/*
 * Core routines and tables shareable across OS platforms.
 *
 * Copyright (c) 1994-2002 Justin T. Gibbs.
 * Copyright (c) 2000-2003 Adaptec Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions, and the following disclaimer,
 *    without modification.
 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
 *    substantially similar to the "NO WARRANTY" disclaimer below
 *    ("Disclaimer") and any redistribution must be conditioned upon
 *    including a substantially similar Disclaimer requirement for further
 *    binary redistribution.
 * 3. Neither the names of the above-listed copyright holders nor the names
 *    of any contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * Alternatively, this software may be distributed under the terms of the
 * GNU General Public License ("GPL") version 2 as published by the Free
 * Software Foundation.
 *
 * NO WARRANTY
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
 */

#include "aic79xx_osm.h"
#include "aic79xx_inline.h"
#include "aicasm/aicasm_insformat.h"

/***************************** Lookup Tables **********************************/
static const char *const ahd_chip_names[] =
{
	"NONE",
	"aic7901",
	"aic7902",
	"aic7901A"
};

/*
 * Hardware error codes.
 */
struct ahd_hard_error_entry {
        uint8_t errno;
	const char *errmesg;
};

static const struct ahd_hard_error_entry ahd_hard_errors[] = {
	{ DSCTMOUT,	"Discard Timer has timed out" },
	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
	{ SQPARERR,	"Sequencer Parity Error" },
	{ DPARERR,	"Data-path Parity Error" },
	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
	{ CIOPARERR,	"CIOBUS Parity Error" },
};
static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);

static const struct ahd_phase_table_entry ahd_phase_table[] =
{
	{ P_DATAOUT,	MSG_NOOP,		"in Data-out phase"	},
	{ P_DATAIN,	MSG_INITIATOR_DET_ERR,	"in Data-in phase"	},
	{ P_DATAOUT_DT,	MSG_NOOP,		"in DT Data-out phase"	},
	{ P_DATAIN_DT,	MSG_INITIATOR_DET_ERR,	"in DT Data-in phase"	},
	{ P_COMMAND,	MSG_NOOP,		"in Command phase"	},
	{ P_MESGOUT,	MSG_NOOP,		"in Message-out phase"	},
	{ P_STATUS,	MSG_INITIATOR_DET_ERR,	"in Status phase"	},
	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
	{ P_BUSFREE,	MSG_NOOP,		"while idle"		},
	{ 0,		MSG_NOOP,		"in unknown phase"	}
};

/*
 * In most cases we only wish to itterate over real phases, so
 * exclude the last element from the count.
 */
static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;

/* Our Sequencer Program */
#include "aic79xx_seq.h"

/**************************** Function Declarations ***************************/
static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
						  u_int lqistat1);
static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
					       u_int busfreetime);
static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
static void		ahd_force_renegotiation(struct ahd_softc *ahd,
						struct ahd_devinfo *devinfo);

static struct ahd_tmode_tstate*
			ahd_alloc_tstate(struct ahd_softc *ahd,
					 u_int scsi_id, char channel);
#ifdef AHD_TARGET_MODE
static void		ahd_free_tstate(struct ahd_softc *ahd,
					u_int scsi_id, char channel, int force);
#endif
static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
					        struct ahd_initiator_tinfo *,
						u_int *period,
						u_int *ppr_options,
						role_t role);
static void		ahd_update_neg_table(struct ahd_softc *ahd,
					     struct ahd_devinfo *devinfo,
					     struct ahd_transinfo *tinfo);
static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
					  struct ahd_devinfo *devinfo);
static void		ahd_scb_devinfo(struct ahd_softc *ahd,
					struct ahd_devinfo *devinfo,
					struct scb *scb);
static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
						   struct ahd_devinfo *devinfo,
						   struct scb *scb);
static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
					       struct ahd_devinfo *devinfo);
static void		ahd_construct_sdtr(struct ahd_softc *ahd,
					   struct ahd_devinfo *devinfo,
					   u_int period, u_int offset);
static void		ahd_construct_wdtr(struct ahd_softc *ahd,
					   struct ahd_devinfo *devinfo,
					   u_int bus_width);
static void		ahd_construct_ppr(struct ahd_softc *ahd,
					  struct ahd_devinfo *devinfo,
					  u_int period, u_int offset,
					  u_int bus_width, u_int ppr_options);
static void		ahd_clear_msg_state(struct ahd_softc *ahd);
static void		ahd_handle_message_phase(struct ahd_softc *ahd);
typedef enum {
	AHDMSG_1B,
	AHDMSG_2B,
	AHDMSG_EXT
} ahd_msgtype;
static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
				     u_int msgval, int full);
static int		ahd_parse_msg(struct ahd_softc *ahd,
				      struct ahd_devinfo *devinfo);
static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
					      struct ahd_devinfo *devinfo);
static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
						struct ahd_devinfo *devinfo);
static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
static void		ahd_handle_devreset(struct ahd_softc *ahd,
					    struct ahd_devinfo *devinfo,
					    u_int lun, cam_status status,
					    char *message, int verbose_level);
#ifdef AHD_TARGET_MODE
static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
					       struct ahd_devinfo *devinfo,
					       struct scb *scb);
#endif

static u_int		ahd_sglist_size(struct ahd_softc *ahd);
static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
static bus_dmamap_callback_t
			ahd_dmamap_cb; 
static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
static int		ahd_init_scbdata(struct ahd_softc *ahd);
static void		ahd_fini_scbdata(struct ahd_softc *ahd);
static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
static void		ahd_add_col_list(struct ahd_softc *ahd,
					 struct scb *scb, u_int col_idx);
static void		ahd_rem_col_list(struct ahd_softc *ahd,
					 struct scb *scb);
static void		ahd_chip_init(struct ahd_softc *ahd);
static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
					    struct scb *prev_scb,
					    struct scb *scb);
static int		ahd_qinfifo_count(struct ahd_softc *ahd);
static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
					    char channel, int lun, u_int tag,
					    role_t role, uint32_t status,
					    ahd_search_action action,
					    u_int *list_head, u_int *list_tail,
					    u_int tid);
static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
					    u_int tid_prev, u_int tid_cur,
					    u_int tid_next);
static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
						 u_int scbid);
static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
				     u_int prev, u_int next, u_int tid);
static void		ahd_reset_current_bus(struct ahd_softc *ahd);
static void		ahd_stat_timer(struct timer_list *t);
#ifdef AHD_DUMP_SEQ
static void		ahd_dumpseq(struct ahd_softc *ahd);
#endif
static void		ahd_loadseq(struct ahd_softc *ahd);
static int		ahd_check_patch(struct ahd_softc *ahd,
					const struct patch **start_patch,
					u_int start_instr, u_int *skip_addr);
static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
					    u_int address);
static void		ahd_download_instr(struct ahd_softc *ahd,
					   u_int instrptr, uint8_t *dconsts);
static int		ahd_probe_stack_size(struct ahd_softc *ahd);
static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
					       struct scb *scb);
static void		ahd_run_data_fifo(struct ahd_softc *ahd,
					  struct scb *scb);

#ifdef AHD_TARGET_MODE
static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
					       struct ahd_tmode_lstate *lstate,
					       u_int initiator_id,
					       u_int event_type,
					       u_int event_arg);
static void		ahd_update_scsiid(struct ahd_softc *ahd,
					  u_int targid_mask);
static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
					      struct target_cmd *cmd);
#endif

static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
				       char channel, int lun, u_int tag,
				       role_t role, uint32_t status);
static void		ahd_alloc_scbs(struct ahd_softc *ahd);
static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
				     u_int scbid);
static void		ahd_calc_residual(struct ahd_softc *ahd,
					  struct scb *scb);
static void		ahd_clear_critical_section(struct ahd_softc *ahd);
static void		ahd_clear_intstat(struct ahd_softc *ahd);
static void		ahd_enable_coalescing(struct ahd_softc *ahd,
					      int enable);
static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
static void		ahd_freeze_devq(struct ahd_softc *ahd,
					struct scb *scb);
static void		ahd_handle_scb_status(struct ahd_softc *ahd,
					      struct scb *scb);
static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
static void		ahd_shutdown(void *arg);
static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
						     u_int timer,
						     u_int maxcmds,
						     u_int mincmds);
static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
static int		ahd_wait_seeprom(struct ahd_softc *ahd);
static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
				      int target, char channel, int lun,
				      u_int tag, role_t role);

static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);

