// SPDX-License-Identifier: GPL-2.0
/* Multipath TCP
 *
 * Copyright (c) 2017 - 2019, Intel Corporation.
 */

#define pr_fmt(fmt) "MPTCP: " fmt

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <crypto/algapi.h>
#include <crypto/sha2.h>
#include <net/sock.h>
#include <net/inet_common.h>
#include <net/inet_hashtables.h>
#include <net/protocol.h>
#include <net/tcp.h>
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
#include <net/ip6_route.h>
#include <net/transp_v6.h>
#endif
#include <net/mptcp.h>
#include <uapi/linux/mptcp.h>
#include "protocol.h"
#include "mib.h"

#include <trace/events/mptcp.h>
#include <trace/events/sock.h>

static void mptcp_subflow_ops_undo_override(struct sock *ssk);

static void SUBFLOW_REQ_INC_STATS(struct request_sock *req,
				  enum linux_mptcp_mib_field field)
{
	MPTCP_INC_STATS(sock_net(req_to_sk(req)), field);
}

static void subflow_req_destructor(struct request_sock *req)
{
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);

	pr_debug("subflow_req=%p", subflow_req);

	if (subflow_req->msk)
		sock_put((struct sock *)subflow_req->msk);

	mptcp_token_destroy_request(req);
}

static void subflow_generate_hmac(u64 key1, u64 key2, u32 nonce1, u32 nonce2,
				  void *hmac)
{
	u8 msg[8];

	put_unaligned_be32(nonce1, &msg[0]);
	put_unaligned_be32(nonce2, &msg[4]);

	mptcp_crypto_hmac_sha(key1, key2, msg, 8, hmac);
}

static bool mptcp_can_accept_new_subflow(const struct mptcp_sock *msk)
{
	return mptcp_is_fully_established((void *)msk) &&
		((mptcp_pm_is_userspace(msk) &&
		  mptcp_userspace_pm_active(msk)) ||
		 READ_ONCE(msk->pm.accept_subflow));
}

/* validate received token and create truncated hmac and nonce for SYN-ACK */
static void subflow_req_create_thmac(struct mptcp_subflow_request_sock *subflow_req)
{
	struct mptcp_sock *msk = subflow_req->msk;
	u8 hmac[SHA256_DIGEST_SIZE];

	get_random_bytes(&subflow_req->local_nonce, sizeof(u32));

	subflow_generate_hmac(msk->local_key, msk->remote_key,
			      subflow_req->local_nonce,
			      subflow_req->remote_nonce, hmac);

	subflow_req->thmac = get_unaligned_be64(hmac);
}

static struct mptcp_sock *subflow_token_join_request(struct request_sock *req)
{
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
	struct mptcp_sock *msk;
	int local_id;

	msk = mptcp_token_get_sock(sock_net(req_to_sk(req)), subflow_req->token);
	if (!msk) {
		SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINNOTOKEN);
		return NULL;
	}

	local_id = mptcp_pm_get_local_id(msk, (struct sock_common *)req);
	if (local_id < 0) {
		sock_put((struct sock *)msk);
		return NULL;
	}
	subflow_req->local_id = local_id;

	return msk;
}

static void subflow_init_req(struct request_sock *req, const struct sock *sk_listener)
{
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);

	subflow_req->mp_capable = 0;
	subflow_req->mp_join = 0;
	subflow_req->csum_reqd = mptcp_is_checksum_enabled(sock_net(sk_listener));
	subflow_req->allow_join_id0 = mptcp_allow_join_id0(sock_net(sk_listener));
	subflow_req->msk = NULL;
	mptcp_token_init_request(req);
}

static bool subflow_use_different_sport(struct mptcp_sock *msk, const struct sock *sk)
{
	return inet_sk(sk)->inet_sport != inet_sk((struct sock *)msk)->inet_sport;
}

static void subflow_add_reset_reason(struct sk_buff *skb, u8 reason)
{
	struct mptcp_ext *mpext = skb_ext_add(skb, SKB_EXT_MPTCP);

	if (mpext) {
		memset(mpext, 0, sizeof(*mpext));
		mpext->reset_reason = reason;
	}
}

/* Init mptcp request socket.
 *
 * Returns an error code if a JOIN has failed and a TCP reset
 * should be sent.
 */
static int subflow_check_req(struct request_sock *req,
			     const struct sock *sk_listener,
			     struct sk_buff *skb)
{
	struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener);
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
	struct mptcp_options_received mp_opt;
	bool opt_mp_capable, opt_mp_join;

	pr_debug("subflow_req=%p, listener=%p", subflow_req, listener);

#ifdef CONFIG_TCP_MD5SIG
	/* no MPTCP if MD5SIG is enabled on this socket or we may run out of
	 * TCP option space.
	 */
	if (rcu_access_pointer(tcp_sk(sk_listener)->md5sig_info))
		return -EINVAL;
#endif

	mptcp_get_options(skb, &mp_opt);

	opt_mp_capable = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPC);
	opt_mp_join = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ);
	if (opt_mp_capable) {
		SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MPCAPABLEPASSIVE);

		if (opt_mp_join)
			return 0;
	} else if (opt_mp_join) {
		SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINSYNRX);
	}

	if (opt_mp_capable && listener->request_mptcp) {
		int err, retries = MPTCP_TOKEN_MAX_RETRIES;

		subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
again:
		do {
			get_random_bytes(&subflow_req->local_key, sizeof(subflow_req->local_key));
		} while (subflow_req->local_key == 0);

		if (unlikely(req->syncookie)) {
			mptcp_crypto_key_sha(subflow_req->local_key,
					     &subflow_req->token,
					     &subflow_req->idsn);
			if (mptcp_token_exists(subflow_req->token)) {
				if (retries-- > 0)
					goto again;
				SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_TOKENFALLBACKINIT);
			} else {
				subflow_req->mp_capable = 1;
			}
			return 0;
		}

		err = mptcp_token_new_request(req);
		if (err == 0)
			subflow_req->mp_capable = 1;
		else if (retries-- > 0)
			goto again;
		else
			SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_TOKENFALLBACKINIT);

	} else if (opt_mp_join && listener->request_mptcp) {
		subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq;
		subflow_req->mp_join = 1;
		subflow_req->backup = mp_opt.backup;
		subflow_req->remote_id = mp_opt.join_id;
		subflow_req->token = mp_opt.token;
		subflow_req->remote_nonce = mp_opt.nonce;
		subflow_req->msk = subflow_token_join_request(req);

		/* Can't fall back to TCP in this case. */
		if (!subflow_req->msk) {
			subflow_add_reset_reason(skb, MPTCP_RST_EMPTCP);
			return -EPERM;
		}

		if (subflow_use_different_sport(subflow_req->msk, sk_listener)) {
			pr_debug("syn inet_sport=%d %d",
				 ntohs(inet_sk(sk_listener)->inet_sport),
				 ntohs(inet_sk((struct sock *)subflow_req->msk)->inet_sport));
			if (!mptcp_pm_sport_in_anno_list(subflow_req->msk, sk_listener)) {
				SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MISMATCHPORTSYNRX);
				return -EPERM;
			}
			SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINPORTSYNRX);
		}

		subflow_req_create_thmac(subflow_req);

		if (unlikely(req->syncookie)) {
			if (mptcp_can_accept_new_subflow(subflow_req->msk))
				subflow_init_req_cookie_join_save(subflow_req, skb);
			else
				return -EPERM;
		}

		pr_debug("token=%u, remote_nonce=%u msk=%p", subflow_req->token,
			 subflow_req->remote_nonce, subflow_req->msk);
	}

	return 0;
}

int mptcp_subflow_init_cookie_req(struct request_sock *req,
				  const struct sock *sk_listener,
				  struct sk_buff *skb)
{
	struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk_listener);
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
	struct mptcp_options_received mp_opt;
	bool opt_mp_capable, opt_mp_join;
	int err;

	subflow_init_req(req, sk_listener);
	mptcp_get_options(skb, &mp_opt);

	opt_mp_capable = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPC);
	opt_mp_join = !!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ);
	if (opt_mp_capable && opt_mp_join)
		return -EINVAL;

	if (opt_mp_capable && listener->request_mptcp) {
		if (mp_opt.sndr_key == 0)
			return -EINVAL;

		subflow_req->local_key = mp_opt.rcvr_key;
		err = mptcp_token_new_request(req);
		if (err)
			return err;

		subflow_req->mp_capable = 1;
		subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1;
	} else if (opt_mp_join && listener->request_mptcp) {
		if (!mptcp_token_join_cookie_init_state(subflow_req, skb))
			return -EINVAL;

		subflow_req->mp_join = 1;
		subflow_req->ssn_offset = TCP_SKB_CB(skb)->seq - 1;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(mptcp_subflow_init_cookie_req);

static struct dst_entry *subflow_v4_route_req(const struct sock *sk,
					      struct sk_buff *skb,
					      struct flowi *fl,
					      struct request_sock *req)
{
	struct dst_entry *dst;
	int err;

	tcp_rsk(req)->is_mptcp = 1;
	subflow_init_req(req, sk);

	dst = tcp_request_sock_ipv4_ops.route_req(sk, skb, fl, req);
	if (!dst)
		return NULL;

	err = subflow_check_req(req, sk, skb);
	if (err == 0)
		return dst;

	dst_release(dst);
	if (!req->syncookie)
		tcp_request_sock_ops.send_reset(sk, skb);
	return NULL;
}

static void subflow_prep_synack(const struct sock *sk, struct request_sock *req,
				struct tcp_fastopen_cookie *foc,
				enum tcp_synack_type synack_type)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	struct inet_request_sock *ireq = inet_rsk(req);

