// SPDX-License-Identifier: GPL-2.0 /* * Generic Reed Solomon encoder / decoder library * * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * * Reed Solomon code lifted from reed solomon library written by Phil Karn * Copyright 2002 Phil Karn, KA9Q * * Description: * * The generic Reed Solomon library provides runtime configurable * encoding / decoding of RS codes. * * Each user must call init_rs to get a pointer to a rs_control structure * for the given rs parameters. The control struct is unique per instance. * It points to a codec which can be shared by multiple control structures. * If a codec is newly allocated then the polynomial arrays for fast * encoding / decoding are built. This can take some time so make sure not * to call this function from a time critical path. Usually a module / * driver should initialize the necessary rs_control structure on module / * driver init and release it on exit. * * The encoding puts the calculated syndrome into a given syndrome buffer. * * The decoding is a two step process. The first step calculates the * syndrome over the received (data + syndrome) and calls the second stage, * which does the decoding / error correction itself. Many hw encoders * provide a syndrome calculation over the received data + syndrome and can * call the second stage directly. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/module.h> #include <linux/rslib.h> #include <linux/slab.h> #include <linux/mutex.h> enum { RS_DECODE_LAMBDA, RS_DECODE_SYN, RS_DECODE_B, RS_DECODE_T, RS_DECODE_OMEGA, RS_DECODE_ROOT, RS_DECODE_REG, RS_DECODE_LOC, RS_DECODE_NUM_BUFFERS }; /* This list holds all currently allocated rs codec structures */ static LIST_HEAD(codec_list); /* Protection for the list */ static DEFINE_MUTEX(rslistlock); /** * codec_init - Initialize a Reed-Solomon codec * @symsize: symbol size, bits (1-8) * @gfpoly: Field generator polynomial coefficients * @gffunc: Field generator function * @fcr: first root of RS code generator polynomial, index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) * @gfp: GFP_ flags for allocations * * Allocate a codec structure and the polynom arrays for faster * en/decoding. Fill the arrays according to the given parameters. */ static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int), int fcr, int prim, int nroots, gfp_t gfp) { int i, j, sr, root, iprim; struct rs_codec *rs; rs = kzalloc(sizeof(*rs), gfp); if (!rs) return NULL; INIT_LIST_HEAD(&rs->list); rs->mm = symsize; rs->nn = (1 << symsize) - 1; rs->fcr = fcr; rs->prim = prim; rs->nroots = nroots; rs->gfpoly = gfpoly; rs->gffunc = gffunc; /* Allocate the arrays */ rs->alpha_to = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); if (rs->alpha_to == NULL) goto err; rs->index_of = kmalloc_array(rs->nn + 1, sizeof(uint16_t), gfp); if (rs->index_of == NULL) goto err; rs->genpoly = kmalloc_array(rs->nroots + 1, sizeof(uint16_t), gfp); if(rs->genpoly == NULL) goto err; /* Generate Galois field lookup tables */ rs->index_of[0] = rs->nn; /* log(zero) = -inf */ rs->alpha_to[rs->nn] = 0; /* alpha**-inf = 0 */ if (gfpoly) { sr = 1; for (i = 0; i < rs->nn; i++) { rs->index_of[sr] = i; rs->alpha_to[i] = sr; sr <<= 1; if (sr & (1 << symsize)) sr ^= gfpoly; sr &= rs->nn; } } else { sr = gffunc(0); for (i = 0; i < rs->nn; i++) { rs->index_of[sr] = i; rs->alpha_to[i] = sr; sr = gffunc(sr); } } /* If it's not primitive, exit */ if(sr != rs->alpha_to[0]) goto err; /* Find prim-th root of 1, used in decoding */ for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn); /* prim-th root of 1, index form */ rs->iprim = iprim / prim; /* Form RS code generator polynomial from its roots */ rs->genpoly[0] = 1; for (i = 0, root = fcr * prim; i < nroots; i++, root += prim) { rs->genpoly[i + 1] = 1; /* Multiply rs->genpoly[] by @**(root + x) */ for (j = i; j > 0; j--) { if (rs->genpoly[j] != 0) { rs->genpoly[j] = rs->genpoly[j -1] ^ rs->alpha_to[rs_modnn(rs, rs->index_of[rs->genpoly[j]] + root)]; } else rs->genpoly[j] = rs->genpoly[j - 1]; } /* rs->genpoly[0] can never be zero */ rs->genpoly[0] = rs->alpha_to[rs_modnn(rs, rs->index_of[rs->genpoly[0]] + root)]; } /* convert rs->genpoly[] to index form for quicker encoding */ for (i = 0; i <= nroots; i++) rs->genpoly[i] = rs->index_of[rs->genpoly[i]]; rs->users = 1; list_add(&rs->list, &codec_list); return rs; err: kfree(rs->genpoly); kfree(rs->index_of); kfree(rs->alpha_to); kfree(rs); return NULL; } /** * free_rs - Free the rs control structure * @rs: The control structure which is not longer used by the * caller * * Free the control structure. If @rs is the last user of the associated * codec, free the codec as well. */ void free_rs(struct rs_control *rs) { struct rs_codec *cd; if (!rs) return; cd = rs->codec; mutex_lock(&rslistlock); cd->users--; if(!cd->users) { list_del(&cd->list); kfree(cd->alpha_to); kfree(cd->index_of); kfree(cd->genpoly); kfree(cd); } mutex_unlock(&rslistlock); kfree(rs); } EXPORT_SYMBOL_GPL(free_rs); /** * init_rs_internal - Allocate rs control, find a matching codec or allocate a new one * @symsize: the symbol size (number of bits) * @gfpoly: the extended Galois field generator polynomial coefficients, * with the 0th coefficient in the low order bit. The polynomial * must be primitive; * @gffunc: pointer to function to generate the next field element, * or the multiplicative identity element if given 0. Used * instead of gfpoly if gfpoly is 0 * @fcr: the first consecutive root of the rs code generator polynomial * in index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) * @gfp: GFP_ flags for allocations */ static struct rs_control *init_rs_internal(int symsize, int gfpoly, int (*gffunc)(int), int fcr, int prim, int nroots, gfp_t gfp) { struct list_head *tmp; struct rs_control *rs; unsigned int bsize; /* Sanity checks */ if (symsize < 1) return NULL; if (fcr < 0 || fcr >= (1<<symsize)) return NULL; if (prim <= 0 || prim >= (1<<symsize)) return NULL; if (nroots < 0 || nroots >= (1<<symsize)) return NULL; /* * The decoder needs buffers in each control struct instance to * avoid variable size or large fixed size allocations on * stack. Size the buffers to arrays of [nroots + 1]. */ bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1); rs = kzalloc(sizeof(*rs) + bsize, gfp); if (!rs) return NULL; mutex_lock(&rslistlock); /* Walk through the list and look for a matching entry */ list_for_each(tmp, &codec_list) { struct rs_codec *cd = list_entry(tmp, struct rs_codec, list); if (symsize != cd->mm) continue; if (gfpoly != cd->gfpoly) continue; if (gffunc != cd->gffunc) continue; if (fcr != cd->fcr) continue; if (prim != cd->prim) continue; if (nroots != cd->nroots) continue; /* We have a matching one already */ cd->users++; rs->codec = cd; goto out; } /* Create a new one */ rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp); if (!rs->codec) { kfree(rs); rs = NULL; } out: mutex_unlock(&rslistlock); return rs; } /** * init_rs_gfp - Create a RS control struct and initialize it * @symsize: the symbol size (number of bits) * @gfpoly: the extended Galois field generator polynomial coefficients, * with the 0th coefficient in the low order bit. The polynomial * must be primitive; * @fcr: the first consecutive root of the rs code generator polynomial * in index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) * @gfp: Memory allocation flags. */ struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim, int nroots, gfp_t gfp) { return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp); } EXPORT_SYMBOL_GPL(init_rs_gfp); /** * init_rs_non_canonical - Allocate rs control struct for fields with * non-canonical representation * @symsize: the symbol size (number of bits) * @gffunc: pointer to function to generate the next field element, * or the multiplicative identity element if given 0. Used * instead of gfpoly if