/*************************** Interrupt Services *******************************/
static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
#ifdef AHD_TARGET_MODE
static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
#endif
static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
static void		ahd_handle_scsiint(struct ahd_softc *ahd,
				           u_int intstat);

/************************ Sequencer Execution Control *************************/
void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
	if (ahd->src_mode == src && ahd->dst_mode == dst)
		return;
#ifdef AHD_DEBUG
	if (ahd->src_mode == AHD_MODE_UNKNOWN
	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
		panic("Setting mode prior to saving it.\n");
	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
		       ahd_build_mode_state(ahd, src, dst));
#endif
	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
	ahd->src_mode = src;
	ahd->dst_mode = dst;
}

static void
ahd_update_modes(struct ahd_softc *ahd)
{
	ahd_mode_state mode_ptr;
	ahd_mode src;
	ahd_mode dst;

	mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
		printk("Reading mode 0x%x\n", mode_ptr);
#endif
	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
	ahd_known_modes(ahd, src, dst);
}

static void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
		 ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
		panic("%s:%s:%d: Mode assertion failed.\n",
		       ahd_name(ahd), file, line);
	}
#endif
}

#define AHD_ASSERT_MODES(ahd, source, dest) \
	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);

ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
	if (ahd->src_mode == AHD_MODE_UNKNOWN
	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
		ahd_update_modes(ahd);

	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}

void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
	ahd_mode src;
	ahd_mode dst;

	ahd_extract_mode_state(ahd, state, &src, &dst);
	ahd_set_modes(ahd, src, dst);
}

/*
 * Determine whether the sequencer has halted code execution.
 * Returns non-zero status if the sequencer is stopped.
 */
int
ahd_is_paused(struct ahd_softc *ahd)
{
	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}

/*
 * Request that the sequencer stop and wait, indefinitely, for it
 * to stop.  The sequencer will only acknowledge that it is paused
 * once it has reached an instruction boundary and PAUSEDIS is
 * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
 * for critical sections.
 */
void
ahd_pause(struct ahd_softc *ahd)
{
	ahd_outb(ahd, HCNTRL, ahd->pause);

	/*
	 * Since the sequencer can disable pausing in a critical section, we
	 * must loop until it actually stops.
	 */
	while (ahd_is_paused(ahd) == 0)
		;
}

/*
 * Allow the sequencer to continue program execution.
 * We check here to ensure that no additional interrupt
 * sources that would cause the sequencer to halt have been
 * asserted.  If, for example, a SCSI bus reset is detected
 * while we are fielding a different, pausing, interrupt type,
 * we don't want to release the sequencer before going back
 * into our interrupt handler and dealing with this new
 * condition.
 */
void
ahd_unpause(struct ahd_softc *ahd)
{
	/*
	 * Automatically restore our modes to those saved
	 * prior to the first change of the mode.
	 */
	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
			ahd_reset_cmds_pending(ahd);
		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
	}

	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
		ahd_outb(ahd, HCNTRL, ahd->unpause);

	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}

/*********************** Scatter Gather List Handling *************************/
void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
{
	scb->sg_count++;
	if (sizeof(dma_addr_t) > 4
	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
		struct ahd_dma64_seg *sg;

		sg = (struct ahd_dma64_seg *)sgptr;
		sg->addr = ahd_htole64(addr);
		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
		return (sg + 1);
	} else {
		struct ahd_dma_seg *sg;

		sg = (struct ahd_dma_seg *)sgptr;
		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
				    | (last ? AHD_DMA_LAST_SEG : 0));
		return (sg + 1);
	}
}

static void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
	/* XXX Handle target mode SCBs. */
	scb->crc_retry_count = 0;
	if ((scb->flags & SCB_PACKETIZED) != 0) {
		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
	} else {
		if (ahd_get_transfer_length(scb) & 0x01)
			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
		else
			scb->hscb->task_attribute = 0;
	}

	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
		    ahd_htole32(scb->sense_busaddr);
}

static void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
	/*
	 * Copy the first SG into the "current" data ponter area.
	 */
	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
		struct ahd_dma64_seg *sg;

		sg = (struct ahd_dma64_seg *)scb->sg_list;
		scb->hscb->dataptr = sg->addr;
		scb->hscb->datacnt = sg->len;
	} else {
		struct ahd_dma_seg *sg;
		uint32_t *dataptr_words;

		sg = (struct ahd_dma_seg *)scb->sg_list;
		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
		dataptr_words[0] = sg->addr;
		dataptr_words[1] = 0;
		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
			uint64_t high_addr;

			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
		}
		scb->hscb->datacnt = sg->len;
	}
	/*
	 * Note where to find the SG entries in bus space.
	 * We also set the full residual flag which the
	 * sequencer will clear as soon as a data transfer
	 * occurs.
	 */
	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}

static void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
	scb->hscb->dataptr = 0;
	scb->hscb->datacnt = 0;
}

/************************** Memory mapping routines ***************************/
static void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
	dma_addr_t sg_offset;

	/* sg_list_phys points to entry 1, not 0 */
	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
	return ((uint8_t *)scb->sg_list + sg_offset);
}

static uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
	dma_addr_t sg_offset;

	/* sg_list_phys points to entry 1, not 0 */
	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
		  - ahd_sg_size(ahd);

	return (scb->sg_list_busaddr + sg_offset);
}

static void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
			scb->hscb_map->dmamap,
			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
			/*len*/sizeof(*scb->hscb), op);
}

void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
	if (scb->sg_count == 0)
		return;

	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
			scb->sg_map->dmamap,
			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}

static void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
			scb->sense_map->dmamap,
			/*offset*/scb->sense_busaddr,
			/*len*/AHD_SENSE_BUFSIZE, op);
}

#ifdef AHD_TARGET_MODE
static uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
	return (((uint8_t *)&ahd->targetcmds[index])
	       - (uint8_t *)ahd->qoutfifo);
}
#endif

/*********************** Miscellaneous Support Functions ***********************/
/*
 * Return pointers to the transfer negotiation information
 * for the specified our_id/remote_id pair.
 */
struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
		    u_int remote_id, struct ahd_tmode_tstate **tstate)
{
	/*
	 * Transfer data structures are stored from the perspective
	 * of the target role.  Since the parameters for a connection
	 * in the initiator role to a given target are the same as
	 * when the roles are reversed, we pretend we are the target.
	 */
	if (channel == 'B')
		our_id += 8;
	*tstate = ahd->enabled_targets[our_id];
	return (&(*tstate)->transinfo[remote_id]);
}

uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
	/*
	 * Read high byte first as some registers increment
	 * or have other side effects when the low byte is
	 * read.
	 */
	uint16_t r = ahd_inb(ahd, port+1) << 8;
	return r | ahd_inb(ahd, port);
}

void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
	/*
	 * Write low byte first to accommodate registers
	 * such as PRGMCNT where the order maters.
	 */
	ahd_outb(ahd, port, value & 0xFF);
	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}

uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
	return ((ahd_inb(ahd, port))
	      | (ahd_inb(ahd, port+1) << 8)
	      | (ahd_inb(ahd, port+2) << 16)
	      | (ahd_inb(ahd, port+3) << 24));
}

void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
	ahd_outb(ahd, port, (value) & 0xFF);
	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}

uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
	return ((ahd_inb(ahd, port))
	      | (ahd_inb(ahd, port+1) << 8)
	      | (ahd_inb(ahd, port+2) << 16)
	      | (ahd_inb(ahd, port+3) << 24)
	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}

void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
	ahd_outb(ahd, port, value & 0xFF);
	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}

u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}

void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}

#if 0 /* unused */
static u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}
#endif

static void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}

#if 0 /* unused */
static u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
	return (ahd_inb(ahd, HESCB_QOFF));
}
#endif

static void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
	ahd_outb(ahd, HESCB_QOFF, value);
}

static u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
	u_int oldvalue;