	/* clear tstamp_ok, as needed depending on cookie */
	if (foc && foc->len > -1)
		ireq->tstamp_ok = 0;

	if (synack_type == TCP_SYNACK_FASTOPEN)
		mptcp_fastopen_subflow_synack_set_params(subflow, req);
}

static int subflow_v4_send_synack(const struct sock *sk, struct dst_entry *dst,
				  struct flowi *fl,
				  struct request_sock *req,
				  struct tcp_fastopen_cookie *foc,
				  enum tcp_synack_type synack_type,
				  struct sk_buff *syn_skb)
{
	subflow_prep_synack(sk, req, foc, synack_type);

	return tcp_request_sock_ipv4_ops.send_synack(sk, dst, fl, req, foc,
						     synack_type, syn_skb);
}

#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static int subflow_v6_send_synack(const struct sock *sk, struct dst_entry *dst,
				  struct flowi *fl,
				  struct request_sock *req,
				  struct tcp_fastopen_cookie *foc,
				  enum tcp_synack_type synack_type,
				  struct sk_buff *syn_skb)
{
	subflow_prep_synack(sk, req, foc, synack_type);

	return tcp_request_sock_ipv6_ops.send_synack(sk, dst, fl, req, foc,
						     synack_type, syn_skb);
}

static struct dst_entry *subflow_v6_route_req(const struct sock *sk,
					      struct sk_buff *skb,
					      struct flowi *fl,
					      struct request_sock *req)
{
	struct dst_entry *dst;
	int err;

	tcp_rsk(req)->is_mptcp = 1;
	subflow_init_req(req, sk);

	dst = tcp_request_sock_ipv6_ops.route_req(sk, skb, fl, req);
	if (!dst)
		return NULL;

	err = subflow_check_req(req, sk, skb);
	if (err == 0)
		return dst;

	dst_release(dst);
	if (!req->syncookie)
		tcp6_request_sock_ops.send_reset(sk, skb);
	return NULL;
}
#endif

/* validate received truncated hmac and create hmac for third ACK */
static bool subflow_thmac_valid(struct mptcp_subflow_context *subflow)
{
	u8 hmac[SHA256_DIGEST_SIZE];
	u64 thmac;

	subflow_generate_hmac(subflow->remote_key, subflow->local_key,
			      subflow->remote_nonce, subflow->local_nonce,
			      hmac);

	thmac = get_unaligned_be64(hmac);
	pr_debug("subflow=%p, token=%u, thmac=%llu, subflow->thmac=%llu\n",
		 subflow, subflow->token, thmac, subflow->thmac);

	return thmac == subflow->thmac;
}

void mptcp_subflow_reset(struct sock *ssk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	struct sock *sk = subflow->conn;

	/* mptcp_mp_fail_no_response() can reach here on an already closed
	 * socket
	 */
	if (ssk->sk_state == TCP_CLOSE)
		return;

	/* must hold: tcp_done() could drop last reference on parent */
	sock_hold(sk);

	tcp_send_active_reset(ssk, GFP_ATOMIC);
	tcp_done(ssk);
	if (!test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &mptcp_sk(sk)->flags))
		mptcp_schedule_work(sk);

	sock_put(sk);
}

static bool subflow_use_different_dport(struct mptcp_sock *msk, const struct sock *sk)
{
	return inet_sk(sk)->inet_dport != inet_sk((struct sock *)msk)->inet_dport;
}

void __mptcp_set_connected(struct sock *sk)
{
	if (sk->sk_state == TCP_SYN_SENT) {
		inet_sk_state_store(sk, TCP_ESTABLISHED);
		sk->sk_state_change(sk);
	}
}

static void mptcp_set_connected(struct sock *sk)
{
	mptcp_data_lock(sk);
	if (!sock_owned_by_user(sk))
		__mptcp_set_connected(sk);
	else
		__set_bit(MPTCP_CONNECTED, &mptcp_sk(sk)->cb_flags);
	mptcp_data_unlock(sk);
}

static void subflow_set_remote_key(struct mptcp_sock *msk,
				   struct mptcp_subflow_context *subflow,
				   const struct mptcp_options_received *mp_opt)
{
	/* active MPC subflow will reach here multiple times:
	 * at subflow_finish_connect() time and at 4th ack time
	 */
	if (subflow->remote_key_valid)
		return;

	subflow->remote_key_valid = 1;
	subflow->remote_key = mp_opt->sndr_key;
	mptcp_crypto_key_sha(subflow->remote_key, NULL, &subflow->iasn);
	subflow->iasn++;

	WRITE_ONCE(msk->remote_key, subflow->remote_key);
	WRITE_ONCE(msk->ack_seq, subflow->iasn);
	WRITE_ONCE(msk->can_ack, true);
	atomic64_set(&msk->rcv_wnd_sent, subflow->iasn);
}

static void subflow_finish_connect(struct sock *sk, const struct sk_buff *skb)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	struct mptcp_options_received mp_opt;
	struct sock *parent = subflow->conn;
	struct mptcp_sock *msk;

	subflow->icsk_af_ops->sk_rx_dst_set(sk, skb);

	/* be sure no special action on any packet other than syn-ack */
	if (subflow->conn_finished)
		return;

	msk = mptcp_sk(parent);
	mptcp_propagate_sndbuf(parent, sk);
	subflow->rel_write_seq = 1;
	subflow->conn_finished = 1;
	subflow->ssn_offset = TCP_SKB_CB(skb)->seq;
	pr_debug("subflow=%p synack seq=%x", subflow, subflow->ssn_offset);

	mptcp_get_options(skb, &mp_opt);
	if (subflow->request_mptcp) {
		if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPC)) {
			MPTCP_INC_STATS(sock_net(sk),
					MPTCP_MIB_MPCAPABLEACTIVEFALLBACK);
			mptcp_do_fallback(sk);
			pr_fallback(msk);
			goto fallback;
		}

		if (mp_opt.suboptions & OPTION_MPTCP_CSUMREQD)
			WRITE_ONCE(msk->csum_enabled, true);
		if (mp_opt.deny_join_id0)
			WRITE_ONCE(msk->pm.remote_deny_join_id0, true);
		subflow->mp_capable = 1;
		subflow_set_remote_key(msk, subflow, &mp_opt);
		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVEACK);
		mptcp_finish_connect(sk);
		mptcp_set_connected(parent);
	} else if (subflow->request_join) {
		u8 hmac[SHA256_DIGEST_SIZE];

		if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ)) {
			subflow->reset_reason = MPTCP_RST_EMPTCP;
			goto do_reset;
		}

		subflow->backup = mp_opt.backup;
		subflow->thmac = mp_opt.thmac;
		subflow->remote_nonce = mp_opt.nonce;
		subflow->remote_id = mp_opt.join_id;
		pr_debug("subflow=%p, thmac=%llu, remote_nonce=%u backup=%d",
			 subflow, subflow->thmac, subflow->remote_nonce,
			 subflow->backup);

		if (!subflow_thmac_valid(subflow)) {
			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINACKMAC);
			subflow->reset_reason = MPTCP_RST_EMPTCP;
			goto do_reset;
		}

		if (!mptcp_finish_join(sk))
			goto do_reset;

		subflow_generate_hmac(subflow->local_key, subflow->remote_key,
				      subflow->local_nonce,
				      subflow->remote_nonce,
				      hmac);
		memcpy(subflow->hmac, hmac, MPTCPOPT_HMAC_LEN);

		subflow->mp_join = 1;
		MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINSYNACKRX);

