUS48K		0x01000000	/* read */
#define CM_ENDBDAC		0x00800000	/* enable double dac */
#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
#define CM_FM_EN		0x00080000	/* enable legacy FM */
#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
#define CM_VIDWPDSB		0x00010000	/* model 037? */
#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
#define CM_VIDWPPRT		0x00002000	/* model 037? */
#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
#define CM_ENCENTER		0x00000080
#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
#define CM_UPDDMA_2048		0x00000000
#define CM_UPDDMA_1024		0x00000004
#define CM_UPDDMA_512		0x00000008
#define CM_UPDDMA_256		0x0000000C		
#define CM_TWAIT_MASK		0x00000003	/* model 037 */
#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */

#define CM_REG_TDMA_POSITION	0x1C
#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */

	/* byte */
#define CM_REG_MIXER0		0x20
#define CM_REG_SBVR		0x20		/* write: sb16 version */
#define CM_REG_DEV		0x20		/* read: hardware device version */

#define CM_REG_MIXER21		0x21
#define CM_UNKNOWN_21_MASK	0x78		/* ? */
#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
#define CM_PROINV		0x02		/* SBPro left/right channel switching */
#define CM_X_SB16		0x01		/* SB16 compatible */

#define CM_REG_SB16_DATA	0x22
#define CM_REG_SB16_ADDR	0x23

#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */

#define CM_REG_MIXER1		0x24
#define CM_FMMUTE		0x80	/* mute FM */
#define CM_FMMUTE_SHIFT		7
#define CM_WSMUTE		0x40	/* mute PCM */
#define CM_WSMUTE_SHIFT		6
#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
#define CM_REAR2LIN_SHIFT	5
#define CM_REAR2FRONT		0x10	/* exchange rear/front */
#define CM_REAR2FRONT_SHIFT	4
#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
#define CM_WAVEINL_SHIFT	3
#define CM_WAVEINR		0x04	/* digical wave rec. right */
#define CM_WAVEINR_SHIFT	2
#define CM_X3DEN		0x02	/* 3D surround enable */
#define CM_X3DEN_SHIFT		1
#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
#define CM_CDPLAY_SHIFT		0

#define CM_REG_MIXER2		0x25
#define CM_RAUXREN		0x80	/* AUX right capture */
#define CM_RAUXREN_SHIFT	7
#define CM_RAUXLEN		0x40	/* AUX left capture */
#define CM_RAUXLEN_SHIFT	6
#define CM_VAUXRM		0x20	/* AUX right mute */
#define CM_VAUXRM_SHIFT		5
#define CM_VAUXLM		0x10	/* AUX left mute */
#define CM_VAUXLM_SHIFT		4
#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
#define CM_VADMIC_SHIFT		1
#define CM_MICGAINZ		0x01	/* mic boost */
#define CM_MICGAINZ_SHIFT	0

#define CM_REG_MIXER3		0x24
#define CM_REG_AUX_VOL		0x26
#define CM_VAUXL_MASK		0xf0
#define CM_VAUXR_MASK		0x0f

#define CM_REG_MISC		0x27
#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
#define CM_XGPO1		0x20
// #define CM_XGPBIO		0x04
#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
#define CM_SPDVALID		0x02	/* spdif input valid check */
#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */

#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
/*
 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 * or identical with AC97 codec?
 */
#define CM_REG_EXTERN_CODEC	CM_REG_AC97

/*
 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_MPU_PCI		0x40

/*
 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_FM_PCI		0x50

/*
 * access from SB-mixer port
 */
#define CM_REG_EXTENT_IND	0xf0
#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
#define CM_VPHONE_SHIFT		5
#define CM_VPHOM		0x10	/* Phone mute control */
#define CM_VSPKM		0x08	/* Speaker mute control, default high */
#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
#define CM_VADMIC3		0x01	/* Mic record boost */

/*
 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 * unit (readonly?).
 */
#define CM_REG_PLL		0xf8

/*
 * extended registers
 */
#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */

#define CM_REG_EXT_MISC		0x90
#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */

/*
 * size of i/o region
 */
#define CM_EXTENT_CODEC	  0x100
#define CM_EXTENT_MIDI	  0x2
#define CM_EXTENT_SYNTH	  0x4


/*
 * channels for playback / capture
 */
#define CM_CH_PLAY	0
#define CM_CH_CAPT	1

/*
 * flags to check device open/close
 */
#define CM_OPEN_NONE	0
#define CM_OPEN_CH_MASK	0x01
#define CM_OPEN_DAC	0x10
#define CM_OPEN_ADC	0x20
#define CM_OPEN_SPDIF	0x40
#define CM_OPEN_MCHAN	0x80
#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)


#if CM_CH_PLAY == 1
#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
#define CM_PLAYBACK_SPDF	CM_SPDF_1
#define CM_CAPTURE_SPDF		CM_SPDF_0
#else
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
#define CM_PLAYBACK_SPDF	CM_SPDF_0
#define CM_CAPTURE_SPDF		CM_SPDF_1
#endif


/*
 * driver data
 */

struct cmipci_pcm {
	struct snd_pcm_substream *substream;
	u8 running;		/* dac/adc running? */
	u8 fmt;			/* format bits */
	u8 is_dac;
	u8 needs_silencing;
	unsigned int dma_size;	/* in frames */
	unsigned int shift;
	unsigned int ch;	/* channel (0/1) */
	unsigned int offset;	/* physical address of the buffer */
};

/* mixer elements toggled/resumed during ac3 playback */
struct cmipci_mixer_auto_switches {
	const char *name;	/* switch to toggle */
	int toggle_on;		/* value to change when ac3 mode */
};
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
	{"PCM Playback Switch", 0},
	{"IEC958 Output Switch", 1},
	{"IEC958 Mix Analog", 0},
	// {"IEC958 Out To DAC", 1}, // no longer used
	{"IEC958 Loop", 0},
};
#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)

struct cmipci {
	struct snd_card *card;

	struct pci_dev *pci;
	unsigned int device;	/* device ID */
	int irq;

	unsigned long iobase;
	unsigned int ctrl;	/* FUNCTRL0 current value */

	struct snd_pcm *pcm;		/* DAC/ADC PCM */
	struct snd_pcm *pcm2;	/* 2nd DAC */
	struct snd_pcm *pcm_spdif;	/* SPDIF */

	int chip_version;
	int max_channels;
	unsigned int can_ac3_sw: 1;
	unsigned int can_ac3_hw: 1;
	unsigned int can_multi_ch: 1;
	unsigned int can_96k: 1;	/* samplerate above 48k */
	unsigned int do_soft_ac3: 1;

	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
	int spdif_counter;	/* for software AC3 */

	unsigned int dig_status;
	unsigned int dig_pcm_status;

	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */

	int opened[2];	/* open mode */
	struct mutex open_mutex;

	unsigned int mixer_insensitive: 1;
	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
	int mixer_res_status[CM_SAVED_MIXERS];

	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */

	/* external MIDI */
	struct snd_rawmidi *rmidi;

#ifdef SUPPORT_JOYSTICK
	struct gameport *gameport;
#endif

	spinlock_t reg_lock;

#ifdef CONFIG_PM_SLEEP
	unsigned int saved_regs[0x20];
	unsigned char saved_mixers[0x20];
#endif
};


/* read/write operations for dword register */
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
{
	outl(data, cm->iobase + cmd);
}

static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
{
	return inl(cm->iobase + cmd);
}

/* read/write operations for word register */
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
{
	outw(data, cm->iobase + cmd);
}

static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
{
	return inw(cm->iobase + cmd);
}

/* read/write operations for byte register */
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
{
	outb(data, cm->iobase + cmd);
}

static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
{
	return inb(cm->iobase + cmd);
}