	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
	return (oldvalue);
}

static void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	ahd_outw(ahd, SNSCB_QOFF, value);
}

#if 0 /* unused */
static u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	return (ahd_inb(ahd, SESCB_QOFF));
}
#endif

static void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	ahd_outb(ahd, SESCB_QOFF, value);
}

#if 0 /* unused */
static u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}
#endif

static void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}

u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
	u_int value;

	/*
	 * Workaround PCI-X Rev A. hardware bug.
	 * After a host read of SCB memory, the chip
	 * may become confused into thinking prefetch
	 * was required.  This starts the discard timer
	 * running and can cause an unexpected discard
	 * timer interrupt.  The work around is to read
	 * a normal register prior to the exhaustion of
	 * the discard timer.  The mode pointer register
	 * has no side effects and so serves well for
	 * this purpose.
	 *
	 * Razor #528
	 */
	value = ahd_inb(ahd, offset);
	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
		ahd_inb(ahd, MODE_PTR);
	return (value);
}

u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
	return (ahd_inb_scbram(ahd, offset)
	      | (ahd_inb_scbram(ahd, offset+1) << 8));
}

static uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
	return (ahd_inw_scbram(ahd, offset)
	      | (ahd_inw_scbram(ahd, offset+2) << 16));
}

static uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
	return (ahd_inl_scbram(ahd, offset)
	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}

struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
	struct scb* scb;

	if (tag >= AHD_SCB_MAX)
		return (NULL);
	scb = ahd->scb_data.scbindex[tag];
	if (scb != NULL)
		ahd_sync_scb(ahd, scb,
			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
	return (scb);
}

static void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
	struct	 hardware_scb *q_hscb;
	struct	 map_node *q_hscb_map;
	uint32_t saved_hscb_busaddr;

	/*
	 * Our queuing method is a bit tricky.  The card
	 * knows in advance which HSCB (by address) to download,
	 * and we can't disappoint it.  To achieve this, the next
	 * HSCB to download is saved off in ahd->next_queued_hscb.
	 * When we are called to queue "an arbitrary scb",
	 * we copy the contents of the incoming HSCB to the one
	 * the sequencer knows about, swap HSCB pointers and
	 * finally assign the SCB to the tag indexed location
	 * in the scb_array.  This makes sure that we can still
	 * locate the correct SCB by SCB_TAG.
	 */
	q_hscb = ahd->next_queued_hscb;
	q_hscb_map = ahd->next_queued_hscb_map;
	saved_hscb_busaddr = q_hscb->hscb_busaddr;
	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
	q_hscb->hscb_busaddr = saved_hscb_busaddr;
	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;

	/* Now swap HSCB pointers. */
	ahd->next_queued_hscb = scb->hscb;
	ahd->next_queued_hscb_map = scb->hscb_map;
	scb->hscb = q_hscb;
	scb->hscb_map = q_hscb_map;

	/* Now define the mapping from tag to SCB in the scbindex */
	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}

/*
 * Tell the sequencer about a new transaction to execute.
 */
void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
	ahd_swap_with_next_hscb(ahd, scb);

	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
		panic("Attempt to queue invalid SCB tag %x\n",
		      SCB_GET_TAG(scb));

	/*
	 * Keep a history of SCBs we've downloaded in the qinfifo.
	 */
	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
	ahd->qinfifonext++;

	if (scb->sg_count != 0)
		ahd_setup_data_scb(ahd, scb);
	else
		ahd_setup_noxfer_scb(ahd, scb);
	ahd_setup_scb_common(ahd, scb);

	/*
	 * Make sure our data is consistent from the
	 * perspective of the adapter.
	 */
	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
		uint64_t host_dataptr;

		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
		       ahd_name(ahd),
		       SCB_GET_TAG(scb), scb->hscb->scsiid,
		       ahd_le32toh(scb->hscb->hscb_busaddr),
		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
		       (u_int)(host_dataptr & 0xFFFFFFFF),
		       ahd_le32toh(scb->hscb->datacnt));
	}
#endif
	/* Tell the adapter about the newly queued SCB */
	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}

/************************** Interrupt Processing ******************************/
static void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
			/*offset*/0,
			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
}

static void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
	if ((ahd->flags & AHD_TARGETROLE) != 0) {
		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
				ahd->shared_data_map.dmamap,
				ahd_targetcmd_offset(ahd, 0),
				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
				op);
	}
#endif
}

/*
 * See if the firmware has posted any completed commands
 * into our in-core command complete fifos.
 */
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
static u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
	u_int retval;

	retval = 0;
	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
	  == ahd->qoutfifonext_valid_tag)
		retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
	if ((ahd->flags & AHD_TARGETROLE) != 0
	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
				ahd->shared_data_map.dmamap,
				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
				/*len*/sizeof(struct target_cmd),
				BUS_DMASYNC_POSTREAD);
		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
			retval |= AHD_RUN_TQINFIFO;
	}
#endif
	return (retval);
}

/*
 * Catch an interrupt from the adapter
 */
int
ahd_intr(struct ahd_softc *ahd)
{
	u_int	intstat;

	if ((ahd->pause & INTEN) == 0) {
		/*
		 * Our interrupt is not enabled on the chip
		 * and may be disabled for re-entrancy reasons,
		 * so just return.  This is likely just a shared
		 * interrupt.
		 */
		return (0);
	}

	/*
	 * Instead of directly reading the interrupt status register,
	 * infer the cause of the interrupt by checking our in-core
	 * completion queues.  This avoids a costly PCI bus read in
	 * most cases.
	 */
	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
		intstat = CMDCMPLT;
	else
		intstat = ahd_inb(ahd, INTSTAT);

	if ((intstat & INT_PEND) == 0)
		return (0);

	if (intstat & CMDCMPLT) {
		ahd_outb(ahd, CLRINT, CLRCMDINT);

		/*
		 * Ensure that the chip sees that we've cleared
		 * this interrupt before we walk the output fifo.
		 * Otherwise, we may, due to posted bus writes,
		 * clear the interrupt after we finish the scan,
		 * and after the sequencer has added new entries
		 * and asserted the interrupt again.
		 */
		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
			if (ahd_is_paused(ahd)) {
				/*
				 * Potentially lost SEQINT.
				 * If SEQINTCODE is non-zero,
				 * simulate the SEQINT.
				 */
				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
					intstat |= SEQINT;
			}
		} else {
			ahd_flush_device_writes(ahd);
		}
		ahd_run_qoutfifo(ahd);
		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
		ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
		if ((ahd->flags & AHD_TARGETROLE) != 0)
			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
	}

	/*
	 * Handle statuses that may invalidate our cached
	 * copy of INTSTAT separately.
	 */
	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
		/* Hot eject.  Do nothing */
	} else if (intstat & HWERRINT) {
		ahd_handle_hwerrint(ahd);
	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
		ahd->bus_intr(ahd);
	} else {

		if ((intstat & SEQINT) != 0)
			ahd_handle_seqint(ahd, intstat);

		if ((intstat & SCSIINT) != 0)
			ahd_handle_scsiint(ahd, intstat);
	}
	return (1);
}

/******************************** Private Inlines *****************************/
static inline void
ahd_assert_atn(struct ahd_softc *ahd)
{
	ahd_outb(ahd, SCSISIGO, ATNO);
}