		if (subflow_use_different_dport(msk, sk)) {
			pr_debug("synack inet_dport=%d %d",
				 ntohs(inet_sk(sk)->inet_dport),
				 ntohs(inet_sk(parent)->inet_dport));
			MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_JOINPORTSYNACKRX);
		}
	} else if (mptcp_check_fallback(sk)) {
fallback:
		mptcp_rcv_space_init(msk, sk);
		mptcp_set_connected(parent);
	}
	return;

do_reset:
	subflow->reset_transient = 0;
	mptcp_subflow_reset(sk);
}

static void subflow_set_local_id(struct mptcp_subflow_context *subflow, int local_id)
{
	subflow->local_id = local_id;
	subflow->local_id_valid = 1;
}

static int subflow_chk_local_id(struct sock *sk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	struct mptcp_sock *msk = mptcp_sk(subflow->conn);
	int err;

	if (likely(subflow->local_id_valid))
		return 0;

	err = mptcp_pm_get_local_id(msk, (struct sock_common *)sk);
	if (err < 0)
		return err;

	subflow_set_local_id(subflow, err);
	return 0;
}

static int subflow_rebuild_header(struct sock *sk)
{
	int err = subflow_chk_local_id(sk);

	if (unlikely(err < 0))
		return err;

	return inet_sk_rebuild_header(sk);
}

#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static int subflow_v6_rebuild_header(struct sock *sk)
{
	int err = subflow_chk_local_id(sk);

	if (unlikely(err < 0))
		return err;

	return inet6_sk_rebuild_header(sk);
}
#endif

static struct request_sock_ops mptcp_subflow_v4_request_sock_ops __ro_after_init;
static struct tcp_request_sock_ops subflow_request_sock_ipv4_ops __ro_after_init;

static int subflow_v4_conn_request(struct sock *sk, struct sk_buff *skb)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);

	pr_debug("subflow=%p", subflow);

	/* Never answer to SYNs sent to broadcast or multicast */
	if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
		goto drop;

	return tcp_conn_request(&mptcp_subflow_v4_request_sock_ops,
				&subflow_request_sock_ipv4_ops,
				sk, skb);
drop:
	tcp_listendrop(sk);
	return 0;
}

static void subflow_v4_req_destructor(struct request_sock *req)
{
	subflow_req_destructor(req);
	tcp_request_sock_ops.destructor(req);
}

#if IS_ENABLED(CONFIG_MPTCP_IPV6)
static struct request_sock_ops mptcp_subflow_v6_request_sock_ops __ro_after_init;
static struct tcp_request_sock_ops subflow_request_sock_ipv6_ops __ro_after_init;
static struct inet_connection_sock_af_ops subflow_v6_specific __ro_after_init;
static struct inet_connection_sock_af_ops subflow_v6m_specific __ro_after_init;
static struct proto tcpv6_prot_override __ro_after_init;

static int subflow_v6_conn_request(struct sock *sk, struct sk_buff *skb)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);

	pr_debug("subflow=%p", subflow);

	if (skb->protocol == htons(ETH_P_IP))
		return subflow_v4_conn_request(sk, skb);

	if (!ipv6_unicast_destination(skb))
		goto drop;

	if (ipv6_addr_v4mapped(&ipv6_hdr(skb)->saddr)) {
		__IP6_INC_STATS(sock_net(sk), NULL, IPSTATS_MIB_INHDRERRORS);
		return 0;
	}

	return tcp_conn_request(&mptcp_subflow_v6_request_sock_ops,
				&subflow_request_sock_ipv6_ops, sk, skb);

drop:
	tcp_listendrop(sk);
	return 0; /* don't send reset */
}

static void subflow_v6_req_destructor(struct request_sock *req)
{
	subflow_req_destructor(req);
	tcp6_request_sock_ops.destructor(req);
}
#endif

struct request_sock *mptcp_subflow_reqsk_alloc(const struct request_sock_ops *ops,
					       struct sock *sk_listener,
					       bool attach_listener)
{
	if (ops->family == AF_INET)
		ops = &mptcp_subflow_v4_request_sock_ops;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	else if (ops->family == AF_INET6)
		ops = &mptcp_subflow_v6_request_sock_ops;
#endif

	return inet_reqsk_alloc(ops, sk_listener, attach_listener);
}
EXPORT_SYMBOL(mptcp_subflow_reqsk_alloc);

/* validate hmac received in third ACK */
static bool subflow_hmac_valid(const struct request_sock *req,
			       const struct mptcp_options_received *mp_opt)
{
	const struct mptcp_subflow_request_sock *subflow_req;
	u8 hmac[SHA256_DIGEST_SIZE];
	struct mptcp_sock *msk;

	subflow_req = mptcp_subflow_rsk(req);
	msk = subflow_req->msk;
	if (!msk)
		return false;

	subflow_generate_hmac(msk->remote_key, msk->local_key,
			      subflow_req->remote_nonce,
			      subflow_req->local_nonce, hmac);

	return !crypto_memneq(hmac, mp_opt->hmac, MPTCPOPT_HMAC_LEN);
}

static void subflow_ulp_fallback(struct sock *sk,
				 struct mptcp_subflow_context *old_ctx)
{
	struct inet_connection_sock *icsk = inet_csk(sk);

	mptcp_subflow_tcp_fallback(sk, old_ctx);
	icsk->icsk_ulp_ops = NULL;
	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
	tcp_sk(sk)->is_mptcp = 0;

	mptcp_subflow_ops_undo_override(sk);
}

void mptcp_subflow_drop_ctx(struct sock *ssk)
{
	struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk);

	if (!ctx)
		return;

	list_del(&mptcp_subflow_ctx(ssk)->node);
	if (inet_csk(ssk)->icsk_ulp_ops) {
		subflow_ulp_fallback(ssk, ctx);
		if (ctx->conn)
			sock_put(ctx->conn);
	}

	kfree_rcu(ctx, rcu);
}

void mptcp_subflow_fully_established(struct mptcp_subflow_context *subflow,
				     const struct mptcp_options_received *mp_opt)
{
	struct mptcp_sock *msk = mptcp_sk(subflow->conn);

	subflow_set_remote_key(msk, subflow, mp_opt);
	subflow->fully_established = 1;
	WRITE_ONCE(msk->fully_established, true);

	if (subflow->is_mptfo)
		mptcp_fastopen_gen_msk_ackseq(msk, subflow, mp_opt);
}

static struct sock *subflow_syn_recv_sock(const struct sock *sk,
					  struct sk_buff *skb,
					  struct request_sock *req,
					  struct dst_entry *dst,
					  struct request_sock *req_unhash,
					  bool *own_req)
{
	struct mptcp_subflow_context *listener = mptcp_subflow_ctx(sk);
	struct mptcp_subflow_request_sock *subflow_req;
	struct mptcp_options_received mp_opt;
	bool fallback, fallback_is_fatal;
	struct mptcp_sock *owner;
	struct sock *child;

	pr_debug("listener=%p, req=%p, conn=%p", listener, req, listener->conn);

	/* After child creation we must look for MPC even when options
	 * are not parsed
	 */
	mp_opt.suboptions = 0;

	/* hopefully temporary handling for MP_JOIN+syncookie */
	subflow_req = mptcp_subflow_rsk(req);
	fallback_is_fatal = tcp_rsk(req)->is_mptcp && subflow_req->mp_join;
	fallback = !tcp_rsk(req)->is_mptcp;
	if (fallback)
		goto create_child;

	/* if the sk is MP_CAPABLE, we try to fetch the client key */
	if (subflow_req->mp_capable) {
		/* we can receive and accept an in-window, out-of-order pkt,
		 * which may not carry the MP_CAPABLE opt even on mptcp enabled
		 * paths: always try to extract the peer key, and fallback
		 * for packets missing it.
		 * Even OoO DSS packets coming legitly after dropped or
		 * reordered MPC will cause fallback, but we don't have other
		 * options.
		 */
		mptcp_get_options(skb, &mp_opt);
		if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPC))
			fallback = true;

	} else if (subflow_req->mp_join) {
		mptcp_get_options(skb, &mp_opt);
		if (!(mp_opt.suboptions & OPTIONS_MPTCP_MPJ) ||
		    !subflow_hmac_valid(req, &mp_opt) ||
		    !mptcp_can_accept_new_subflow(subflow_req->msk)) {
			SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKMAC);
			fallback = true;
		}
	}

create_child:
	child = listener->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
						     req_unhash, own_req);

	if (child && *own_req) {
		struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(child);

		tcp_rsk(req)->drop_req = false;

		/* we need to fallback on ctx allocation failure and on pre-reqs
		 * checking above. In the latter scenario we additionally need
		 * to reset the context to non MPTCP status.
		 */
		if (!ctx || fallback) {
			if (fallback_is_fatal) {
				subflow_add_reset_reason(skb, MPTCP_RST_EMPTCP);
				goto dispose_child;
			}
			goto fallback;
		}