/* bit operations for dword register */
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
	unsigned int val, oval;
	val = oval = inl(cm->iobase + cmd);
	val |= flag;
	if (val == oval)
		return 0;
	outl(val, cm->iobase + cmd);
	return 1;
}

static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
	unsigned int val, oval;
	val = oval = inl(cm->iobase + cmd);
	val &= ~flag;
	if (val == oval)
		return 0;
	outl(val, cm->iobase + cmd);
	return 1;
}

/* bit operations for byte register */
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
	unsigned char val, oval;
	val = oval = inb(cm->iobase + cmd);
	val |= flag;
	if (val == oval)
		return 0;
	outb(val, cm->iobase + cmd);
	return 1;
}

static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
	unsigned char val, oval;
	val = oval = inb(cm->iobase + cmd);
	val &= ~flag;
	if (val == oval)
		return 0;
	outb(val, cm->iobase + cmd);
	return 1;
}


/*
 * PCM interface
 */

/*
 * calculate frequency
 */

static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };

static unsigned int snd_cmipci_rate_freq(unsigned int rate)
{
	unsigned int i;

	for (i = 0; i < ARRAY_SIZE(rates); i++) {
		if (rates[i] == rate)
			return i;
	}
	snd_BUG();
	return 0;
}

#ifdef USE_VAR48KRATE
/*
 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 * does it this way .. maybe not.  Never get any information from C-Media about
 * that <werner@suse.de>.
 */
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
{
	unsigned int delta, tolerance;
	int xm, xn, xr;

	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
		rate <<= 1;
	*n = -1;
	if (*r > 0xff)
		goto out;
	tolerance = rate*CM_TOLERANCE_RATE;

	for (xn = (1+2); xn < (0x1f+2); xn++) {
		for (xm = (1+2); xm < (0xff+2); xm++) {
			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;

			if (xr < rate)
				delta = rate - xr;
			else
				delta = xr - rate;

			/*
			 * If we found one, remember this,
			 * and try to find a closer one
			 */
			if (delta < tolerance) {
				tolerance = delta;
				*m = xm - 2;
				*n = xn - 2;
			}
		}
	}
out:
	return (*n > -1);
}

/*
 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 * at the register CM_REG_FUNCTRL1 (0x04).
 * Problem: other ways are also possible (any information about that?)
 */
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
{
	unsigned int reg = CM_REG_PLL + slot;
	/*
	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
	 * for DSFC/ASFC (000 up to 111).
	 */

	/* FIXME: Init (Do we've to set an other register first before programming?) */

	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
	snd_cmipci_write_b(cm, reg, rate>>8);
	snd_cmipci_write_b(cm, reg, rate&0xff);

	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
}
#endif /* USE_VAR48KRATE */

static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
					  struct snd_pcm_hw_params *hw_params)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	if (params_channels(hw_params) > 2) {
		mutex_lock(&cm->open_mutex);
		if (cm->opened[CM_CH_PLAY]) {
			mutex_unlock(&cm->open_mutex);
			return -EBUSY;
		}
		/* reserve the channel A */
		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
		mutex_unlock(&cm->open_mutex);
	}
	return 0;
}

static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
{
	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
	udelay(10);
}


/*
 */

static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
	.count = 3,
	.list = hw_channels,
	.mask = 0,
};
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
	.count = 4,
	.list = hw_channels,
	.mask = 0,
};
static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
	.count = 5,
	.list = hw_channels,
	.mask = 0,
};

static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
{
	if (channels > 2) {
		if (!cm->can_multi_ch || !rec->ch)
			return -EINVAL;
		if (rec->fmt != 0x03) /* stereo 16bit only */
			return -EINVAL;
	}

	if (cm->can_multi_ch) {
		spin_lock_irq(&cm->reg_lock);
		if (channels > 2) {
			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
		} else {
			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
		}
		if (channels == 8)
			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
		else
			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
		if (channels == 6) {
			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
		} else {
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
		}
		if (channels == 4)
			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
		else
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
		spin_unlock_irq(&cm->reg_lock);
	}
	return 0;
}


/*
 * prepare playback/capture channel
 * channel to be used must have been set in rec->ch.
 */
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
				 struct snd_pcm_substream *substream)
{
	unsigned int reg, freq, freq_ext, val;
	unsigned int period_size;
	struct snd_pcm_runtime *runtime = substream->runtime;

	rec->fmt = 0;
	rec->shift = 0;
	if (snd_pcm_format_width(runtime->format) >= 16) {
		rec->fmt |= 0x02;
		if (snd_pcm_format_width(runtime->format) > 16)
			rec->shift++; /* 24/32bit */
	}
	if (runtime->channels > 1)
		rec->fmt |= 0x01;
	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
		dev_dbg(cm->card->dev, "cannot set dac channels\n");
		return -EINVAL;
	}

	rec->offset = runtime->dma_addr;
	/* buffer and period sizes in frame */
	rec->dma_size = runtime->buffer_size << rec->shift;
	period_size = runtime->period_size << rec->shift;
	if (runtime->channels > 2) {
		/* multi-channels */
		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
		period_size = (period_size * runtime->channels) / 2;
	}

	spin_lock_irq(&cm->reg_lock);

	/* set buffer address */
	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
	snd_cmipci_write(cm, reg, rec->offset);
	/* program sample counts */
	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
	snd_cmipci_write_w(cm, reg + 2, period_size - 1);

	/* set adc/dac flag */
	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
	if (rec->is_dac)
		cm->ctrl &= ~val;
	else
		cm->ctrl |= val;
	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */

	/* set sample rate */
	freq = 0;
	freq_ext = 0;
	if (runtime->rate > 48000)
		switch (runtime->rate) {
		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
		default:     snd_BUG(); break;
		}
	else
		freq = snd_cmipci_rate_freq(runtime->rate);
	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
	if (rec->ch) {
		val &= ~CM_DSFC_MASK;
		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
	} else {
		val &= ~CM_ASFC_MASK;
		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
	}
	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);

	/* set format */
	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
	if (rec->ch) {
		val &= ~CM_CH1FMT_MASK;
		val |= rec->fmt << CM_CH1FMT_SHIFT;
	} else {
		val &= ~CM_CH0FMT_MASK;
		val |= rec->fmt << CM_CH0FMT_SHIFT;
	}
	if (cm->can_96k) {
		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
		val |= freq_ext << (rec->ch * 2);
	}
	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
	dev_dbg(cm->card->dev, "chformat = %08x\n", val);

	if (!rec->is_dac && cm->chip_version) {
		if (runtime->rate > 44100)
			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
		else
			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
	}

	rec->running = 0;
	spin_unlock_irq(&cm->reg_lock);

	return 0;
}

/*
 * PCM trigger/stop
 */
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
				  int cmd)
{
	unsigned int inthld, chen, reset, pause;
	int result = 0;

	inthld = CM_CH0_INT_EN << rec->ch;
	chen = CM_CHEN0 << rec->ch;
	reset = CM_RST_CH0 << rec->ch;
	pause = CM_PAUSE0 << rec->ch;

	spin_lock(&cm->reg_lock);
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		rec->running = 1;
		/* set interrupt */
		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
		cm->ctrl |= chen;
		/* enable channel */
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		rec->running = 0;
		/* disable interrupt */
		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
		/* reset */
		cm->ctrl &= ~chen;
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
		rec->needs_silencing = rec->is_dac;
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
	case SNDRV_PCM_TRIGGER_SUSPEND:
		cm->ctrl |= pause;
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
		break;
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
	case SNDRV_PCM_TRIGGER_RESUME:
		cm->ctrl &= ~pause;
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
		break;
	default:
		result = -EINVAL;
		break;
	}
	spin_unlock(&cm->reg_lock);
	return result;
}