/*
 * Determine if the current connection has a packetized
 * agreement.  This does not necessarily mean that we
 * are currently in a packetized transfer.  We could
 * just as easily be sending or receiving a message.
 */
static int
ahd_currently_packetized(struct ahd_softc *ahd)
{
	ahd_mode_state	 saved_modes;
	int		 packetized;

	saved_modes = ahd_save_modes(ahd);
	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
		/*
		 * The packetized bit refers to the last
		 * connection, not the current one.  Check
		 * for non-zero LQISTATE instead.
		 */
		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
		packetized = ahd_inb(ahd, LQISTATE) != 0;
	} else {
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
	}
	ahd_restore_modes(ahd, saved_modes);
	return (packetized);
}

static inline int
ahd_set_active_fifo(struct ahd_softc *ahd)
{
	u_int active_fifo;

	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
	switch (active_fifo) {
	case 0:
	case 1:
		ahd_set_modes(ahd, active_fifo, active_fifo);
		return (1);
	default:
		return (0);
	}
}

static inline void
ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
{
	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
}

/*
 * Determine whether the sequencer reported a residual
 * for this SCB/transaction.
 */
static inline void
ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
{
	uint32_t sgptr;

	sgptr = ahd_le32toh(scb->hscb->sgptr);
	if ((sgptr & SG_STATUS_VALID) != 0)
		ahd_calc_residual(ahd, scb);
}

static inline void
ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
{
	uint32_t sgptr;

	sgptr = ahd_le32toh(scb->hscb->sgptr);
	if ((sgptr & SG_STATUS_VALID) != 0)
		ahd_handle_scb_status(ahd, scb);
	else
		ahd_done(ahd, scb);
}


/************************* Sequencer Execution Control ************************/
/*
 * Restart the sequencer program from address zero
 */
static void
ahd_restart(struct ahd_softc *ahd)
{

	ahd_pause(ahd);

	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	/* No more pending messages */
	ahd_clear_msg_state(ahd);
	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
	ahd_outb(ahd, MSG_OUT, MSG_NOOP);	/* No message to send */
	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
	ahd_outb(ahd, SEQINTCTL, 0);
	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
	ahd_outb(ahd, SEQ_FLAGS, 0);
	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
	ahd_outb(ahd, SAVED_LUN, 0xFF);

	/*
	 * Ensure that the sequencer's idea of TQINPOS
	 * matches our own.  The sequencer increments TQINPOS
	 * only after it sees a DMA complete and a reset could
	 * occur before the increment leaving the kernel to believe
	 * the command arrived but the sequencer to not.
	 */
	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);

	/* Always allow reselection */
	ahd_outb(ahd, SCSISEQ1,
		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);

	/*
	 * Clear any pending sequencer interrupt.  It is no
	 * longer relevant since we're resetting the Program
	 * Counter.
	 */
	ahd_outb(ahd, CLRINT, CLRSEQINT);

	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
	ahd_unpause(ahd);
}

static void
ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
{
	ahd_mode_state	 saved_modes;

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
#endif
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, fifo, fifo);
	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
		ahd_outb(ahd, CCSGCTL, CCSGRESET);
	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
	ahd_outb(ahd, SG_STATE, 0);
	ahd_restore_modes(ahd, saved_modes);
}

/************************* Input/Output Queues ********************************/
/*
 * Flush and completed commands that are sitting in the command
 * complete queues down on the chip but have yet to be dma'ed back up.
 */
static void
ahd_flush_qoutfifo(struct ahd_softc *ahd)
{
	struct		scb *scb;
	ahd_mode_state	saved_modes;
	u_int		saved_scbptr;
	u_int		ccscbctl;
	u_int		scbid;
	u_int		next_scbid;

	saved_modes = ahd_save_modes(ahd);

	/*
	 * Flush the good status FIFO for completed packetized commands.
	 */
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	saved_scbptr = ahd_get_scbptr(ahd);
	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
		u_int fifo_mode;
		u_int i;
		
		scbid = ahd_inw(ahd, GSFIFO);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: Warning - GSFIFO SCB %d invalid\n",
			       ahd_name(ahd), scbid);
			continue;
		}
		/*
		 * Determine if this transaction is still active in
		 * any FIFO.  If it is, we must flush that FIFO to
		 * the host before completing the  command.
		 */
		fifo_mode = 0;
rescan_fifos:
		for (i = 0; i < 2; i++) {
			/* Toggle to the other mode. */
			fifo_mode ^= 1;
			ahd_set_modes(ahd, fifo_mode, fifo_mode);

			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
				continue;

			ahd_run_data_fifo(ahd, scb);

			/*
			 * Running this FIFO may cause a CFG4DATA for
			 * this same transaction to assert in the other
			 * FIFO or a new snapshot SAVEPTRS interrupt
			 * in this FIFO.  Even running a FIFO may not
			 * clear the transaction if we are still waiting
			 * for data to drain to the host. We must loop
			 * until the transaction is not active in either
			 * FIFO just to be sure.  Reset our loop counter
			 * so we will visit both FIFOs again before
			 * declaring this transaction finished.  We
			 * also delay a bit so that status has a chance
			 * to change before we look at this FIFO again.
			 */
			ahd_delay(200);
			goto rescan_fifos;
		}
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
		ahd_set_scbptr(ahd, scbid);
		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
		      & SG_LIST_NULL) != 0)) {
			u_int comp_head;

			/*
			 * The transfer completed with a residual.
			 * Place this SCB on the complete DMA list
			 * so that we update our in-core copy of the
			 * SCB before completing the command.
			 */
			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
			ahd_outb(ahd, SCB_SGPTR,
				 ahd_inb_scbram(ahd, SCB_SGPTR)
				 | SG_STATUS_VALID);
			ahd_outw(ahd, SCB_TAG, scbid);
			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
			if (SCBID_IS_NULL(comp_head)) {
				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
			} else {
				u_int tail;

				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
				ahd_set_scbptr(ahd, tail);
				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
				ahd_set_scbptr(ahd, scbid);
			}
		} else
			ahd_complete_scb(ahd, scb);
	}
	ahd_set_scbptr(ahd, saved_scbptr);

	/*
	 * Setup for command channel portion of flush.
	 */
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);

	/*
	 * Wait for any inprogress DMA to complete and clear DMA state
	 * if this is for an SCB in the qinfifo.
	 */
	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {

		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
			if ((ccscbctl & ARRDONE) != 0)
				break;
		} else if ((ccscbctl & CCSCBDONE) != 0)
			break;
		ahd_delay(200);
	}
	/*
	 * We leave the sequencer to cleanup in the case of DMA's to
	 * update the qoutfifo.  In all other cases (DMA's to the
	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
	 * we disable the DMA engine so that the sequencer will not
	 * attempt to handle the DMA completion.
	 */
	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));

	/*
	 * Complete any SCBs that just finished
	 * being DMA'ed into the qoutfifo.
	 */
	ahd_run_qoutfifo(ahd);

	saved_scbptr = ahd_get_scbptr(ahd);
	/*
	 * Manually update/complete any completed SCBs that are waiting to be
	 * DMA'ed back up to the host.
	 */
	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
	while (!SCBID_IS_NULL(scbid)) {
		uint8_t *hscb_ptr;
		u_int	 i;
		
		ahd_set_scbptr(ahd, scbid);
		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: Warning - DMA-up and complete "
			       "SCB %d invalid\n", ahd_name(ahd), scbid);
			continue;
		}
		hscb_ptr = (uint8_t *)scb->hscb;
		for (i = 0; i < sizeof(struct hardware_scb); i++)
			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);

		ahd_complete_scb(ahd, scb);
		scbid = next_scbid;
	}
	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);

	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
	while (!SCBID_IS_NULL(scbid)) {

		ahd_set_scbptr(ahd, scbid);
		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
			       ahd_name(ahd), scbid);
			continue;
		}

		ahd_complete_scb(ahd, scb);
		scbid = next_scbid;
	}
	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);