		/* ssk inherits options of listener sk */
		ctx->setsockopt_seq = listener->setsockopt_seq;

		if (ctx->mp_capable) {
			ctx->conn = mptcp_sk_clone_init(listener->conn, &mp_opt, child, req);
			if (!ctx->conn)
				goto fallback;

			ctx->subflow_id = 1;
			owner = mptcp_sk(ctx->conn);
			mptcp_pm_new_connection(owner, child, 1);

			/* with OoO packets we can reach here without ingress
			 * mpc option
			 */
			if (mp_opt.suboptions & OPTION_MPTCP_MPC_ACK) {
				mptcp_subflow_fully_established(ctx, &mp_opt);
				mptcp_pm_fully_established(owner, child);
				ctx->pm_notified = 1;
			}
		} else if (ctx->mp_join) {
			owner = subflow_req->msk;
			if (!owner) {
				subflow_add_reset_reason(skb, MPTCP_RST_EPROHIBIT);
				goto dispose_child;
			}

			/* move the msk reference ownership to the subflow */
			subflow_req->msk = NULL;
			ctx->conn = (struct sock *)owner;

			if (subflow_use_different_sport(owner, sk)) {
				pr_debug("ack inet_sport=%d %d",
					 ntohs(inet_sk(sk)->inet_sport),
					 ntohs(inet_sk((struct sock *)owner)->inet_sport));
				if (!mptcp_pm_sport_in_anno_list(owner, sk)) {
					SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_MISMATCHPORTACKRX);
					goto dispose_child;
				}
				SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINPORTACKRX);
			}

			if (!mptcp_finish_join(child))
				goto dispose_child;

			SUBFLOW_REQ_INC_STATS(req, MPTCP_MIB_JOINACKRX);
			tcp_rsk(req)->drop_req = true;
		}
	}

	/* check for expected invariant - should never trigger, just help
	 * catching eariler subtle bugs
	 */
	WARN_ON_ONCE(child && *own_req && tcp_sk(child)->is_mptcp &&
		     (!mptcp_subflow_ctx(child) ||
		      !mptcp_subflow_ctx(child)->conn));
	return child;

dispose_child:
	mptcp_subflow_drop_ctx(child);
	tcp_rsk(req)->drop_req = true;
	inet_csk_prepare_for_destroy_sock(child);
	tcp_done(child);
	req->rsk_ops->send_reset(sk, skb);

	/* The last child reference will be released by the caller */
	return child;

fallback:
	mptcp_subflow_drop_ctx(child);
	return child;
}

static struct inet_connection_sock_af_ops subflow_specific __ro_after_init;
static struct proto tcp_prot_override __ro_after_init;

enum mapping_status {
	MAPPING_OK,
	MAPPING_INVALID,
	MAPPING_EMPTY,
	MAPPING_DATA_FIN,
	MAPPING_DUMMY,
	MAPPING_BAD_CSUM
};

static void dbg_bad_map(struct mptcp_subflow_context *subflow, u32 ssn)
{
	pr_debug("Bad mapping: ssn=%d map_seq=%d map_data_len=%d",
		 ssn, subflow->map_subflow_seq, subflow->map_data_len);
}

static bool skb_is_fully_mapped(struct sock *ssk, struct sk_buff *skb)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	unsigned int skb_consumed;

	skb_consumed = tcp_sk(ssk)->copied_seq - TCP_SKB_CB(skb)->seq;
	if (WARN_ON_ONCE(skb_consumed >= skb->len))
		return true;

	return skb->len - skb_consumed <= subflow->map_data_len -
					  mptcp_subflow_get_map_offset(subflow);
}

static bool validate_mapping(struct sock *ssk, struct sk_buff *skb)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	u32 ssn = tcp_sk(ssk)->copied_seq - subflow->ssn_offset;

	if (unlikely(before(ssn, subflow->map_subflow_seq))) {
		/* Mapping covers data later in the subflow stream,
		 * currently unsupported.
		 */
		dbg_bad_map(subflow, ssn);
		return false;
	}
	if (unlikely(!before(ssn, subflow->map_subflow_seq +
				  subflow->map_data_len))) {
		/* Mapping does covers past subflow data, invalid */
		dbg_bad_map(subflow, ssn);
		return false;
	}
	return true;
}

static enum mapping_status validate_data_csum(struct sock *ssk, struct sk_buff *skb,
					      bool csum_reqd)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	u32 offset, seq, delta;
	__sum16 csum;
	int len;

	if (!csum_reqd)
		return MAPPING_OK;

	/* mapping already validated on previous traversal */
	if (subflow->map_csum_len == subflow->map_data_len)
		return MAPPING_OK;

	/* traverse the receive queue, ensuring it contains a full
	 * DSS mapping and accumulating the related csum.
	 * Preserve the accoumlate csum across multiple calls, to compute
	 * the csum only once
	 */
	delta = subflow->map_data_len - subflow->map_csum_len;
	for (;;) {
		seq = tcp_sk(ssk)->copied_seq + subflow->map_csum_len;
		offset = seq - TCP_SKB_CB(skb)->seq;

		/* if the current skb has not been accounted yet, csum its contents
		 * up to the amount covered by the current DSS
		 */
		if (offset < skb->len) {
			__wsum csum;

			len = min(skb->len - offset, delta);
			csum = skb_checksum(skb, offset, len, 0);
			subflow->map_data_csum = csum_block_add(subflow->map_data_csum, csum,
								subflow->map_csum_len);

			delta -= len;
			subflow->map_csum_len += len;
		}
		if (delta == 0)
			break;

		if (skb_queue_is_last(&ssk->sk_receive_queue, skb)) {
			/* if this subflow is closed, the partial mapping
			 * will be never completed; flush the pending skbs, so
			 * that subflow_sched_work_if_closed() can kick in
			 */
			if (unlikely(ssk->sk_state == TCP_CLOSE))
				while ((skb = skb_peek(&ssk->sk_receive_queue)))
					sk_eat_skb(ssk, skb);

			/* not enough data to validate the csum */
			return MAPPING_EMPTY;
		}

		/* the DSS mapping for next skbs will be validated later,
		 * when a get_mapping_status call will process such skb
		 */
		skb = skb->next;
	}

	/* note that 'map_data_len' accounts only for the carried data, does
	 * not include the eventual seq increment due to the data fin,
	 * while the pseudo header requires the original DSS data len,
	 * including that
	 */
	csum = __mptcp_make_csum(subflow->map_seq,
				 subflow->map_subflow_seq,
				 subflow->map_data_len + subflow->map_data_fin,
				 subflow->map_data_csum);
	if (unlikely(csum)) {
		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DATACSUMERR);
		return MAPPING_BAD_CSUM;
	}

	subflow->valid_csum_seen = 1;
	return MAPPING_OK;
}

static enum mapping_status get_mapping_status(struct sock *ssk,
					      struct mptcp_sock *msk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	bool csum_reqd = READ_ONCE(msk->csum_enabled);
	struct mptcp_ext *mpext;
	struct sk_buff *skb;
	u16 data_len;
	u64 map_seq;

	skb = skb_peek(&ssk->sk_receive_queue);
	if (!skb)
		return MAPPING_EMPTY;

	if (mptcp_check_fallback(ssk))
		return MAPPING_DUMMY;

	mpext = mptcp_get_ext(skb);
	if (!mpext || !mpext->use_map) {
		if (!subflow->map_valid && !skb->len) {
			/* the TCP stack deliver 0 len FIN pkt to the receive
			 * queue, that is the only 0len pkts ever expected here,
			 * and we can admit no mapping only for 0 len pkts
			 */
			if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
				WARN_ONCE(1, "0len seq %d:%d flags %x",
					  TCP_SKB_CB(skb)->seq,
					  TCP_SKB_CB(skb)->end_seq,
					  TCP_SKB_CB(skb)->tcp_flags);
			sk_eat_skb(ssk, skb);
			return MAPPING_EMPTY;
		}

		if (!subflow->map_valid)
			return MAPPING_INVALID;

		goto validate_seq;
	}

	trace_get_mapping_status(mpext);

	data_len = mpext->data_len;
	if (data_len == 0) {
		pr_debug("infinite mapping received");
		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPRX);
		subflow->map_data_len = 0;
		return MAPPING_INVALID;
	}

	if (mpext->data_fin == 1) {
		if (data_len == 1) {
			bool updated = mptcp_update_rcv_data_fin(msk, mpext->data_seq,
								 mpext->dsn64);
			pr_debug("DATA_FIN with no payload seq=%llu", mpext->data_seq);
			if (subflow->map_valid) {
				/* A DATA_FIN might arrive in a DSS
				 * option before the previous mapping
				 * has been fully consumed. Continue
				 * handling the existing mapping.
				 */
				skb_ext_del(skb, SKB_EXT_MPTCP);
				return MAPPING_OK;
			} else {
				if (updated)
					mptcp_schedule_work((struct sock *)msk);

				return MAPPING_DATA_FIN;
			}
		} else {
			u64 data_fin_seq = mpext->data_seq + data_len - 1;