/*
 * return the current pointer
 */
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
						struct snd_pcm_substream *substream)
{
	size_t ptr;
	unsigned int reg, rem, tries;

	if (!rec->running)
		return 0;
#if 1 // this seems better..
	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
	for (tries = 0; tries < 3; tries++) {
		rem = snd_cmipci_read_w(cm, reg);
		if (rem < rec->dma_size)
			goto ok;
	} 
	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
	return SNDRV_PCM_POS_XRUN;
ok:
	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
#else
	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
	ptr = snd_cmipci_read(cm, reg) - rec->offset;
	ptr = bytes_to_frames(substream->runtime, ptr);
#endif
	if (substream->runtime->channels > 2)
		ptr = (ptr * 2) / substream->runtime->channels;
	return ptr;
}

/*
 * playback
 */

static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
				       int cmd)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
}

static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
}



/*
 * capture
 */

static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
				     int cmd)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
}

static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
}


/*
 * hw preparation for spdif
 */

static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
	int i;

	spin_lock_irq(&chip->reg_lock);
	for (i = 0; i < 4; i++)
		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
	spin_unlock_irq(&chip->reg_lock);
	return 0;
}

static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
					 struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
	int i, change;
	unsigned int val;

	val = 0;
	spin_lock_irq(&chip->reg_lock);
	for (i = 0; i < 4; i++)
		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
	change = val != chip->dig_status;
	chip->dig_status = val;
	spin_unlock_irq(&chip->reg_lock);
	return change;
}

static const struct snd_kcontrol_new snd_cmipci_spdif_default =
{
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
	.info =		snd_cmipci_spdif_default_info,
	.get =		snd_cmipci_spdif_default_get,
	.put =		snd_cmipci_spdif_default_put
};

static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
				     struct snd_ctl_elem_value *ucontrol)
{
	ucontrol->value.iec958.status[0] = 0xff;
	ucontrol->value.iec958.status[1] = 0xff;
	ucontrol->value.iec958.status[2] = 0xff;
	ucontrol->value.iec958.status[3] = 0xff;
	return 0;
}

static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
{
	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
	.info =		snd_cmipci_spdif_mask_info,
	.get =		snd_cmipci_spdif_mask_get,
};

static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
	uinfo->count = 1;
	return 0;
}

static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
	int i;

	spin_lock_irq(&chip->reg_lock);
	for (i = 0; i < 4; i++)
		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
	spin_unlock_irq(&chip->reg_lock);
	return 0;
}

static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
	int i, change;
	unsigned int val;

	val = 0;
	spin_lock_irq(&chip->reg_lock);
	for (i = 0; i < 4; i++)
		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
	change = val != chip->dig_pcm_status;
	chip->dig_pcm_status = val;
	spin_unlock_irq(&chip->reg_lock);
	return change;
}

static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
{
	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
	.info =		snd_cmipci_spdif_stream_info,
	.get =		snd_cmipci_spdif_stream_get,
	.put =		snd_cmipci_spdif_stream_put
};

/*
 */

/* save mixer setting and mute for AC3 playback */
static int save_mixer_state(struct cmipci *cm)
{
	if (! cm->mixer_insensitive) {
		struct snd_ctl_elem_value *val;
		unsigned int i;

		val = kmalloc(sizeof(*val), GFP_KERNEL);
		if (!val)
			return -ENOMEM;
		for (i = 0; i < CM_SAVED_MIXERS; i++) {
			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
			if (ctl) {
				int event;
				memset(val, 0, sizeof(*val));
				ctl->get(ctl, val);
				cm->mixer_res_status[i] = val->value.integer.value[0];
				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
				event = SNDRV_CTL_EVENT_MASK_INFO;
				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
					ctl->put(ctl, val); /* toggle */
					event |= SNDRV_CTL_EVENT_MASK_VALUE;
				}
				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
				snd_ctl_notify(cm->card, event, &ctl->id);
			}
		}
		kfree(val);
		cm->mixer_insensitive = 1;
	}
	return 0;
}


/* restore the previously saved mixer status */
static void restore_mixer_state(struct cmipci *cm)
{
	if (cm->mixer_insensitive) {
		struct snd_ctl_elem_value *val;
		unsigned int i;

		val = kmalloc(sizeof(*val), GFP_KERNEL);
		if (!val)
			return;
		cm->mixer_insensitive = 0; /* at first clear this;
					      otherwise the changes will be ignored */
		for (i = 0; i < CM_SAVED_MIXERS; i++) {
			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
			if (ctl) {
				int event;

				memset(val, 0, sizeof(*val));
				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
				ctl->get(ctl, val);
				event = SNDRV_CTL_EVENT_MASK_INFO;
				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
					val->value.integer.value[0] = cm->mixer_res_status[i];
					ctl->put(ctl, val);
					event |= SNDRV_CTL_EVENT_MASK_VALUE;
				}
				snd_ctl_notify(cm->card, event, &ctl->id);
			}
		}
		kfree(val);
	}
}

/* spinlock held! */
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
{
	if (do_ac3) {
		/* AC3EN for 037 */
		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
		/* AC3EN for 039 */
		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
	
		if (cm->can_ac3_hw) {
			/* SPD24SEL for 037, 0x02 */
			/* SPD24SEL for 039, 0x20, but cannot be set */
			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
		} else { /* can_ac3_sw */
			/* SPD32SEL for 037 & 039, 0x20 */
			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
			/* set 176K sample rate to fix 033 HW bug */
			if (cm->chip_version == 33) {
				if (rate >= 48000) {
					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
				} else {
					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
				}
			}
		}

	} else {
		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);

		if (cm->can_ac3_hw) {
			/* chip model >= 37 */
			if (snd_pcm_format_width(subs->runtime->format) > 16) {
				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
			} else {
				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
			}
		} else {
			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
		}
	}
}

static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
{
	int rate, err;

	rate = subs->runtime->rate;

	if (up && do_ac3) {
		err = save_mixer_state(cm);
		if (err < 0)
			return err;
	}

	spin_lock_irq(&cm->reg_lock);
	cm->spdif_playback_avail = up;
	if (up) {
		/* they are controlled via "IEC958 Output Switch" */
		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
		if (cm->spdif_playback_enabled)
			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
		setup_ac3(cm, subs, do_ac3, rate);

		if (rate == 48000 || rate == 96000)
			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
		else
			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
		if (rate > 48000)
			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
		else
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
	} else {
		/* they are controlled via "IEC958 Output Switch" */
		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
		setup_ac3(cm, subs, 0, 0);
	}
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}


/*
 * preparation
 */

/* playback - enable spdif only on the certain condition */
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	int rate = substream->runtime->rate;
	int err, do_spdif, do_ac3 = 0;

	do_spdif = (rate >= 44100 && rate <= 96000 &&
		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
		    substream->runtime->channels == 2);
	if (do_spdif && cm->can_ac3_hw) 
		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
	if (err < 0)
		return err;
	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/* playback  (via device #2) - enable spdif always */
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	int err, do_ac3;

	if (cm->can_ac3_hw) 
		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
	else
		do_ac3 = 1; /* doesn't matter */
	err = setup_spdif_playback(cm, substream, 1, do_ac3);
	if (err < 0)
		return err;
	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/*
 * Apparently, the samples last played on channel A stay in some buffer, even
 * after the channel is reset, and get added to the data for the rear DACs when
 * playing a multichannel stream on channel B.  This is likely to generate
 * wraparounds and thus distortions.
 * To avoid this, we play at least one zero sample after the actual stream has
 * stopped.
 */
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
{
	struct snd_pcm_runtime *runtime = rec->substream->runtime;
	unsigned int reg, val;

	if (rec->needs_silencing && runtime && runtime->dma_area) {
		/* set up a small silence buffer */
		memset(runtime->dma_area, 0, PAGE_SIZE);
		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
		snd_cmipci_write(cm, reg, val);
	