	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
	while (!SCBID_IS_NULL(scbid)) {

		ahd_set_scbptr(ahd, scbid);
		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: Warning - Complete SCB %d invalid\n",
			       ahd_name(ahd), scbid);
			continue;
		}

		ahd_complete_scb(ahd, scb);
		scbid = next_scbid;
	}
	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);

	/*
	 * Restore state.
	 */
	ahd_set_scbptr(ahd, saved_scbptr);
	ahd_restore_modes(ahd, saved_modes);
	ahd->flags |= AHD_UPDATE_PEND_CMDS;
}

/*
 * Determine if an SCB for a packetized transaction
 * is active in a FIFO.
 */
static int
ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
{

	/*
	 * The FIFO is only active for our transaction if
	 * the SCBPTR matches the SCB's ID and the firmware
	 * has installed a handler for the FIFO or we have
	 * a pending SAVEPTRS or CFG4DATA interrupt.
	 */
	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
		return (0);

	return (1);
}

/*
 * Run a data fifo to completion for a transaction we know
 * has completed across the SCSI bus (good status has been
 * received).  We are already set to the correct FIFO mode
 * on entry to this routine.
 *
 * This function attempts to operate exactly as the firmware
 * would when running this FIFO.  Care must be taken to update
 * this routine any time the firmware's FIFO algorithm is
 * changed.
 */
static void
ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
{
	u_int seqintsrc;

	seqintsrc = ahd_inb(ahd, SEQINTSRC);
	if ((seqintsrc & CFG4DATA) != 0) {
		uint32_t datacnt;
		uint32_t sgptr;

		/*
		 * Clear full residual flag.
		 */
		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
		ahd_outb(ahd, SCB_SGPTR, sgptr);

		/*
		 * Load datacnt and address.
		 */
		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
			sgptr |= LAST_SEG;
			ahd_outb(ahd, SG_STATE, 0);
		} else
			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);

		/*
		 * Initialize Residual Fields.
		 */
		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);

		/*
		 * Mark the SCB as having a FIFO in use.
		 */
		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);

		/*
		 * Install a "fake" handler for this FIFO.
		 */
		ahd_outw(ahd, LONGJMP_ADDR, 0);

		/*
		 * Notify the hardware that we have satisfied
		 * this sequencer interrupt.
		 */
		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
	} else if ((seqintsrc & SAVEPTRS) != 0) {
		uint32_t sgptr;
		uint32_t resid;

		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
			/*
			 * Snapshot Save Pointers.  All that
			 * is necessary to clear the snapshot
			 * is a CLRCHN.
			 */
			goto clrchn;
		}

		/*
		 * Disable S/G fetch so the DMA engine
		 * is available to future users.
		 */
		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
			ahd_outb(ahd, CCSGCTL, 0);
		ahd_outb(ahd, SG_STATE, 0);

		/*
		 * Flush the data FIFO.  Strickly only
		 * necessary for Rev A parts.
		 */
		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);

		/*
		 * Calculate residual.
		 */
		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
		resid = ahd_inl(ahd, SHCNT);
		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
			/*
			 * Must back up to the correct S/G element.
			 * Typically this just means resetting our
			 * low byte to the offset in the SG_CACHE,
			 * but if we wrapped, we have to correct
			 * the other bytes of the sgptr too.
			 */
			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
			 && (sgptr & 0x80) == 0)
				sgptr -= 0x100;
			sgptr &= ~0xFF;
			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
			       & SG_ADDR_MASK;
			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
				 sgptr | SG_LIST_NULL);
		}
		/*
		 * Save Pointers.
		 */
		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
		ahd_outl(ahd, SCB_DATACNT, resid);
		ahd_outl(ahd, SCB_SGPTR, sgptr);
		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
		ahd_outb(ahd, SEQIMODE,
			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
		/*
		 * If the data is to the SCSI bus, we are
		 * done, otherwise wait for FIFOEMP.
		 */
		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
			goto clrchn;
	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
		uint32_t sgptr;
		uint64_t data_addr;
		uint32_t data_len;
		u_int	 dfcntrl;

		/*
		 * Disable S/G fetch so the DMA engine
		 * is available to future users.  We won't
		 * be using the DMA engine to load segments.
		 */
		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
			ahd_outb(ahd, CCSGCTL, 0);
			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
		}

		/*
		 * Wait for the DMA engine to notice that the
		 * host transfer is enabled and that there is
		 * space in the S/G FIFO for new segments before
		 * loading more segments.
		 */
		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {

			/*
			 * Determine the offset of the next S/G
			 * element to load.
			 */
			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
			sgptr &= SG_PTR_MASK;
			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
				struct ahd_dma64_seg *sg;

				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
				data_addr = sg->addr;
				data_len = sg->len;
				sgptr += sizeof(*sg);
			} else {
				struct	ahd_dma_seg *sg;

				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
				data_addr <<= 8;
				data_addr |= sg->addr;
				data_len = sg->len;
				sgptr += sizeof(*sg);
			}

			/*
			 * Update residual information.
			 */
			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);

			/*
			 * Load the S/G.
			 */
			if (data_len & AHD_DMA_LAST_SEG) {
				sgptr |= LAST_SEG;
				ahd_outb(ahd, SG_STATE, 0);
			}
			ahd_outq(ahd, HADDR, data_addr);
			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);

			/*
			 * Advertise the segment to the hardware.
			 */
			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
				/*
				 * Use SCSIENWRDIS so that SCSIEN
				 * is never modified by this
				 * operation.
				 */
				dfcntrl |= SCSIENWRDIS;
			}
			ahd_outb(ahd, DFCNTRL, dfcntrl);
		}
	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {

		/*
		 * Transfer completed to the end of SG list
		 * and has flushed to the host.
		 */
		ahd_outb(ahd, SCB_SGPTR,
			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
		goto clrchn;
	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
clrchn:
		/*
		 * Clear any handler for this FIFO, decrement
		 * the FIFO use count for the SCB, and release
		 * the FIFO.
		 */
		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
	}
}

/*
 * Look for entries in the QoutFIFO that have completed.
 * The valid_tag completion field indicates the validity
 * of the entry - the valid value toggles each time through
 * the queue. We use the sg_status field in the completion
 * entry to avoid referencing the hscb if the completion
 * occurred with no errors and no residual.  sg_status is
 * a copy of the first byte (little endian) of the sgptr
 * hscb field.
 */
static void
ahd_run_qoutfifo(struct ahd_softc *ahd)
{
	struct ahd_completion *completion;
	struct scb *scb;
	u_int  scb_index;

	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
		panic("ahd_run_qoutfifo recursion");
	ahd->flags |= AHD_RUNNING_QOUTFIFO;
	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
	for (;;) {
		completion = &ahd->qoutfifo[ahd->qoutfifonext];

		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
			break;

		scb_index = ahd_le16toh(completion->tag);
		scb = ahd_lookup_scb(ahd, scb_index);
		if (scb == NULL) {
			printk("%s: WARNING no command for scb %d "
			       "(cmdcmplt)\nQOUTPOS = %d\n",
			       ahd_name(ahd), scb_index,
			       ahd->qoutfifonext);
			ahd_dump_card_state(ahd);
		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
			ahd_handle_scb_status(ahd, scb);
		} else {
			ahd_done(ahd, scb);
		}

		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
		if (ahd->qoutfifonext == 0)
			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
	}
	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
}

/************************* Interrupt Handling *********************************/
static void
ahd_handle_hwerrint(struct ahd_softc *ahd)
{
	/*
	 * Some catastrophic hardware error has occurred.
	 * Print it for the user and disable the controller.
	 */
	int i;
	int error;

	error = ahd_inb(ahd, ERROR);
	for (i = 0; i < num_errors; i++) {
		if ((error & ahd_hard_errors[i].errno) != 0)
			printk("%s: hwerrint, %s\n",
			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
	}

	ahd_dump_card_state(ahd);
	panic("BRKADRINT");

	/* Tell everyone that this HBA is no longer available */
	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
		       CAM_NO_HBA);