			/* If mpext->data_seq is a 32-bit value, data_fin_seq
			 * must also be limited to 32 bits.
			 */
			if (!mpext->dsn64)
				data_fin_seq &= GENMASK_ULL(31, 0);

			mptcp_update_rcv_data_fin(msk, data_fin_seq, mpext->dsn64);
			pr_debug("DATA_FIN with mapping seq=%llu dsn64=%d",
				 data_fin_seq, mpext->dsn64);
		}

		/* Adjust for DATA_FIN using 1 byte of sequence space */
		data_len--;
	}

	map_seq = mptcp_expand_seq(READ_ONCE(msk->ack_seq), mpext->data_seq, mpext->dsn64);
	WRITE_ONCE(mptcp_sk(subflow->conn)->use_64bit_ack, !!mpext->dsn64);

	if (subflow->map_valid) {
		/* Allow replacing only with an identical map */
		if (subflow->map_seq == map_seq &&
		    subflow->map_subflow_seq == mpext->subflow_seq &&
		    subflow->map_data_len == data_len &&
		    subflow->map_csum_reqd == mpext->csum_reqd) {
			skb_ext_del(skb, SKB_EXT_MPTCP);
			goto validate_csum;
		}

		/* If this skb data are fully covered by the current mapping,
		 * the new map would need caching, which is not supported
		 */
		if (skb_is_fully_mapped(ssk, skb)) {
			MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSNOMATCH);
			return MAPPING_INVALID;
		}

		/* will validate the next map after consuming the current one */
		goto validate_csum;
	}

	subflow->map_seq = map_seq;
	subflow->map_subflow_seq = mpext->subflow_seq;
	subflow->map_data_len = data_len;
	subflow->map_valid = 1;
	subflow->map_data_fin = mpext->data_fin;
	subflow->mpc_map = mpext->mpc_map;
	subflow->map_csum_reqd = mpext->csum_reqd;
	subflow->map_csum_len = 0;
	subflow->map_data_csum = csum_unfold(mpext->csum);

	/* Cfr RFC 8684 Section 3.3.0 */
	if (unlikely(subflow->map_csum_reqd != csum_reqd))
		return MAPPING_INVALID;

	pr_debug("new map seq=%llu subflow_seq=%u data_len=%u csum=%d:%u",
		 subflow->map_seq, subflow->map_subflow_seq,
		 subflow->map_data_len, subflow->map_csum_reqd,
		 subflow->map_data_csum);

validate_seq:
	/* we revalidate valid mapping on new skb, because we must ensure
	 * the current skb is completely covered by the available mapping
	 */
	if (!validate_mapping(ssk, skb)) {
		MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSTCPMISMATCH);
		return MAPPING_INVALID;
	}

	skb_ext_del(skb, SKB_EXT_MPTCP);

validate_csum:
	return validate_data_csum(ssk, skb, csum_reqd);
}

static void mptcp_subflow_discard_data(struct sock *ssk, struct sk_buff *skb,
				       u64 limit)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	bool fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
	u32 incr;

	incr = limit >= skb->len ? skb->len + fin : limit;

	pr_debug("discarding=%d len=%d seq=%d", incr, skb->len,
		 subflow->map_subflow_seq);
	MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DUPDATA);
	tcp_sk(ssk)->copied_seq += incr;
	if (!before(tcp_sk(ssk)->copied_seq, TCP_SKB_CB(skb)->end_seq))
		sk_eat_skb(ssk, skb);
	if (mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len)
		subflow->map_valid = 0;
}

/* sched mptcp worker to remove the subflow if no more data is pending */
static void subflow_sched_work_if_closed(struct mptcp_sock *msk, struct sock *ssk)
{
	if (likely(ssk->sk_state != TCP_CLOSE))
		return;

	if (skb_queue_empty(&ssk->sk_receive_queue) &&
	    !test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
		mptcp_schedule_work((struct sock *)msk);
}

static bool subflow_can_fallback(struct mptcp_subflow_context *subflow)
{
	struct mptcp_sock *msk = mptcp_sk(subflow->conn);

	if (subflow->mp_join)
		return false;
	else if (READ_ONCE(msk->csum_enabled))
		return !subflow->valid_csum_seen;
	else
		return !subflow->fully_established;
}

static void mptcp_subflow_fail(struct mptcp_sock *msk, struct sock *ssk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	unsigned long fail_tout;

	/* greceful failure can happen only on the MPC subflow */
	if (WARN_ON_ONCE(ssk != READ_ONCE(msk->first)))
		return;

	/* since the close timeout take precedence on the fail one,
	 * no need to start the latter when the first is already set
	 */
	if (sock_flag((struct sock *)msk, SOCK_DEAD))
		return;

	/* we don't need extreme accuracy here, use a zero fail_tout as special
	 * value meaning no fail timeout at all;
	 */
	fail_tout = jiffies + TCP_RTO_MAX;
	if (!fail_tout)
		fail_tout = 1;
	WRITE_ONCE(subflow->fail_tout, fail_tout);
	tcp_send_ack(ssk);

	mptcp_reset_tout_timer(msk, subflow->fail_tout);
}

static bool subflow_check_data_avail(struct sock *ssk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	enum mapping_status status;
	struct mptcp_sock *msk;
	struct sk_buff *skb;

	if (!skb_peek(&ssk->sk_receive_queue))
		WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);
	if (subflow->data_avail)
		return true;

	msk = mptcp_sk(subflow->conn);
	for (;;) {
		u64 ack_seq;
		u64 old_ack;

		status = get_mapping_status(ssk, msk);
		trace_subflow_check_data_avail(status, skb_peek(&ssk->sk_receive_queue));
		if (unlikely(status == MAPPING_INVALID || status == MAPPING_DUMMY ||
			     status == MAPPING_BAD_CSUM))
			goto fallback;

		if (status != MAPPING_OK)
			goto no_data;

		skb = skb_peek(&ssk->sk_receive_queue);
		if (WARN_ON_ONCE(!skb))
			goto no_data;

		if (unlikely(!READ_ONCE(msk->can_ack)))
			goto fallback;

		old_ack = READ_ONCE(msk->ack_seq);
		ack_seq = mptcp_subflow_get_mapped_dsn(subflow);
		pr_debug("msk ack_seq=%llx subflow ack_seq=%llx", old_ack,
			 ack_seq);
		if (unlikely(before64(ack_seq, old_ack))) {
			mptcp_subflow_discard_data(ssk, skb, old_ack - ack_seq);
			continue;
		}

		WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
		break;
	}
	return true;

no_data:
	subflow_sched_work_if_closed(msk, ssk);
	return false;

fallback:
	if (!__mptcp_check_fallback(msk)) {
		/* RFC 8684 section 3.7. */
		if (status == MAPPING_BAD_CSUM &&
		    (subflow->mp_join || subflow->valid_csum_seen)) {
			subflow->send_mp_fail = 1;

			if (!READ_ONCE(msk->allow_infinite_fallback)) {
				subflow->reset_transient = 0;
				subflow->reset_reason = MPTCP_RST_EMIDDLEBOX;
				goto reset;
			}
			mptcp_subflow_fail(msk, ssk);
			WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
			return true;
		}

		if (!subflow_can_fallback(subflow) && subflow->map_data_len) {
			/* fatal protocol error, close the socket.
			 * subflow_error_report() will introduce the appropriate barriers
			 */
			subflow->reset_transient = 0;
			subflow->reset_reason = MPTCP_RST_EMPTCP;

reset:
			WRITE_ONCE(ssk->sk_err, EBADMSG);
			tcp_set_state(ssk, TCP_CLOSE);
			while ((skb = skb_peek(&ssk->sk_receive_queue)))
				sk_eat_skb(ssk, skb);
			tcp_send_active_reset(ssk, GFP_ATOMIC);
			WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);
			return false;
		}

		mptcp_do_fallback(ssk);
	}

	skb = skb_peek(&ssk->sk_receive_queue);
	subflow->map_valid = 1;
	subflow->map_seq = READ_ONCE(msk->ack_seq);
	subflow->map_data_len = skb->len;
	subflow->map_subflow_seq = tcp_sk(ssk)->copied_seq - subflow->ssn_offset;
	WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_DATA_AVAIL);
	return true;
}

bool mptcp_subflow_data_available(struct sock *sk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);