		/* configure for 16 bits, 2 channels, 8 kHz */
		if (runtime->channels > 2)
			set_dac_channels(cm, rec, 2);
		spin_lock_irq(&cm->reg_lock);
		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
		if (cm->can_96k)
			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
	
		/* start stream (we don't need interrupts) */
		cm->ctrl |= CM_CHEN0 << rec->ch;
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
		spin_unlock_irq(&cm->reg_lock);

		msleep(1);

		/* stop and reset stream */
		spin_lock_irq(&cm->reg_lock);
		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
		val = CM_RST_CH0 << rec->ch;
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
		spin_unlock_irq(&cm->reg_lock);

		rec->needs_silencing = 0;
	}
}

static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	setup_spdif_playback(cm, substream, 0, 0);
	restore_mixer_state(cm);
	snd_cmipci_silence_hack(cm, &cm->channel[0]);
	return 0;
}

static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	snd_cmipci_silence_hack(cm, &cm->channel[1]);
	return 0;
}

/* capture */
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

/* capture with spdif (via device #2) */
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);

	spin_lock_irq(&cm->reg_lock);
	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
	if (cm->can_96k) {
		if (substream->runtime->rate > 48000)
			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
		else
			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
	}
	if (snd_pcm_format_width(substream->runtime->format) > 16)
		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
	else
		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);

	spin_unlock_irq(&cm->reg_lock);

	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
{
	struct cmipci *cm = snd_pcm_substream_chip(subs);

	spin_lock_irq(&cm->reg_lock);
	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
	spin_unlock_irq(&cm->reg_lock);

	return 0;
}


/*
 * interrupt handler
 */
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
{
	struct cmipci *cm = dev_id;
	unsigned int status, mask = 0;
	
	/* fastpath out, to ease interrupt sharing */
	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
	if (!(status & CM_INTR))
		return IRQ_NONE;

	/* acknowledge interrupt */
	spin_lock(&cm->reg_lock);
	if (status & CM_CHINT0)
		mask |= CM_CH0_INT_EN;
	if (status & CM_CHINT1)
		mask |= CM_CH1_INT_EN;
	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
	spin_unlock(&cm->reg_lock);

	if (cm->rmidi && (status & CM_UARTINT))
		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);

	if (cm->pcm) {
		if ((status & CM_CHINT0) && cm->channel[0].running)
			snd_pcm_period_elapsed(cm->channel[0].substream);
		if ((status & CM_CHINT1) && cm->channel[1].running)
			snd_pcm_period_elapsed(cm->channel[1].substream);
	}
	return IRQ_HANDLED;
}

/*
 * h/w infos
 */

/* playback on channel A */
static const struct snd_pcm_hardware snd_cmipci_playback =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5512,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

/* capture on channel B */
static const struct snd_pcm_hardware snd_cmipci_capture =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5512,
	.rate_max =		48000,
	.channels_min =		1,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

/* playback on channel B - stereo 16bit only? */
static const struct snd_pcm_hardware snd_cmipci_playback2 =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
	.rate_min =		5512,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

/* spdif playback on channel A */
static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
	.rate_min =		44100,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

/* spdif playback on channel A (32bit, IEC958 subframes) */
static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
	.rate_min =		44100,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

/* spdif capture on channel B */
static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
{
	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
	.rate_min =		44100,
	.rate_max =		48000,
	.channels_min =		2,
	.channels_max =		2,
	.buffer_bytes_max =	(128*1024),
	.period_bytes_min =	64,
	.period_bytes_max =	(128*1024),
	.periods_min =		2,
	.periods_max =		1024,
	.fifo_size =		0,
};

static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
			32000, 44100, 48000, 88200, 96000, 128000 };
static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
		.count = ARRAY_SIZE(rate_constraints),
		.list = rate_constraints,
		.mask = 0,
};

/*
 * check device open/close
 */
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
{
	int ch = mode & CM_OPEN_CH_MASK;

	/* FIXME: a file should wait until the device becomes free
	 * when it's opened on blocking mode.  however, since the current
	 * pcm framework doesn't pass file pointer before actually opened,
	 * we can't know whether blocking mode or not in open callback..
	 */
	mutex_lock(&cm->open_mutex);
	if (cm->opened[ch]) {
		mutex_unlock(&cm->open_mutex);
		return -EBUSY;
	}
	cm->opened[ch] = mode;
	cm->channel[ch].substream = subs;
	if (! (mode & CM_OPEN_DAC)) {
		/* disable dual DAC mode */
		cm->channel[ch].is_dac = 0;
		spin_lock_irq(&cm->reg_lock);
		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
		spin_unlock_irq(&cm->reg_lock);
	}
	mutex_unlock(&cm->open_mutex);
	return 0;
}

static void close_device_check(struct cmipci *cm, int mode)
{
	int ch = mode & CM_OPEN_CH_MASK;

	mutex_lock(&cm->open_mutex);
	if (cm->opened[ch] == mode) {
		if (cm->channel[ch].substream) {
			snd_cmipci_ch_reset(cm, ch);
			cm->channel[ch].running = 0;
			cm->channel[ch].substream = NULL;
		}
		cm->opened[ch] = 0;
		if (! cm->channel[ch].is_dac) {
			/* enable dual DAC mode again */
			cm->channel[ch].is_dac = 1;
			spin_lock_irq(&cm->reg_lock);
			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
			spin_unlock_irq(&cm->reg_lock);
		}
	}
	mutex_unlock(&cm->open_mutex);
}

/*
 */

static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
	if (err < 0)
		return err;
	runtime->hw = snd_cmipci_playback;
	if (cm->chip_version == 68) {
		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
				     SNDRV_PCM_RATE_96000;
		runtime->hw.rate_max = 96000;
	} else if (cm->chip_version == 55) {
		err = snd_pcm_hw_constraint_list(runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
		if (err < 0)
			return err;
		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
		runtime->hw.rate_max = 128000;
	}
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
	cm->dig_pcm_status = cm->dig_status;
	return 0;
}

static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
	if (err < 0)
		return err;
	runtime->hw = snd_cmipci_capture;
	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
		runtime->hw.rate_min = 41000;
		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
	} else if (cm->chip_version == 55) {
		err = snd_pcm_hw_constraint_list(runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
		if (err < 0)
			return err;
		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
		runtime->hw.rate_max = 128000;
	}
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
	return 0;
}

static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	/* use channel B */
	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
	if (err < 0)
		return err;
	runtime->hw = snd_cmipci_playback2;
	mutex_lock(&cm->open_mutex);
	if (! cm->opened[CM_CH_PLAY]) {
		if (cm->can_multi_ch) {
			runtime->hw.channels_max = cm->max_channels;
			if (cm->max_channels == 4)
				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
			else if (cm->max_channels == 6)
				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
			else if (cm->max_channels == 8)
				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
		}
	}
	mutex_unlock(&cm->open_mutex);
	if (cm->chip_version == 68) {
		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
				     SNDRV_PCM_RATE_96000;
		runtime->hw.rate_max = 96000;
	} else if (cm->chip_version == 55) {
		err = snd_pcm_hw_constraint_list(runtime, 0,
			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
		if (err < 0)
			return err;
		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
		runtime->hw.rate_max = 128000;
	}
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
	return 0;
}

static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	/* use channel A */
	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
	if (err < 0)
		return err;
	if (cm->can_ac3_hw) {
		runtime->hw = snd_cmipci_playback_spdif;
		if (cm->chip_version >= 37) {
			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
		}
		if (cm->can_96k) {
			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
					     SNDRV_PCM_RATE_96000;
			runtime->hw.rate_max = 96000;
		}
	} else {
		runtime->hw = snd_cmipci_playback_iec958_subframe;
	}
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
	cm->dig_pcm_status = cm->dig_status;
	return 0;
}

static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	struct snd_pcm_runtime *runtime = substream->runtime;
	int err;