	/* Tell the system that this controller has gone away. */
	ahd_free(ahd);
}

#ifdef AHD_DEBUG
static void
ahd_dump_sglist(struct scb *scb)
{
	int i;

	if (scb->sg_count > 0) {
		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
			struct ahd_dma64_seg *sg_list;

			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
			for (i = 0; i < scb->sg_count; i++) {
				uint64_t addr;
				uint32_t len;

				addr = ahd_le64toh(sg_list[i].addr);
				len = ahd_le32toh(sg_list[i].len);
				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
				       i,
				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
				       (uint32_t)(addr & 0xFFFFFFFF),
				       sg_list[i].len & AHD_SG_LEN_MASK,
				       (sg_list[i].len & AHD_DMA_LAST_SEG)
				     ? " Last" : "");
			}
		} else {
			struct ahd_dma_seg *sg_list;

			sg_list = (struct ahd_dma_seg*)scb->sg_list;
			for (i = 0; i < scb->sg_count; i++) {
				uint32_t len;

				len = ahd_le32toh(sg_list[i].len);
				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
				       i,
				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
				       ahd_le32toh(sg_list[i].addr),
				       len & AHD_SG_LEN_MASK,
				       len & AHD_DMA_LAST_SEG ? " Last" : "");
			}
		}
	}
}
#endif  /*  AHD_DEBUG  */

static void
ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
{
	u_int seqintcode;

	/*
	 * Save the sequencer interrupt code and clear the SEQINT
	 * bit. We will unpause the sequencer, if appropriate,
	 * after servicing the request.
	 */
	seqintcode = ahd_inb(ahd, SEQINTCODE);
	ahd_outb(ahd, CLRINT, CLRSEQINT);
	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
		/*
		 * Unpause the sequencer and let it clear
		 * SEQINT by writing NO_SEQINT to it.  This
		 * will cause the sequencer to be paused again,
		 * which is the expected state of this routine.
		 */
		ahd_unpause(ahd);
		while (!ahd_is_paused(ahd))
			;
		ahd_outb(ahd, CLRINT, CLRSEQINT);
	}
	ahd_update_modes(ahd);
#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MISC) != 0)
		printk("%s: Handle Seqint Called for code %d\n",
		       ahd_name(ahd), seqintcode);
#endif
	switch (seqintcode) {
	case ENTERING_NONPACK:
	{
		struct	scb *scb;
		u_int	scbid;

		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			/*
			 * Somehow need to know if this
			 * is from a selection or reselection.
			 * From that, we can determine target
			 * ID so we at least have an I_T nexus.
			 */
		} else {
			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
			ahd_outb(ahd, SEQ_FLAGS, 0x0);
		}
		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
			/*
			 * Phase change after read stream with
			 * CRC error with P0 asserted on last
			 * packet.
			 */
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
				printk("%s: Assuming LQIPHASE_NLQ with "
				       "P0 assertion\n", ahd_name(ahd));
#endif
		}
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
			printk("%s: Entering NONPACK\n", ahd_name(ahd));
#endif
		break;
	}
	case INVALID_SEQINT:
		printk("%s: Invalid Sequencer interrupt occurred, "
		       "resetting channel.\n",
		       ahd_name(ahd));
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
			ahd_dump_card_state(ahd);
#endif
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
		break;
	case STATUS_OVERRUN:
	{
		struct	scb *scb;
		u_int	scbid;

		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb != NULL)
			ahd_print_path(ahd, scb);
		else
			printk("%s: ", ahd_name(ahd));
		printk("SCB %d Packetized Status Overrun", scbid);
		ahd_dump_card_state(ahd);
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
		break;
	}
	case CFG4ISTAT_INTR:
	{
		struct	scb *scb;
		u_int	scbid;

		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			ahd_dump_card_state(ahd);
			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
			panic("For safety");
		}
		ahd_outq(ahd, HADDR, scb->sense_busaddr);
		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
		ahd_outb(ahd, HCNT + 2, 0);
		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
		break;
	}
	case ILLEGAL_PHASE:
	{
		u_int bus_phase;

		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
		printk("%s: ILLEGAL_PHASE 0x%x\n",
		       ahd_name(ahd), bus_phase);

		switch (bus_phase) {
		case P_DATAOUT:
		case P_DATAIN:
		case P_DATAOUT_DT:
		case P_DATAIN_DT:
		case P_MESGOUT:
		case P_STATUS:
		case P_MESGIN:
			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
			break;
		case P_COMMAND:
		{
			struct	ahd_devinfo devinfo;
			struct	scb *scb;
			struct	ahd_initiator_tinfo *targ_info;
			struct	ahd_tmode_tstate *tstate;
			struct	ahd_transinfo *tinfo;
			u_int	scbid;

			/*
			 * If a target takes us into the command phase
			 * assume that it has been externally reset and
			 * has thus lost our previous packetized negotiation
			 * agreement.  Since we have not sent an identify
			 * message and may not have fully qualified the
			 * connection, we change our command to TUR, assert
			 * ATN and ABORT the task when we go to message in
			 * phase.  The OSM will see the REQUEUE_REQUEST
			 * status and retry the command.
			 */
			scbid = ahd_get_scbptr(ahd);
			scb = ahd_lookup_scb(ahd, scbid);
			if (scb == NULL) {
				printk("Invalid phase with no valid SCB.  "
				       "Resetting bus.\n");
				ahd_reset_channel(ahd, 'A',
						  /*Initiate Reset*/TRUE);
				break;
			}
			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
					    SCB_GET_TARGET(ahd, scb),
					    SCB_GET_LUN(scb),
					    SCB_GET_CHANNEL(ahd, scb),
					    ROLE_INITIATOR);
			targ_info = ahd_fetch_transinfo(ahd,
							devinfo.channel,
							devinfo.our_scsiid,
							devinfo.target,
							&tstate);
			tinfo = &targ_info->curr;
			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
					 /*offset*/0, /*ppr_options*/0,
					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
			/* Hand-craft TUR command */
			ahd_outb(ahd, SCB_CDB_STORE, 0);
			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
			ahd_outb(ahd, SCB_CDB_LEN, 6);
			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
			scb->hscb->control |= MK_MESSAGE;
			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
			ahd_outb(ahd, MSG_OUT, HOST_MSG);
			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
			/*
			 * The lun is 0, regardless of the SCB's lun
			 * as we have not sent an identify message.
			 */
			ahd_outb(ahd, SAVED_LUN, 0);
			ahd_outb(ahd, SEQ_FLAGS, 0);
			ahd_assert_atn(ahd);
			scb->flags &= ~SCB_PACKETIZED;
			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
			ahd_freeze_devq(ahd, scb);
			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
			ahd_freeze_scb(scb);

			/* Notify XPT */
			ahd_send_async(ahd, devinfo.channel, devinfo.target,
				       CAM_LUN_WILDCARD, AC_SENT_BDR);

			/*
			 * Allow the sequencer to continue with
			 * non-pack processing.
			 */
			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
				ahd_outb(ahd, CLRLQOINT1, 0);
			}
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
				ahd_print_path(ahd, scb);
				printk("Unexpected command phase from "
				       "packetized target\n");
			}
#endif
			break;
		}
		}
		break;
	}
	case CFG4OVERRUN:
	{
		struct	scb *scb;
		u_int	scb_index;
		
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
			       ahd_inb(ahd, MODE_PTR));
		}
#endif
		scb_index = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scb_index);
		if (scb == NULL) {
			/*
			 * Attempt to transfer to an SCB that is
			 * not outstanding.
			 */
			ahd_assert_atn(ahd);
			ahd_outb(ahd, MSG_OUT, HOST_MSG);
			ahd->msgout_buf[0] = MSG_ABORT_TASK;
			ahd->msgout_len = 1;
			ahd->msgout_index = 0;
			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
			/*
			 * Clear status received flag to prevent any
			 * attempt to complete this bogus SCB.
			 */
			ahd_outb(ahd, SCB_CONTROL,
				 ahd_inb_scbram(ahd, SCB_CONTROL)
				 & ~STATUS_RCVD);
		}
		break;
	}
	case DUMP_CARD_STATE:
	{
		ahd_dump_card_state(ahd);
		break;
	}
	case PDATA_REINIT:
	{
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
			       "SG_CACHE_SHADOW = 0x%x\n",
			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
			       ahd_inb(ahd, SG_CACHE_SHADOW));
		}
#endif
		ahd_reinitialize_dataptrs(ahd);
		break;
	}
	case HOST_MSG_LOOP:
	{
		struct ahd_devinfo devinfo;