	/* check if current mapping is still valid */
	if (subflow->map_valid &&
	    mptcp_subflow_get_map_offset(subflow) >= subflow->map_data_len) {
		subflow->map_valid = 0;
		WRITE_ONCE(subflow->data_avail, MPTCP_SUBFLOW_NODATA);

		pr_debug("Done with mapping: seq=%u data_len=%u",
			 subflow->map_subflow_seq,
			 subflow->map_data_len);
	}

	return subflow_check_data_avail(sk);
}

/* If ssk has an mptcp parent socket, use the mptcp rcvbuf occupancy,
 * not the ssk one.
 *
 * In mptcp, rwin is about the mptcp-level connection data.
 *
 * Data that is still on the ssk rx queue can thus be ignored,
 * as far as mptcp peer is concerned that data is still inflight.
 * DSS ACK is updated when skb is moved to the mptcp rx queue.
 */
void mptcp_space(const struct sock *ssk, int *space, int *full_space)
{
	const struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	const struct sock *sk = subflow->conn;

	*space = __mptcp_space(sk);
	*full_space = mptcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
}

static void subflow_error_report(struct sock *ssk)
{
	struct sock *sk = mptcp_subflow_ctx(ssk)->conn;

	/* bail early if this is a no-op, so that we avoid introducing a
	 * problematic lockdep dependency between TCP accept queue lock
	 * and msk socket spinlock
	 */
	if (!sk->sk_socket)
		return;

	mptcp_data_lock(sk);
	if (!sock_owned_by_user(sk))
		__mptcp_error_report(sk);
	else
		__set_bit(MPTCP_ERROR_REPORT,  &mptcp_sk(sk)->cb_flags);
	mptcp_data_unlock(sk);
}

static void subflow_data_ready(struct sock *sk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	u16 state = 1 << inet_sk_state_load(sk);
	struct sock *parent = subflow->conn;
	struct mptcp_sock *msk;

	trace_sk_data_ready(sk);

	msk = mptcp_sk(parent);
	if (state & TCPF_LISTEN) {
		/* MPJ subflow are removed from accept queue before reaching here,
		 * avoid stray wakeups
		 */
		if (reqsk_queue_empty(&inet_csk(sk)->icsk_accept_queue))
			return;

		parent->sk_data_ready(parent);
		return;
	}

	WARN_ON_ONCE(!__mptcp_check_fallback(msk) && !subflow->mp_capable &&
		     !subflow->mp_join && !(state & TCPF_CLOSE));

	if (mptcp_subflow_data_available(sk))
		mptcp_data_ready(parent, sk);
	else if (unlikely(sk->sk_err))
		subflow_error_report(sk);
}

static void subflow_write_space(struct sock *ssk)
{
	struct sock *sk = mptcp_subflow_ctx(ssk)->conn;

	mptcp_propagate_sndbuf(sk, ssk);
	mptcp_write_space(sk);
}

static const struct inet_connection_sock_af_ops *
subflow_default_af_ops(struct sock *sk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	if (sk->sk_family == AF_INET6)
		return &subflow_v6_specific;
#endif
	return &subflow_specific;
}

#if IS_ENABLED(CONFIG_MPTCP_IPV6)
void mptcpv6_handle_mapped(struct sock *sk, bool mapped)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	struct inet_connection_sock *icsk = inet_csk(sk);
	const struct inet_connection_sock_af_ops *target;

	target = mapped ? &subflow_v6m_specific : subflow_default_af_ops(sk);

	pr_debug("subflow=%p family=%d ops=%p target=%p mapped=%d",
		 subflow, sk->sk_family, icsk->icsk_af_ops, target, mapped);

	if (likely(icsk->icsk_af_ops == target))
		return;

	subflow->icsk_af_ops = icsk->icsk_af_ops;
	icsk->icsk_af_ops = target;
}
#endif

void mptcp_info2sockaddr(const struct mptcp_addr_info *info,
			 struct sockaddr_storage *addr,
			 unsigned short family)
{
	memset(addr, 0, sizeof(*addr));
	addr->ss_family = family;
	if (addr->ss_family == AF_INET) {
		struct sockaddr_in *in_addr = (struct sockaddr_in *)addr;

		if (info->family == AF_INET)
			in_addr->sin_addr = info->addr;
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
		else if (ipv6_addr_v4mapped(&info->addr6))
			in_addr->sin_addr.s_addr = info->addr6.s6_addr32[3];
#endif
		in_addr->sin_port = info->port;
	}
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	else if (addr->ss_family == AF_INET6) {
		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)addr;

		if (info->family == AF_INET)
			ipv6_addr_set_v4mapped(info->addr.s_addr,
					       &in6_addr->sin6_addr);
		else
			in6_addr->sin6_addr = info->addr6;
		in6_addr->sin6_port = info->port;
	}
#endif
}

int __mptcp_subflow_connect(struct sock *sk, const struct mptcp_addr_info *loc,
			    const struct mptcp_addr_info *remote)
{
	struct mptcp_sock *msk = mptcp_sk(sk);
	struct mptcp_subflow_context *subflow;
	struct sockaddr_storage addr;
	int remote_id = remote->id;
	int local_id = loc->id;
	int err = -ENOTCONN;
	struct socket *sf;
	struct sock *ssk;
	u32 remote_token;
	int addrlen;
	int ifindex;
	u8 flags;

	if (!mptcp_is_fully_established(sk))
		goto err_out;

	err = mptcp_subflow_create_socket(sk, loc->family, &sf);
	if (err)
		goto err_out;

	ssk = sf->sk;
	subflow = mptcp_subflow_ctx(ssk);
	do {
		get_random_bytes(&subflow->local_nonce, sizeof(u32));
	} while (!subflow->local_nonce);

	if (local_id)
		subflow_set_local_id(subflow, local_id);

	mptcp_pm_get_flags_and_ifindex_by_id(msk, local_id,
					     &flags, &ifindex);
	subflow->remote_key_valid = 1;
	subflow->remote_key = msk->remote_key;
	subflow->local_key = msk->local_key;
	subflow->token = msk->token;
	mptcp_info2sockaddr(loc, &addr, ssk->sk_family);

	addrlen = sizeof(struct sockaddr_in);
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	if (addr.ss_family == AF_INET6)
		addrlen = sizeof(struct sockaddr_in6);
#endif
	mptcp_sockopt_sync(msk, ssk);

	ssk->sk_bound_dev_if = ifindex;
	err = kernel_bind(sf, (struct sockaddr *)&addr, addrlen);
	if (err)
		goto failed;

	mptcp_crypto_key_sha(subflow->remote_key, &remote_token, NULL);
	pr_debug("msk=%p remote_token=%u local_id=%d remote_id=%d", msk,
		 remote_token, local_id, remote_id);
	subflow->remote_token = remote_token;
	subflow->remote_id = remote_id;
	subflow->request_join = 1;
	subflow->request_bkup = !!(flags & MPTCP_PM_ADDR_FLAG_BACKUP);
	subflow->subflow_id = msk->subflow_id++;
	mptcp_info2sockaddr(remote, &addr, ssk->sk_family);

	sock_hold(ssk);
	list_add_tail(&subflow->node, &msk->conn_list);
	err = kernel_connect(sf, (struct sockaddr *)&addr, addrlen, O_NONBLOCK);
	if (err && err != -EINPROGRESS)
		goto failed_unlink;

	/* discard the subflow socket */
	mptcp_sock_graft(ssk, sk->sk_socket);
	iput(SOCK_INODE(sf));
	WRITE_ONCE(msk->allow_infinite_fallback, false);
	mptcp_stop_tout_timer(sk);
	return 0;

failed_unlink:
	list_del(&subflow->node);
	sock_put(mptcp_subflow_tcp_sock(subflow));

failed:
	subflow->disposable = 1;
	sock_release(sf);

err_out:
	/* we account subflows before the creation, and this failures will not
	 * be caught by sk_state_change()
	 */
	mptcp_pm_close_subflow(msk);
	return err;
}

static void mptcp_attach_cgroup(struct sock *parent, struct sock *child)
{
#ifdef CONFIG_SOCK_CGROUP_DATA
	struct sock_cgroup_data *parent_skcd = &parent->sk_cgrp_data,
				*child_skcd = &child->sk_cgrp_data;