	/* use channel B */
	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
	if (err < 0)
		return err;
	runtime->hw = snd_cmipci_capture_spdif;
	if (cm->can_96k && !(cm->chip_version == 68)) {
		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
				     SNDRV_PCM_RATE_96000;
		runtime->hw.rate_max = 96000;
	}
	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
	return 0;
}


/*
 */

static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	close_device_check(cm, CM_OPEN_PLAYBACK);
	return 0;
}

static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	close_device_check(cm, CM_OPEN_CAPTURE);
	return 0;
}

static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	close_device_check(cm, CM_OPEN_PLAYBACK2);
	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
	return 0;
}

static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
	return 0;
}

static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
{
	struct cmipci *cm = snd_pcm_substream_chip(substream);
	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
	return 0;
}


/*
 */

static const struct snd_pcm_ops snd_cmipci_playback_ops = {
	.open =		snd_cmipci_playback_open,
	.close =	snd_cmipci_playback_close,
	.hw_free =	snd_cmipci_playback_hw_free,
	.prepare =	snd_cmipci_playback_prepare,
	.trigger =	snd_cmipci_playback_trigger,
	.pointer =	snd_cmipci_playback_pointer,
};

static const struct snd_pcm_ops snd_cmipci_capture_ops = {
	.open =		snd_cmipci_capture_open,
	.close =	snd_cmipci_capture_close,
	.prepare =	snd_cmipci_capture_prepare,
	.trigger =	snd_cmipci_capture_trigger,
	.pointer =	snd_cmipci_capture_pointer,
};

static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
	.open =		snd_cmipci_playback2_open,
	.close =	snd_cmipci_playback2_close,
	.hw_params =	snd_cmipci_playback2_hw_params,
	.hw_free =	snd_cmipci_playback2_hw_free,
	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
};

static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
	.open =		snd_cmipci_playback_spdif_open,
	.close =	snd_cmipci_playback_spdif_close,
	.hw_free =	snd_cmipci_playback_hw_free,
	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
	.trigger =	snd_cmipci_playback_trigger,
	.pointer =	snd_cmipci_playback_pointer,
};

static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
	.open =		snd_cmipci_capture_spdif_open,
	.close =	snd_cmipci_capture_spdif_close,
	.hw_free =	snd_cmipci_capture_spdif_hw_free,
	.prepare =	snd_cmipci_capture_spdif_prepare,
	.trigger =	snd_cmipci_capture_trigger,
	.pointer =	snd_cmipci_capture_pointer,
};


/*
 */

static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
{
	struct snd_pcm *pcm;
	int err;

	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
	if (err < 0)
		return err;

	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);

	pcm->private_data = cm;
	pcm->info_flags = 0;
	strcpy(pcm->name, "C-Media PCI DAC/ADC");
	cm->pcm = pcm;

	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
				       &cm->pci->dev, 64*1024, 128*1024);

	return 0;
}

static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
{
	struct snd_pcm *pcm;
	int err;

	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
	if (err < 0)
		return err;

	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);

	pcm->private_data = cm;
	pcm->info_flags = 0;
	strcpy(pcm->name, "C-Media PCI 2nd DAC");
	cm->pcm2 = pcm;

	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
				       &cm->pci->dev, 64*1024, 128*1024);

	return 0;
}

static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
{
	struct snd_pcm *pcm;
	int err;

	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
	if (err < 0)
		return err;

	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);

	pcm->private_data = cm;
	pcm->info_flags = 0;
	strcpy(pcm->name, "C-Media PCI IEC958");
	cm->pcm_spdif = pcm;

	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
				       &cm->pci->dev, 64*1024, 128*1024);

	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
				     snd_pcm_alt_chmaps, cm->max_channels, 0,
				     NULL);
	if (err < 0)
		return err;

	return 0;
}

/*
 * mixer interface:
 * - CM8338/8738 has a compatible mixer interface with SB16, but
 *   lack of some elements like tone control, i/o gain and AGC.
 * - Access to native registers:
 *   - A 3D switch
 *   - Output mute switches
 */

static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
{
	outb(idx, s->iobase + CM_REG_SB16_ADDR);
	outb(data, s->iobase + CM_REG_SB16_DATA);
}

static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
{
	unsigned char v;

	outb(idx, s->iobase + CM_REG_SB16_ADDR);
	v = inb(s->iobase + CM_REG_SB16_DATA);
	return v;
}

/*
 * general mixer element
 */
struct cmipci_sb_reg {
	unsigned int left_reg, right_reg;
	unsigned int left_shift, right_shift;
	unsigned int mask;
	unsigned int invert: 1;
	unsigned int stereo: 1;
};

#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))

#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_volume, \
  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
}

#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)

static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
{
	r->left_reg = val & 0xff;
	r->right_reg = (val >> 8) & 0xff;
	r->left_shift = (val >> 16) & 0x07;
	r->right_shift = (val >> 19) & 0x07;
	r->invert = (val >> 22) & 1;
	r->stereo = (val >> 23) & 1;
	r->mask = (val >> 24) & 0xff;
}

static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_info *uinfo)
{
	struct cmipci_sb_reg reg;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = reg.stereo + 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = reg.mask;
	return 0;
}
 
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	int val;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	spin_lock_irq(&cm->reg_lock);
	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
	if (reg.invert)
		val = reg.mask - val;
	ucontrol->value.integer.value[0] = val;
	if (reg.stereo) {
		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
		if (reg.invert)
			val = reg.mask - val;
		ucontrol->value.integer.value[1] = val;
	}
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}

static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
				 struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	int change;
	int left, right, oleft, oright;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	left = ucontrol->value.integer.value[0] & reg.mask;
	if (reg.invert)
		left = reg.mask - left;
	left <<= reg.left_shift;
	if (reg.stereo) {
		right = ucontrol->value.integer.value[1] & reg.mask;
		if (reg.invert)
			right = reg.mask - right;
		right <<= reg.right_shift;
	} else
		right = 0;
	spin_lock_irq(&cm->reg_lock);
	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
	left |= oleft & ~(reg.mask << reg.left_shift);
	change = left != oleft;
	if (reg.stereo) {
		if (reg.left_reg != reg.right_reg) {
			snd_cmipci_mixer_write(cm, reg.left_reg, left);
			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
		} else
			oright = left;
		right |= oright & ~(reg.mask << reg.right_shift);
		change |= right != oright;
		snd_cmipci_mixer_write(cm, reg.right_reg, right);
	} else
		snd_cmipci_mixer_write(cm, reg.left_reg, left);
	spin_unlock_irq(&cm->reg_lock);
	return change;
}

/*
 * input route (left,right) -> (left,right)
 */
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_input_sw, \
  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
}

static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
				    struct snd_ctl_elem_info *uinfo)
{
	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
	uinfo->count = 4;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = 1;
	return 0;
}
 
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	int val1, val2;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	spin_lock_irq(&cm->reg_lock);
	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
	spin_unlock_irq(&cm->reg_lock);
	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
	return 0;
}

static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	int change;
	int val1, val2, oval1, oval2;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	spin_lock_irq(&cm->reg_lock);
	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
	change = val1 != oval1 || val2 != oval2;
	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
	spin_unlock_irq(&cm->reg_lock);
	return change;
}