		/*
		 * The sequencer has encountered a message phase
		 * that requires host assistance for completion.
		 * While handling the message phase(s), we will be
		 * notified by the sequencer after each byte is
		 * transferred so we can track bus phase changes.
		 *
		 * If this is the first time we've seen a HOST_MSG_LOOP
		 * interrupt, initialize the state of the host message
		 * loop.
		 */
		ahd_fetch_devinfo(ahd, &devinfo);
		if (ahd->msg_type == MSG_TYPE_NONE) {
			struct scb *scb;
			u_int scb_index;
			u_int bus_phase;

			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
			if (bus_phase != P_MESGIN
			 && bus_phase != P_MESGOUT) {
				printk("ahd_intr: HOST_MSG_LOOP bad "
				       "phase 0x%x\n", bus_phase);
				/*
				 * Probably transitioned to bus free before
				 * we got here.  Just punt the message.
				 */
				ahd_dump_card_state(ahd);
				ahd_clear_intstat(ahd);
				ahd_restart(ahd);
				return;
			}

			scb_index = ahd_get_scbptr(ahd);
			scb = ahd_lookup_scb(ahd, scb_index);
			if (devinfo.role == ROLE_INITIATOR) {
				if (bus_phase == P_MESGOUT)
					ahd_setup_initiator_msgout(ahd,
								   &devinfo,
								   scb);
				else {
					ahd->msg_type =
					    MSG_TYPE_INITIATOR_MSGIN;
					ahd->msgin_index = 0;
				}
			}
#ifdef AHD_TARGET_MODE
			else {
				if (bus_phase == P_MESGOUT) {
					ahd->msg_type =
					    MSG_TYPE_TARGET_MSGOUT;
					ahd->msgin_index = 0;
				}
				else 
					ahd_setup_target_msgin(ahd,
							       &devinfo,
							       scb);
			}
#endif
		}

		ahd_handle_message_phase(ahd);
		break;
	}
	case NO_MATCH:
	{
		/* Ensure we don't leave the selection hardware on */
		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);

		printk("%s:%c:%d: no active SCB for reconnecting "
		       "target - issuing BUS DEVICE RESET\n",
		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
		       "REG0 == 0x%x ACCUM = 0x%x\n",
		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
		       "SINDEX == 0x%x\n",
		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
		       ahd_find_busy_tcl(ahd,
					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
						   ahd_inb(ahd, SAVED_LUN))),
		       ahd_inw(ahd, SINDEX));
		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
		       "SCB_CONTROL == 0x%x\n",
		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
		       ahd_inb_scbram(ahd, SCB_LUN),
		       ahd_inb_scbram(ahd, SCB_CONTROL));
		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
		ahd_dump_card_state(ahd);
		ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
		ahd->msgout_len = 1;
		ahd->msgout_index = 0;
		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
		ahd_outb(ahd, MSG_OUT, HOST_MSG);
		ahd_assert_atn(ahd);
		break;
	}
	case PROTO_VIOLATION:
	{
		ahd_handle_proto_violation(ahd);
		break;
	}
	case IGN_WIDE_RES:
	{
		struct ahd_devinfo devinfo;

		ahd_fetch_devinfo(ahd, &devinfo);
		ahd_handle_ign_wide_residue(ahd, &devinfo);
		break;
	}
	case BAD_PHASE:
	{
		u_int lastphase;

		lastphase = ahd_inb(ahd, LASTPHASE);
		printk("%s:%c:%d: unknown scsi bus phase %x, "
		       "lastphase = 0x%x.  Attempting to continue\n",
		       ahd_name(ahd), 'A',
		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
		       lastphase, ahd_inb(ahd, SCSISIGI));
		break;
	}
	case MISSED_BUSFREE:
	{
		u_int lastphase;

		lastphase = ahd_inb(ahd, LASTPHASE);
		printk("%s:%c:%d: Missed busfree. "
		       "Lastphase = 0x%x, Curphase = 0x%x\n",
		       ahd_name(ahd), 'A',
		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
		       lastphase, ahd_inb(ahd, SCSISIGI));
		ahd_restart(ahd);
		return;
	}
	case DATA_OVERRUN:
	{
		/*
		 * When the sequencer detects an overrun, it
		 * places the controller in "BITBUCKET" mode
		 * and allows the target to complete its transfer.
		 * Unfortunately, none of the counters get updated
		 * when the controller is in this mode, so we have
		 * no way of knowing how large the overrun was.
		 */
		struct	scb *scb;
		u_int	scbindex;
#ifdef AHD_DEBUG
		u_int	lastphase;
#endif

		scbindex = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbindex);
#ifdef AHD_DEBUG
		lastphase = ahd_inb(ahd, LASTPHASE);
		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
			ahd_print_path(ahd, scb);
			printk("data overrun detected %s.  Tag == 0x%x.\n",
			       ahd_lookup_phase_entry(lastphase)->phasemsg,
			       SCB_GET_TAG(scb));
			ahd_print_path(ahd, scb);
			printk("%s seen Data Phase.  Length = %ld.  "
			       "NumSGs = %d.\n",
			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
			       ? "Have" : "Haven't",
			       ahd_get_transfer_length(scb), scb->sg_count);
			ahd_dump_sglist(scb);
		}
#endif

		/*
		 * Set this and it will take effect when the
		 * target does a command complete.
		 */
		ahd_freeze_devq(ahd, scb);
		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
		ahd_freeze_scb(scb);
		break;
	}
	case MKMSG_FAILED:
	{
		struct ahd_devinfo devinfo;
		struct scb *scb;
		u_int scbid;

		ahd_fetch_devinfo(ahd, &devinfo);
		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
		       ahd_name(ahd), devinfo.channel, devinfo.target,
		       devinfo.lun);
		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb != NULL
		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
			/*
			 * Ensure that we didn't put a second instance of this
			 * SCB into the QINFIFO.
			 */
			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
					   SCB_GET_CHANNEL(ahd, scb),
					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
					   ROLE_INITIATOR, /*status*/0,
					   SEARCH_REMOVE);
		ahd_outb(ahd, SCB_CONTROL,
			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
		break;
	}
	case TASKMGMT_FUNC_COMPLETE:
	{
		u_int	scbid;
		struct	scb *scb;

		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb != NULL) {
			u_int	   lun;
			u_int	   tag;
			cam_status error;

			ahd_print_path(ahd, scb);
			printk("Task Management Func 0x%x Complete\n",
			       scb->hscb->task_management);
			lun = CAM_LUN_WILDCARD;
			tag = SCB_LIST_NULL;

			switch (scb->hscb->task_management) {
			case SIU_TASKMGMT_ABORT_TASK:
				tag = SCB_GET_TAG(scb);
				/* fall through */
			case SIU_TASKMGMT_ABORT_TASK_SET:
			case SIU_TASKMGMT_CLEAR_TASK_SET:
				lun = scb->hscb->lun;
				error = CAM_REQ_ABORTED;
				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
					       'A', lun, tag, ROLE_INITIATOR,
					       error);
				break;
			case SIU_TASKMGMT_LUN_RESET:
				lun = scb->hscb->lun;
				/* fall through */
			case SIU_TASKMGMT_TARGET_RESET:
			{
				struct ahd_devinfo devinfo;

				ahd_scb_devinfo(ahd, &devinfo, scb);
				error = CAM_BDR_SENT;
				ahd_handle_devreset(ahd, &devinfo, lun,
						    CAM_BDR_SENT,
						    lun != CAM_LUN_WILDCARD
						    ? "Lun Reset"
						    : "Target Reset",
						    /*verbose_level*/0);
				break;
			}
			default:
				panic("Unexpected TaskMgmt Func\n");
				break;
			}
		}
		break;
	}
	case TASKMGMT_CMD_CMPLT_OKAY:
	{
		u_int	scbid;
		struct	scb *scb;