	/* only the additional subflows created by kworkers have to be modified */
	if (cgroup_id(sock_cgroup_ptr(parent_skcd)) !=
	    cgroup_id(sock_cgroup_ptr(child_skcd))) {
#ifdef CONFIG_MEMCG
		struct mem_cgroup *memcg = parent->sk_memcg;

		mem_cgroup_sk_free(child);
		if (memcg && css_tryget(&memcg->css))
			child->sk_memcg = memcg;
#endif /* CONFIG_MEMCG */

		cgroup_sk_free(child_skcd);
		*child_skcd = *parent_skcd;
		cgroup_sk_clone(child_skcd);
	}
#endif /* CONFIG_SOCK_CGROUP_DATA */
}

static void mptcp_subflow_ops_override(struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	if (ssk->sk_prot == &tcpv6_prot)
		ssk->sk_prot = &tcpv6_prot_override;
	else
#endif
		ssk->sk_prot = &tcp_prot_override;
}

static void mptcp_subflow_ops_undo_override(struct sock *ssk)
{
#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	if (ssk->sk_prot == &tcpv6_prot_override)
		ssk->sk_prot = &tcpv6_prot;
	else
#endif
		ssk->sk_prot = &tcp_prot;
}

int mptcp_subflow_create_socket(struct sock *sk, unsigned short family,
				struct socket **new_sock)
{
	struct mptcp_subflow_context *subflow;
	struct net *net = sock_net(sk);
	struct socket *sf;
	int err;

	/* un-accepted server sockets can reach here - on bad configuration
	 * bail early to avoid greater trouble later
	 */
	if (unlikely(!sk->sk_socket))
		return -EINVAL;

	err = sock_create_kern(net, family, SOCK_STREAM, IPPROTO_TCP, &sf);
	if (err)
		return err;

	lock_sock_nested(sf->sk, SINGLE_DEPTH_NESTING);

	err = security_mptcp_add_subflow(sk, sf->sk);
	if (err)
		goto release_ssk;

	/* the newly created socket has to be in the same cgroup as its parent */
	mptcp_attach_cgroup(sk, sf->sk);

	/* kernel sockets do not by default acquire net ref, but TCP timer
	 * needs it.
	 * Update ns_tracker to current stack trace and refcounted tracker.
	 */
	__netns_tracker_free(net, &sf->sk->ns_tracker, false);
	sf->sk->sk_net_refcnt = 1;
	get_net_track(net, &sf->sk->ns_tracker, GFP_KERNEL);
	sock_inuse_add(net, 1);
	err = tcp_set_ulp(sf->sk, "mptcp");

release_ssk:
	release_sock(sf->sk);

	if (err) {
		sock_release(sf);
		return err;
	}

	/* the newly created socket really belongs to the owning MPTCP master
	 * socket, even if for additional subflows the allocation is performed
	 * by a kernel workqueue. Adjust inode references, so that the
	 * procfs/diag interfaces really show this one belonging to the correct
	 * user.
	 */
	SOCK_INODE(sf)->i_ino = SOCK_INODE(sk->sk_socket)->i_ino;
	SOCK_INODE(sf)->i_uid = SOCK_INODE(sk->sk_socket)->i_uid;
	SOCK_INODE(sf)->i_gid = SOCK_INODE(sk->sk_socket)->i_gid;

	subflow = mptcp_subflow_ctx(sf->sk);
	pr_debug("subflow=%p", subflow);

	*new_sock = sf;
	sock_hold(sk);
	subflow->conn = sk;
	mptcp_subflow_ops_override(sf->sk);

	return 0;
}

static struct mptcp_subflow_context *subflow_create_ctx(struct sock *sk,
							gfp_t priority)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	struct mptcp_subflow_context *ctx;

	ctx = kzalloc(sizeof(*ctx), priority);
	if (!ctx)
		return NULL;

	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
	INIT_LIST_HEAD(&ctx->node);
	INIT_LIST_HEAD(&ctx->delegated_node);

	pr_debug("subflow=%p", ctx);

	ctx->tcp_sock = sk;

	return ctx;
}

static void __subflow_state_change(struct sock *sk)
{
	struct socket_wq *wq;

	rcu_read_lock();
	wq = rcu_dereference(sk->sk_wq);
	if (skwq_has_sleeper(wq))
		wake_up_interruptible_all(&wq->wait);
	rcu_read_unlock();
}

static bool subflow_is_done(const struct sock *sk)
{
	return sk->sk_shutdown & RCV_SHUTDOWN || sk->sk_state == TCP_CLOSE;
}

static void subflow_state_change(struct sock *sk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(sk);
	struct sock *parent = subflow->conn;
	struct mptcp_sock *msk;

	__subflow_state_change(sk);

	msk = mptcp_sk(parent);
	if (subflow_simultaneous_connect(sk)) {
		mptcp_propagate_sndbuf(parent, sk);
		mptcp_do_fallback(sk);
		mptcp_rcv_space_init(msk, sk);
		pr_fallback(msk);
		subflow->conn_finished = 1;
		mptcp_set_connected(parent);
	}

	/* as recvmsg() does not acquire the subflow socket for ssk selection
	 * a fin packet carrying a DSS can be unnoticed if we don't trigger
	 * the data available machinery here.
	 */
	if (mptcp_subflow_data_available(sk))
		mptcp_data_ready(parent, sk);
	else if (unlikely(sk->sk_err))
		subflow_error_report(sk);

	subflow_sched_work_if_closed(mptcp_sk(parent), sk);

	/* when the fallback subflow closes the rx side, trigger a 'dummy'
	 * ingress data fin, so that the msk state will follow along
	 */
	if (__mptcp_check_fallback(msk) && subflow_is_done(sk) && msk->first == sk &&
	    mptcp_update_rcv_data_fin(msk, READ_ONCE(msk->ack_seq), true))
		mptcp_schedule_work(parent);
}

void mptcp_subflow_queue_clean(struct sock *listener_sk, struct sock *listener_ssk)
{
	struct request_sock_queue *queue = &inet_csk(listener_ssk)->icsk_accept_queue;
	struct request_sock *req, *head, *tail;
	struct mptcp_subflow_context *subflow;
	struct sock *sk, *ssk;

	/* Due to lock dependencies no relevant lock can be acquired under rskq_lock.
	 * Splice the req list, so that accept() can not reach the pending ssk after
	 * the listener socket is released below.
	 */
	spin_lock_bh(&queue->rskq_lock);
	head = queue->rskq_accept_head;
	tail = queue->rskq_accept_tail;
	queue->rskq_accept_head = NULL;
	queue->rskq_accept_tail = NULL;
	spin_unlock_bh(&queue->rskq_lock);

	if (!head)
		return;

	/* can't acquire the msk socket lock under the subflow one,
	 * or will cause ABBA deadlock
	 */
	release_sock(listener_ssk);

	for (req = head; req; req = req->dl_next) {
		ssk = req->sk;
		if (!sk_is_mptcp(ssk))
			continue;

		subflow = mptcp_subflow_ctx(ssk);
		if (!subflow || !subflow->conn)
			continue;

		sk = subflow->conn;
		sock_hold(sk);

		lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
		__mptcp_unaccepted_force_close(sk);
		release_sock(sk);

		/* lockdep will report a false positive ABBA deadlock
		 * between cancel_work_sync and the listener socket.
		 * The involved locks belong to different sockets WRT
		 * the existing AB chain.
		 * Using a per socket key is problematic as key
		 * deregistration requires process context and must be
		 * performed at socket disposal time, in atomic
		 * context.
		 * Just tell lockdep to consider the listener socket
		 * released here.
		 */
		mutex_release(&listener_sk->sk_lock.dep_map, _RET_IP_);
		mptcp_cancel_work(sk);
		mutex_acquire(&listener_sk->sk_lock.dep_map, 0, 0, _RET_IP_);

		sock_put(sk);
	}

	/* we are still under the listener msk socket lock */
	lock_sock_nested(listener_ssk, SINGLE_DEPTH_NESTING);

	/* restore the listener queue, to let the TCP code clean it up */
	spin_lock_bh(&queue->rskq_lock);
	WARN_ON_ONCE(queue->rskq_accept_head);
	queue->rskq_accept_head = head;
	queue->rskq_accept_tail = tail;
	spin_unlock_bh(&queue->rskq_lock);
}

static int subflow_ulp_init(struct sock *sk)
{
	struct inet_connection_sock *icsk = inet_csk(sk);
	struct mptcp_subflow_context *ctx;
	struct tcp_sock *tp = tcp_sk(sk);
	int err = 0;

	/* disallow attaching ULP to a socket unless it has been
	 * created with sock_create_kern()
	 */
	if (!sk->sk_kern_sock) {
		err = -EOPNOTSUPP;
		goto out;
	}

	ctx = subflow_create_ctx(sk, GFP_KERNEL);
	if (!ctx) {
		err = -ENOMEM;
		goto out;
	}

	pr_debug("subflow=%p, family=%d", ctx, sk->sk_family);

	tp->is_mptcp = 1;
	ctx->icsk_af_ops = icsk->icsk_af_ops;
	icsk->icsk_af_ops = subflow_default_af_ops(sk);
	ctx->tcp_state_change = sk->sk_state_change;
	ctx->tcp_error_report = sk->sk_error_report;