/*
 * native mixer switches/volumes
 */

#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
}

#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
}

#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
}

#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
}

static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_info *uinfo)
{
	struct cmipci_sb_reg reg;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
	uinfo->count = reg.stereo + 1;
	uinfo->value.integer.min = 0;
	uinfo->value.integer.max = reg.mask;
	return 0;

}

static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	unsigned char oreg, val;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	spin_lock_irq(&cm->reg_lock);
	oreg = inb(cm->iobase + reg.left_reg);
	val = (oreg >> reg.left_shift) & reg.mask;
	if (reg.invert)
		val = reg.mask - val;
	ucontrol->value.integer.value[0] = val;
	if (reg.stereo) {
		val = (oreg >> reg.right_shift) & reg.mask;
		if (reg.invert)
			val = reg.mask - val;
		ucontrol->value.integer.value[1] = val;
	}
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}

static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	struct cmipci_sb_reg reg;
	unsigned char oreg, nreg, val;

	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
	spin_lock_irq(&cm->reg_lock);
	oreg = inb(cm->iobase + reg.left_reg);
	val = ucontrol->value.integer.value[0] & reg.mask;
	if (reg.invert)
		val = reg.mask - val;
	nreg = oreg & ~(reg.mask << reg.left_shift);
	nreg |= (val << reg.left_shift);
	if (reg.stereo) {
		val = ucontrol->value.integer.value[1] & reg.mask;
		if (reg.invert)
			val = reg.mask - val;
		nreg &= ~(reg.mask << reg.right_shift);
		nreg |= (val << reg.right_shift);
	}
	outb(nreg, cm->iobase + reg.left_reg);
	spin_unlock_irq(&cm->reg_lock);
	return (nreg != oreg);
}

/*
 * special case - check mixer sensitivity
 */
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
						 struct snd_ctl_elem_value *ucontrol)
{
	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
}

static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
						 struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	if (cm->mixer_insensitive) {
		/* ignored */
		return 0;
	}
	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
}


static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
	{ /* switch with sensitivity */
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.name = "PCM Playback Switch",
		.info = snd_cmipci_info_native_mixer,
		.get = snd_cmipci_get_native_mixer_sensitive,
		.put = snd_cmipci_put_native_mixer_sensitive,
		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
	},
	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
};

/*
 * other switches
 */

struct cmipci_switch_args {
	int reg;		/* register index */
	unsigned int mask;	/* mask bits */
	unsigned int mask_on;	/* mask bits to turn on */
	unsigned int is_byte: 1;		/* byte access? */
	unsigned int ac3_sensitive: 1;	/* access forbidden during
					 * non-audio operation?
					 */
};

#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info

static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol,
				   struct cmipci_switch_args *args)
{
	unsigned int val;
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&cm->reg_lock);
	if (args->ac3_sensitive && cm->mixer_insensitive) {
		ucontrol->value.integer.value[0] = 0;
		spin_unlock_irq(&cm->reg_lock);
		return 0;
	}
	if (args->is_byte)
		val = inb(cm->iobase + args->reg);
	else
		val = snd_cmipci_read(cm, args->reg);
	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}

static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci_switch_args *args;
	args = (struct cmipci_switch_args *)kcontrol->private_value;
	if (snd_BUG_ON(!args))
		return -EINVAL;
	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
}

static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
				   struct snd_ctl_elem_value *ucontrol,
				   struct cmipci_switch_args *args)
{
	unsigned int val;
	int change;
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&cm->reg_lock);
	if (args->ac3_sensitive && cm->mixer_insensitive) {
		/* ignored */
		spin_unlock_irq(&cm->reg_lock);
		return 0;
	}
	if (args->is_byte)
		val = inb(cm->iobase + args->reg);
	else
		val = snd_cmipci_read(cm, args->reg);
	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
			args->mask_on : (args->mask & ~args->mask_on));
	if (change) {
		val &= ~args->mask;
		if (ucontrol->value.integer.value[0])
			val |= args->mask_on;
		else
			val |= (args->mask & ~args->mask_on);
		if (args->is_byte)
			outb((unsigned char)val, cm->iobase + args->reg);
		else
			snd_cmipci_write(cm, args->reg, val);
	}
	spin_unlock_irq(&cm->reg_lock);
	return change;
}

static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
				  struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci_switch_args *args;
	args = (struct cmipci_switch_args *)kcontrol->private_value;
	if (snd_BUG_ON(!args))
		return -EINVAL;
	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
}

#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
  .reg = xreg, \
  .mask = xmask, \
  .mask_on = xmask_on, \
  .is_byte = xis_byte, \
  .ac3_sensitive = xac3, \
}
	
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)

#if 0 /* these will be controlled in pcm device */
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
#if CM_CH_PLAY == 1
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
#else
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);

#define DEFINE_SWITCH(sname, stype, sarg) \
{ .name = sname, \
  .iface = stype, \
  .info = snd_cmipci_uswitch_info, \
  .get = snd_cmipci_uswitch_get, \
  .put = snd_cmipci_uswitch_put, \
  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
}

#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)


/*
 * callbacks for spdif output switch
 * needs toggle two registers..
 */
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	int changed;
	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
	return changed;
}

static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
	int changed;
	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
	if (changed) {
		if (ucontrol->value.integer.value[0]) {
			if (chip->spdif_playback_avail)
				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
		} else {
			if (chip->spdif_playback_avail)
				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
		}
	}
	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
	return changed;
}


static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
					struct snd_ctl_elem_info *uinfo)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	static const char *const texts[3] = {
		"Line-In", "Rear Output", "Bass Output"
	};

	return snd_ctl_enum_info(uinfo, 1,
				 cm->chip_version >= 39 ? 3 : 2, texts);
}

static inline unsigned int get_line_in_mode(struct cmipci *cm)
{
	unsigned int val;
	if (cm->chip_version >= 39) {
		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
			return 2;
	}
	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
	if (val & CM_REAR2LIN)
		return 1;
	return 0;
}

static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);

	spin_lock_irq(&cm->reg_lock);
	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}

static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	int change;

	spin_lock_irq(&cm->reg_lock);
	if (ucontrol->value.enumerated.item[0] == 2)
		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
	else
		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
	if (ucontrol->value.enumerated.item[0] == 1)
		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
	else
		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
	spin_unlock_irq(&cm->reg_lock);
	return change;
}

static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
				       struct snd_ctl_elem_info *uinfo)
{
	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };

	return snd_ctl_enum_info(uinfo, 1, 2, texts);
}

static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	/* same bit as spdi_phase */
	spin_lock_irq(&cm->reg_lock);
	ucontrol->value.enumerated.item[0] = 
		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
	spin_unlock_irq(&cm->reg_lock);
	return 0;
}

static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
				      struct snd_ctl_elem_value *ucontrol)
{
	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
	int change;

	spin_lock_irq(&cm->reg_lock);
	if (ucontrol->value.enumerated.item[0])
		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
	else
		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
	spin_unlock_irq(&cm->reg_lock);
	return change;
}

/* both for CM8338/8738 */
static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
	{
		.name = "Line-In Mode",
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.info = snd_cmipci_line_in_mode_info,
		.get = snd_cmipci_line_in_mode_get,
		.put = snd_cmipci_line_in_mode_put,
	},
};

/* for non-multichannel chips */
static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);

/* only for CM8738 */
static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
#if 0 /* controlled in pcm device */
	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
#endif
	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
	{ .name = "IEC958 Output Switch",
	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
	  .info = snd_cmipci_uswitch_info,
	  .get = snd_cmipci_spdout_enable_get,
	  .put = snd_cmipci_spdout_enable_put,
	},
	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
};

/* only for model 033/037 */
static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
};

/* only for model 039 or later */
static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
	{
		.name = "Mic-In Mode",
		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
		.info = snd_cmipci_mic_in_mode_info,
		.get = snd_cmipci_mic_in_mode_get,
		.put = snd_cmipci_mic_in_mode_put,
	}
};