gfpoly is 0 * @fcr: the first consecutive root of the rs code generator polynomial * in index form * @prim: primitive element to generate polynomial roots * @nroots: RS code generator polynomial degree (number of roots) */ struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int), int fcr, int prim, int nroots) { return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots, GFP_KERNEL); } EXPORT_SYMBOL_GPL(init_rs_non_canonical); #ifdef CONFIG_REED_SOLOMON_ENC8 /** * encode_rs8 - Calculate the parity for data values (8bit data width) * @rsc: the rs control structure * @data: data field of a given type * @len: data length * @par: parity data, must be initialized by caller (usually all 0) * @invmsk: invert data mask (will be xored on data) * * The parity uses a uint16_t data type to enable * symbol size > 8. The calling code must take care of encoding of the * syndrome result for storage itself. */ int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par, uint16_t invmsk) { #include "encode_rs.c" } EXPORT_SYMBOL_GPL(encode_rs8); #endif #ifdef CONFIG_REED_SOLOMON_DEC8 /** * decode_rs8 - Decode codeword (8bit data width) * @rsc: the rs control structure * @data: data field of a given type * @par: received parity data field * @len: data length * @s: syndrome data field, must be in index form * (if NULL, syndrome is calculated) * @no_eras: number of erasures * @eras_pos: position of erasures, can be NULL * @invmsk: invert data mask (will be xored on data, not on parity!) * @corr: buffer to store correction bitmask on eras_pos * * The syndrome and parity uses a uint16_t data type to enable * symbol size > 8. The calling code must take care of decoding of the * syndrome result and the received parity before calling this code. * * Note: The rs_control struct @rsc contains buffers which are used for * decoding, so the caller has to ensure that decoder invocations are * serialized. * * Returns the number of corrected symbols or -EBADMSG for uncorrectable * errors. The count includes errors in the parity. */ int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *corr) { #include "decode_rs.c" } EXPORT_SYMBOL_GPL(decode_rs8); #endif #ifdef CONFIG_REED_SOLOMON_ENC16 /** * encode_rs16 - Calculate the parity for data values (16bit data width) * @rsc: the rs control structure * @data: data field of a given type * @len: data length * @par: parity data, must be initialized by caller (usually all 0) * @invmsk: invert data mask (will be xored on data, not on parity!) * * Each field in the data array contains up to symbol size bits of valid data. */ int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par, uint16_t invmsk) { #include "encode_rs.c" } EXPORT_SYMBOL_GPL(encode_rs16); #endif #ifdef CONFIG_REED_SOLOMON_DEC16 /** * decode_rs16 - Decode codeword (16bit data width) * @rsc: the rs control structure * @data: data field of a given type * @par: received parity data field * @len: data length * @s: syndrome data field, must be in index form * (if NULL, syndrome is calculated) * @no_eras: number of erasures * @eras_pos: position of erasures, can be NULL * @invmsk: invert data mask (will be xored on data, not on parity!) * @corr: buffer to store correction bitmask on eras_pos * * Each field in the data array contains up to symbol size bits of valid data. * * Note: The rc_control struct @rsc contains buffers which are used for * decoding, so the caller has to ensure that decoder invocations are * serialized. * * Returns the number of corrected symbols or -EBADMSG for uncorrectable * errors. The count includes errors in the parity. */ int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len, uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk, uint16_t *corr) { #include "decode_rs.c" } EXPORT_SYMBOL_GPL(decode_rs16); #endif MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Reed Solomon encoder/decoder"); MODULE_AUTHOR("Phil Karn, Thomas Gleixner"