	WARN_ON_ONCE(sk->sk_data_ready != sock_def_readable);
	WARN_ON_ONCE(sk->sk_write_space != sk_stream_write_space);

	sk->sk_data_ready = subflow_data_ready;
	sk->sk_write_space = subflow_write_space;
	sk->sk_state_change = subflow_state_change;
	sk->sk_error_report = subflow_error_report;
out:
	return err;
}

static void subflow_ulp_release(struct sock *ssk)
{
	struct mptcp_subflow_context *ctx = mptcp_subflow_ctx(ssk);
	bool release = true;
	struct sock *sk;

	if (!ctx)
		return;

	sk = ctx->conn;
	if (sk) {
		/* if the msk has been orphaned, keep the ctx
		 * alive, will be freed by __mptcp_close_ssk(),
		 * when the subflow is still unaccepted
		 */
		release = ctx->disposable || list_empty(&ctx->node);

		/* inet_child_forget() does not call sk_state_change(),
		 * explicitly trigger the socket close machinery
		 */
		if (!release && !test_and_set_bit(MPTCP_WORK_CLOSE_SUBFLOW,
						  &mptcp_sk(sk)->flags))
			mptcp_schedule_work(sk);
		sock_put(sk);
	}

	mptcp_subflow_ops_undo_override(ssk);
	if (release)
		kfree_rcu(ctx, rcu);
}

static void subflow_ulp_clone(const struct request_sock *req,
			      struct sock *newsk,
			      const gfp_t priority)
{
	struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
	struct mptcp_subflow_context *old_ctx = mptcp_subflow_ctx(newsk);
	struct mptcp_subflow_context *new_ctx;

	if (!tcp_rsk(req)->is_mptcp ||
	    (!subflow_req->mp_capable && !subflow_req->mp_join)) {
		subflow_ulp_fallback(newsk, old_ctx);
		return;
	}

	new_ctx = subflow_create_ctx(newsk, priority);
	if (!new_ctx) {
		subflow_ulp_fallback(newsk, old_ctx);
		return;
	}

	new_ctx->conn_finished = 1;
	new_ctx->icsk_af_ops = old_ctx->icsk_af_ops;
	new_ctx->tcp_state_change = old_ctx->tcp_state_change;
	new_ctx->tcp_error_report = old_ctx->tcp_error_report;
	new_ctx->rel_write_seq = 1;
	new_ctx->tcp_sock = newsk;

	if (subflow_req->mp_capable) {
		/* see comments in subflow_syn_recv_sock(), MPTCP connection
		 * is fully established only after we receive the remote key
		 */
		new_ctx->mp_capable = 1;
		new_ctx->local_key = subflow_req->local_key;
		new_ctx->token = subflow_req->token;
		new_ctx->ssn_offset = subflow_req->ssn_offset;
		new_ctx->idsn = subflow_req->idsn;

		/* this is the first subflow, id is always 0 */
		new_ctx->local_id_valid = 1;
	} else if (subflow_req->mp_join) {
		new_ctx->ssn_offset = subflow_req->ssn_offset;
		new_ctx->mp_join = 1;
		new_ctx->fully_established = 1;
		new_ctx->remote_key_valid = 1;
		new_ctx->backup = subflow_req->backup;
		new_ctx->remote_id = subflow_req->remote_id;
		new_ctx->token = subflow_req->token;
		new_ctx->thmac = subflow_req->thmac;

		/* the subflow req id is valid, fetched via subflow_check_req()
		 * and subflow_token_join_request()
		 */
		subflow_set_local_id(new_ctx, subflow_req->local_id);
	}
}

static void tcp_release_cb_override(struct sock *ssk)
{
	struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
	long status;

	/* process and clear all the pending actions, but leave the subflow into
	 * the napi queue. To respect locking, only the same CPU that originated
	 * the action can touch the list. mptcp_napi_poll will take care of it.
	 */
	status = set_mask_bits(&subflow->delegated_status, MPTCP_DELEGATE_ACTIONS_MASK, 0);
	if (status)
		mptcp_subflow_process_delegated(ssk, status);

	tcp_release_cb(ssk);
}

static struct tcp_ulp_ops subflow_ulp_ops __read_mostly = {
	.name		= "mptcp",
	.owner		= THIS_MODULE,
	.init		= subflow_ulp_init,
	.release	= subflow_ulp_release,
	.clone		= subflow_ulp_clone,
};

static int subflow_ops_init(struct request_sock_ops *subflow_ops)
{
	subflow_ops->obj_size = sizeof(struct mptcp_subflow_request_sock);

	subflow_ops->slab = kmem_cache_create(subflow_ops->slab_name,
					      subflow_ops->obj_size, 0,
					      SLAB_ACCOUNT |
					      SLAB_TYPESAFE_BY_RCU,
					      NULL);
	if (!subflow_ops->slab)
		return -ENOMEM;

	return 0;
}

void __init mptcp_subflow_init(void)
{
	mptcp_subflow_v4_request_sock_ops = tcp_request_sock_ops;
	mptcp_subflow_v4_request_sock_ops.slab_name = "request_sock_subflow_v4";
	mptcp_subflow_v4_request_sock_ops.destructor = subflow_v4_req_destructor;

	if (subflow_ops_init(&mptcp_subflow_v4_request_sock_ops) != 0)
		panic("MPTCP: failed to init subflow v4 request sock ops\n");

	subflow_request_sock_ipv4_ops = tcp_request_sock_ipv4_ops;
	subflow_request_sock_ipv4_ops.route_req = subflow_v4_route_req;
	subflow_request_sock_ipv4_ops.send_synack = subflow_v4_send_synack;

	subflow_specific = ipv4_specific;
	subflow_specific.conn_request = subflow_v4_conn_request;
	subflow_specific.syn_recv_sock = subflow_syn_recv_sock;
	subflow_specific.sk_rx_dst_set = subflow_finish_connect;
	subflow_specific.rebuild_header = subflow_rebuild_header;

	tcp_prot_override = tcp_prot;
	tcp_prot_override.release_cb = tcp_release_cb_override;

#if IS_ENABLED(CONFIG_MPTCP_IPV6)
	/* In struct mptcp_subflow_request_sock, we assume the TCP request sock
	 * structures for v4 and v6 have the same size. It should not changed in
	 * the future but better to make sure to be warned if it is no longer
	 * the case.
	 */
	BUILD_BUG_ON(sizeof(struct tcp_request_sock) != sizeof(struct tcp6_request_sock));

	mptcp_subflow_v6_request_sock_ops = tcp6_request_sock_ops;
	mptcp_subflow_v6_request_sock_ops.slab_name = "request_sock_subflow_v6";
	mptcp_subflow_v6_request_sock_ops.destructor = subflow_v6_req_destructor;

	if (subflow_ops_init(&mptcp_subflow_v6_request_sock_ops) != 0)
		panic("MPTCP: failed to init subflow v6 request sock ops\n");

	subflow_request_sock_ipv6_ops = tcp_request_sock_ipv6_ops;
	subflow_request_sock_ipv6_ops.route_req = subflow_v6_route_req;
	subflow_request_sock_ipv6_ops.send_synack = subflow_v6_send_synack;

	subflow_v6_specific = ipv6_specific;
	subflow_v6_specific.conn_request = subflow_v6_conn_request;
	subflow_v6_specific.syn_recv_sock = subflow_syn_recv_sock;
	subflow_v6_specific.sk_rx_dst_set = subflow_finish_connect;
	subflow_v6_specific.rebuild_header = subflow_v6_rebuild_header;

	subflow_v6m_specific = subflow_v6_specific;
	subflow_v6m_specific.queue_xmit = ipv4_specific.queue_xmit;
	subflow_v6m_specific.send_check = ipv4_specific.send_check;
	subflow_v6m_specific.net_header_len = ipv4_specific.net_header_len;
	subflow_v6m_specific.mtu_reduced = ipv4_specific.mtu_reduced;
	subflow_v6m_specific.net_frag_header_len = 0;
	subflow_v6m_specific.rebuild_header = subflow_rebuild_header;

	tcpv6_prot_override = tcpv6_prot;
	tcpv6_prot_override.release_cb = tcp_release_cb_override;
#endif

	mptcp_diag_subflow_init(&subflow_ulp_ops);

	if (tcp_register_ulp(&subflow_ulp_ops) != 0)
		panic("MPTCP: failed to register subflows to ULP\n");
}