/* card control switches */
static const struct snd_kcontrol_new snd_cmipci_modem_switch =
DEFINE_CARD_SWITCH("Modem", modem);


static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
{
	struct snd_card *card;
	const struct snd_kcontrol_new *sw;
	struct snd_kcontrol *kctl;
	unsigned int idx;
	int err;

	if (snd_BUG_ON(!cm || !cm->card))
		return -EINVAL;

	card = cm->card;

	strcpy(card->mixername, "CMedia PCI");

	spin_lock_irq(&cm->reg_lock);
	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
	spin_unlock_irq(&cm->reg_lock);

	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
		if (cm->chip_version == 68) {	// 8768 has no PCM volume
			if (!strcmp(snd_cmipci_mixers[idx].name,
				"PCM Playback Volume"))
				continue;
		}
		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
		if (err < 0)
			return err;
	}

	/* mixer switches */
	sw = snd_cmipci_mixer_switches;
	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
		if (err < 0)
			return err;
	}
	if (! cm->can_multi_ch) {
		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
		if (err < 0)
			return err;
	}
	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
		sw = snd_cmipci_8738_mixer_switches;
		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
			if (err < 0)
				return err;
		}
		if (cm->can_ac3_hw) {
			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
			err = snd_ctl_add(card, kctl);
			if (err < 0)
				return err;
			kctl->id.device = pcm_spdif_device;
			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
			err = snd_ctl_add(card, kctl);
			if (err < 0)
				return err;
			kctl->id.device = pcm_spdif_device;
			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
			err = snd_ctl_add(card, kctl);
			if (err < 0)
				return err;
			kctl->id.device = pcm_spdif_device;
		}
		if (cm->chip_version <= 37) {
			sw = snd_cmipci_old_mixer_switches;
			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
				if (err < 0)
					return err;
			}
		}
	}
	if (cm->chip_version >= 39) {
		sw = snd_cmipci_extra_mixer_switches;
		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
			if (err < 0)
				return err;
		}
	}

	/* card switches */
	/*
	 * newer chips don't have the register bits to force modem link
	 * detection; the bit that was FLINKON now mutes CH1
	 */
	if (cm->chip_version < 39) {
		err = snd_ctl_add(cm->card,
				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
		if (err < 0)
			return err;
	}

	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
		struct snd_ctl_elem_id elem_id;
		struct snd_kcontrol *ctl;
		memset(&elem_id, 0, sizeof(elem_id));
		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
		strcpy(elem_id.name, cm_saved_mixer[idx].name);
		ctl = snd_ctl_find_id(cm->card, &elem_id);
		if (ctl)
			cm->mixer_res_ctl[idx] = ctl;
	}

	return 0;
}


/*
 * proc interface
 */

static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
				 struct snd_info_buffer *buffer)
{
	struct cmipci *cm = entry->private_data;
	int i, v;
	
	snd_iprintf(buffer, "%s\n", cm->card->longname);
	for (i = 0; i < 0x94; i++) {
		if (i == 0x28)
			i = 0x90;
		v = inb(cm->iobase + i);
		if (i % 4 == 0)
			snd_iprintf(buffer, "\n%02x:", i);
		snd_iprintf(buffer, " %02x", v);
	}
	snd_iprintf(buffer, "\n");
}

static void snd_cmipci_proc_init(struct cmipci *cm)
{
	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
}

static const struct pci_device_id snd_cmipci_ids[] = {
	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
	{0,},
};


/*
 * check chip version and capabilities
 * driver name is modified according to the chip model
 */
static void query_chip(struct cmipci *cm)
{
	unsigned int detect;

	/* check reg 0Ch, bit 24-31 */
	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
	if (! detect) {
		/* check reg 08h, bit 24-28 */
		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
		switch (detect) {
		case 0:
			cm->chip_version = 33;
			if (cm->do_soft_ac3)
				cm->can_ac3_sw = 1;
			else
				cm->can_ac3_hw = 1;
			break;
		case CM_CHIP_037:
			cm->chip_version = 37;
			cm->can_ac3_hw = 1;
			break;
		default:
			cm->chip_version = 39;
			cm->can_ac3_hw = 1;
			break;
		}
		cm->max_channels = 2;
	} else {
		if (detect & CM_CHIP_039) {
			cm->chip_version = 39;
			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
				cm->max_channels = 6;
			else
				cm->max_channels = 4;
		} else if (detect & CM_CHIP_8768) {
			cm->chip_version = 68;
			cm->max_channels = 8;
			cm->can_96k = 1;
		} else {
			cm->chip_version = 55;
			cm->max_channels = 6;
			cm->can_96k = 1;
		}
		cm->can_ac3_hw = 1;
		cm->can_multi_ch = 1;
	}
}

#ifdef SUPPORT_JOYSTICK
static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
{
	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
	struct gameport *gp;
	struct resource *r = NULL;
	int i, io_port = 0;

	if (joystick_port[dev] == 0)
		return -ENODEV;

	if (joystick_port[dev] == 1) { /* auto-detect */
		for (i = 0; ports[i]; i++) {
			io_port = ports[i];
			r = devm_request_region(&cm->pci->dev, io_port, 1,
						"CMIPCI gameport");
			if (r)
				break;
		}
	} else {
		io_port = joystick_port[dev];
		r = devm_request_region(&cm->pci->dev, io_port, 1,
					"CMIPCI gameport");
	}

	if (!r) {
		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
		return -EBUSY;
	}

	cm->gameport = gp = gameport_allocate_port();
	if (!gp) {
		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
		return -ENOMEM;
	}
	gameport_set_name(gp, "C-Media Gameport");
	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
	gameport_set_dev_parent(gp, &cm->pci->dev);
	gp->io = io_port;

	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

	gameport_register_port(cm->gameport);

	return 0;
}

static void snd_cmipci_free_gameport(struct cmipci *cm)
{
	if (cm->gameport) {
		gameport_unregister_port(cm->gameport);
		cm->gameport = NULL;

		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
	}
}
#else
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
#endif

static void snd_cmipci_free(struct snd_card *card)
{
	struct cmipci *cm = card->private_data;

	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

	/* reset mixer */
	snd_cmipci_mixer_write(cm, 0, 0);

	snd_cmipci_free_gameport(cm);
}

static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
{
	long iosynth;
	unsigned int val;
	struct snd_opl3 *opl3;
	int err;

	if (!fm_port)
		goto disable_fm;

	if (cm->chip_version >= 39) {
		/* first try FM regs in PCI port range */
		iosynth = cm->iobase + CM_REG_FM_PCI;
		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
				      OPL3_HW_OPL3, 1, &opl3);
	} else {
		err = -EIO;
	}
	if (err < 0) {
		/* then try legacy ports */
		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
		iosynth = fm_port;
		switch (iosynth) {
		case 0x3E8: val |= CM_FMSEL_3E8; break;
		case 0x3E0: val |= CM_FMSEL_3E0; break;
		case 0x3C8: val |= CM_FMSEL_3C8; break;
		case 0x388: val |= CM_FMSEL_388; break;
		default:
			goto disable_fm;
		}
		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
		/* enable FM */
		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);

		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
				    OPL3_HW_OPL3, 0, &opl3) < 0) {
			dev_err(cm->card->dev,
				"no OPL device at %#lx, skipping...\n",
				iosynth);
			goto disable_fm;
		}
	}
	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
	if (err < 0) {
		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
		return err;
	}
	return 0;

 disable_fm:
	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
	return 0;
}

static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
			     int dev)
{
	struct cmipci *cm = card->private_data;
	int err;
	unsigned int val;
	long iomidi = 0;
	int integrated_midi = 0;
	char modelstr[16];
	int pcm_index, pcm_spdif_index;
	static const struct pci_device_id intel_82437vx[] = {
		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
		{ },
	};

	err = pcim_enable_device(pci);
	if (err < 0)
		return err;

	spin_lock_init(&cm->reg_lock);
	mutex_init(&cm->open_mutex);
	cm->device = pci->device;
	cm->card = card;
	cm->pci = pci;
	cm->irq = -1;
	cm->channel[0].ch = 0;
	cm->channel[1].ch = 1;
	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */

	err = pci_request_regions(pci, card->driver);
	if (err < 0)
		return err;
	cm->iobase = pci_resource_start(pci, 0);

	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
		return -EBUSY;
	}
	cm->irq = pci->irq;
	card->sync_irq = cm->irq;
	card->private_free = snd_cmipci_free;

	pci_set_master(cm->pci);

	/*
	 * check chip version, max channels and capabilities
	 */

	cm->chip_version = 0;
	cm->max_channels = 2;
	cm->do_soft_ac3 = soft_ac3[dev];

	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
		query_chip(cm);
	/* added -MCx suffix for chip supporting multi-channels */
	if (cm->can_multi_ch)
		sprintf(cm->card->driver + strlen(cm->card->driver),
			"-MC%d", cm->max_channels);
	else if (cm->can_ac3_sw)
		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");

	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;

#if CM_CH_PLAY == 1
	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
#else
	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
#endif

	/* initialize codec registers */
	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
#if CM_CH_PLAY == 1
	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#else
	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#endif
	if (cm->chip_version) {
		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
	}
	/* Set Bus Master Request */
	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);

	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
	switch (pci->device) {
	case PCI_DEVICE_ID_CMEDIA_CM8738:
	case PCI_DEVICE_ID_CMEDIA_CM8738B:
		if (!pci_dev_present(intel_82437vx)) 
			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
		break;
	default:
		break;
	}

	if (cm->chip_version < 68) {
		val = pci->device < 0x110 ? 8338 : 8738;
	} else {
		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
		case 0:
			val = 8769;
			break;
		case 2:
			val = 8762;
			break;
		default:
			switch ((pci->subsystem_vendor << 16) |
				pci->subsystem_device) {
			case 0x13f69761:
			case 0x584d3741:
			case 0x584d3751:
			case 0x584d3761:
			case 0x584d3771:
			case 0x72848384:
				val = 8770;
				break;
			default:
				val = 8768;
				break;
			}
		}
	}
	sprintf(card->shortname, "C-Media CMI%d", val);
	if (cm->chip_version < 68)
		sprintf(modelstr, " (model %d)", cm->chip_version);
	else
		modelstr[0] = '\0';
	sprintf(card->longname, "%s%s at %#lx, irq %i",
		card->shortname, modelstr, cm->iobase, cm->irq);

	if (cm->chip_version >= 39) {
		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
		if (val != 0x00 && val != 0xff) {
			if (mpu_port[dev])
				iomidi = cm->iobase + CM_REG_MPU_PCI;
			integrated_midi = 1;
		}
	}
	if (!integrated_midi) {
		val = 0;
		iomidi = mpu_port[dev];
		switch (iomidi) {
		case 0x320: val = CM_VMPU_320; break;
		case 0x310: val = CM_VMPU_310; break;
		case 0x300: val = CM_VMPU_300; break;
		case 0x330: val = CM_VMPU_330; break;
		default:
			    iomidi = 0; break;
		}
		if (iomidi > 0) {
			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
			/* enable UART */
			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
			if (inb(iomidi + 1) == 0xff) {
				dev_err(cm->card->dev,
					"cannot enable MPU-401 port at %#lx\n",
					iomidi);
				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
						     CM_UART_EN);
				iomidi = 0;
			}
		}
	}

	if (cm->chip_version < 68) {
		err = snd_cmipci_create_fm(cm, fm_port[dev]);
		if (err < 0)
			return err;
	}

	/* reset mixer */
	snd_cmipci_mixer_write(cm, 0, 0);

	snd_cmipci_proc_init(cm);

	/* create pcm devices */
	pcm_index = pcm_spdif_index = 0;
	err = snd_cmipci_pcm_new(cm, pcm_index);
	if (err < 0)
		return err;
	pcm_index++;
	err = snd_cmipci_pcm2_new(cm, pcm_index);
	if (err < 0)
		return err;
	pcm_index++;
	if (cm->can_ac3_hw || cm->can_ac3_sw) {
		pcm_spdif_index = pcm_index;
		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
		if (err < 0)
			return err;
	}

	/* create mixer interface & switches */
	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
	if (err < 0)
		return err;

	if (iomidi > 0) {
		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
					  iomidi,
					  (integrated_midi ?
					   MPU401_INFO_INTEGRATED : 0) |
					  MPU401_INFO_IRQ_HOOK,
					  -1, &cm->rmidi);
		if (err < 0)
			dev_err(cm->card->dev,
				"no UART401 device at 0x%lx\n", iomidi);
	}

#ifdef USE_VAR48KRATE
	for (val = 0; val < ARRAY_SIZE(rates); val++)
		snd_cmipci_set_pll(cm, rates[val], val);

	/*
	 * (Re-)Enable external switch spdo_48k
	 */
	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
#endif /* USE_VAR48KRATE */

	if (snd_cmipci_create_gameport(cm, dev) < 0)
		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

	return 0;
}

/*
 */

MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);

static int snd_cmipci_probe(struct pci_dev *pci,
			    const struct pci_device_id *pci_id)
{
	static int dev;
	struct snd_card *card;
	int err;

	if (dev >= SNDRV_CARDS)
		return -ENODEV;
	if (! enable[dev]) {
		dev++;
		return -ENOENT;
	}

	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
				sizeof(struct cmipci), &card);
	if (err < 0)
		return err;
	
	switch (pci->device) {
	case PCI_DEVICE_ID_CMEDIA_CM8738:
	case PCI_DEVICE_ID_CMEDIA_CM8738B:
		strcpy(card->driver, "CMI8738");
		break;
	case PCI_DEVICE_ID_CMEDIA_CM8338A:
	case PCI_DEVICE_ID_CMEDIA_CM8338B:
		strcpy(card->driver, "CMI8338");
		break;
	default:
		strcpy(card->driver, "CMIPCI");
		break;
	}

	err = snd_cmipci_create(card, pci, dev);
	if (err < 0)
		return err;

	err = snd_card_register(card);
	if (err < 0)
		return err;

	pci_set_drvdata(pci, card);
	dev++;
	return 0;
}

#ifdef CONFIG_PM_SLEEP
/*
 * power management
 */
static const unsigned char saved_regs[] = {
	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
};

static const unsigned char saved_mixers[] = {
	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
};

static int snd_cmipci_suspend(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct cmipci *cm = card->private_data;
	int i;

	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
	
	/* save registers */
	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);

	/* disable ints */
	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
	return 0;
}

static int snd_cmipci_resume(struct device *dev)
{
	struct snd_card *card = dev_get_drvdata(dev);
	struct cmipci *cm = card->private_data;
	int i;

	/* reset / initialize to a sane state */
	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
	snd_cmipci_mixer_write(cm, 0, 0);

	/* restore registers */
	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);

	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
	return 0;
}

static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
#else
#define SND_CMIPCI_PM_OPS	NULL
#endif /* CONFIG_PM_SLEEP */

static struct pci_driver cmipci_driver = {
	.name = KBUILD_MODNAME,
	.id_table = snd_cmipci_ids,
	.probe = snd_cmipci_probe,
	.driver = {
		.pm = SND_CMIPCI_PM_OPS,
	},
};
	
module_pci_driver