		/*
		 * An ABORT TASK TMF failed to be delivered before
		 * the targeted command completed normally.
		 */
		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb != NULL) {
			/*
			 * Remove the second instance of this SCB from
			 * the QINFIFO if it is still there.
                         */
			ahd_print_path(ahd, scb);
			printk("SCB completes before TMF\n");
			/*
			 * Handle losing the race.  Wait until any
			 * current selection completes.  We will then
			 * set the TMF back to zero in this SCB so that
			 * the sequencer doesn't bother to issue another
			 * sequencer interrupt for its completion.
			 */
			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
				;
			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
					   SCB_GET_CHANNEL(ahd, scb),  
					   SCB_GET_LUN(scb), SCB_GET_TAG(scb), 
					   ROLE_INITIATOR, /*status*/0,   
					   SEARCH_REMOVE);
		}
		break;
	}
	case TRACEPOINT0:
	case TRACEPOINT1:
	case TRACEPOINT2:
	case TRACEPOINT3:
		printk("%s: Tracepoint %d\n", ahd_name(ahd),
		       seqintcode - TRACEPOINT0);
		break;
	case NO_SEQINT:
		break;
	case SAW_HWERR:
		ahd_handle_hwerrint(ahd);
		break;
	default:
		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
		       seqintcode);
		break;
	}
	/*
	 *  The sequencer is paused immediately on
	 *  a SEQINT, so we should restart it when
	 *  we're done.
	 */
	ahd_unpause(ahd);
}

static void
ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
{
	struct scb	*scb;
	u_int		 status0;
	u_int		 status3;
	u_int		 status;
	u_int		 lqistat1;
	u_int		 lqostat0;
	u_int		 scbid;
	u_int		 busfreetime;

	ahd_update_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
	lqistat1 = ahd_inb(ahd, LQISTAT1);
	lqostat0 = ahd_inb(ahd, LQOSTAT0);
	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;

	/*
	 * Ignore external resets after a bus reset.
	 */
	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
		return;
	}

	/*
	 * Clear bus reset flag
	 */
	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;

	if ((status0 & (SELDI|SELDO)) != 0) {
		u_int simode0;

		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
		simode0 = ahd_inb(ahd, SIMODE0);
		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	}
	scbid = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scbid);
	if (scb != NULL
	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
		scb = NULL;

	if ((status0 & IOERR) != 0) {
		u_int now_lvd;

		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
		printk("%s: Transceiver State Has Changed to %s mode\n",
		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
		ahd_outb(ahd, CLRSINT0, CLRIOERR);
		/*
		 * A change in I/O mode is equivalent to a bus reset.
		 */
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
		ahd_pause(ahd);
		ahd_setup_iocell_workaround(ahd);
		ahd_unpause(ahd);
	} else if ((status0 & OVERRUN) != 0) {

		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
		       ahd_name(ahd));
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
	} else if ((status & SCSIRSTI) != 0) {

		printk("%s: Someone reset channel A\n", ahd_name(ahd));
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
	} else if ((status & SCSIPERR) != 0) {

		/* Make sure the sequencer is in a safe location. */
		ahd_clear_critical_section(ahd);

		ahd_handle_transmission_error(ahd);
	} else if (lqostat0 != 0) {

		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
		ahd_outb(ahd, CLRLQOINT0, lqostat0);
		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
			ahd_outb(ahd, CLRLQOINT1, 0);
	} else if ((status & SELTO) != 0) {
		/* Stop the selection */
		ahd_outb(ahd, SCSISEQ0, 0);

		/* Make sure the sequencer is in a safe location. */
		ahd_clear_critical_section(ahd);

		/* No more pending messages */
		ahd_clear_msg_state(ahd);

		/* Clear interrupt state */
		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);

		/*
		 * Although the driver does not care about the
		 * 'Selection in Progress' status bit, the busy
		 * LED does.  SELINGO is only cleared by a successful
		 * selection, so we must manually clear it to insure
		 * the LED turns off just incase no future successful
		 * selections occur (e.g. no devices on the bus).
		 */
		ahd_outb(ahd, CLRSINT0, CLRSELINGO);

		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: ahd_intr - referenced scb not "
			       "valid during SELTO scb(0x%x)\n",
			       ahd_name(ahd), scbid);
			ahd_dump_card_state(ahd);
		} else {
			struct ahd_devinfo devinfo;
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
				ahd_print_path(ahd, scb);
				printk("Saw Selection Timeout for SCB 0x%x\n",
				       scbid);
			}
#endif
			ahd_scb_devinfo(ahd, &devinfo, scb);
			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
			ahd_freeze_devq(ahd, scb);

			/*
			 * Cancel any pending transactions on the device
			 * now that it seems to be missing.  This will
			 * also revert us to async/narrow transfers until
			 * we can renegotiate with the device.
			 */
			ahd_handle_devreset(ahd, &devinfo,
					    CAM_LUN_WILDCARD,
					    CAM_SEL_TIMEOUT,
					    "Selection Timeout",
					    /*verbose_level*/1);
		}
		ahd_outb(ahd, CLRINT, CLRSCSIINT);
		ahd_iocell_first_selection(ahd);
		ahd_unpause(ahd);
	} else if ((status0 & (SELDI|SELDO)) != 0) {

		ahd_iocell_first_selection(ahd);
		ahd_unpause(ahd);
	} else if (status3 != 0) {
		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
		       ahd_name(ahd), status3);
		ahd_outb(ahd, CLRSINT3, status3);
	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {

		/* Make sure the sequencer is in a safe location. */
		ahd_clear_critical_section(ahd);

		ahd_handle_lqiphase_error(ahd, lqistat1);
	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
		/*
		 * This status can be delayed during some
		 * streaming operations.  The SCSIPHASE
		 * handler has already dealt with this case
		 * so just clear the error.
		 */
		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
	} else if ((status & BUSFREE) != 0
		|| (lqistat1 & LQOBUSFREE) != 0) {
		u_int lqostat1;
		int   restart;
		int   clear_fifo;
		int   packetized;
		u_int mode;

		/*
		 * Clear our selection hardware as soon as possible.
		 * We may have an entry in the waiting Q for this target,
		 * that is affected by this busfree and we don't want to
		 * go about selecting the target while we handle the event.
		 */
		ahd_outb(ahd, SCSISEQ0, 0);

		/* Make sure the sequencer is in a safe location. */
		ahd_clear_critical_section(ahd);

		/*
		 * Determine what we were up to at the time of
		 * the busfree.
		 */
		mode = AHD_MODE_SCSI;
		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
		lqostat1 = ahd_inb(ahd, LQOSTAT1);
		switch (busfreetime) {
		case BUSFREE_DFF0:
		case BUSFREE_DFF1:
		{
			mode = busfreetime == BUSFREE_DFF0
			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
			ahd_set_modes(ahd, mode, mode);
			scbid = ahd_get_scbptr(ahd);
			scb = ahd_lookup_scb(ahd, scbid);
			if (scb == NULL) {
				printk("%s: Invalid SCB %d in DFF%d "
				       "during unexpected busfree\n",
				       ahd_name(ahd), scbid, mode);
				packetized = 0;
			} else
				packetized = (scb->flags & SCB_PACKETIZED) != 0;
			clear_fifo = 1;
			break;
		}
		case BUSFREE_LQO:
			clear_fifo = 0;
			packetized = 1;
			break;
		default:
			clear_fifo = 0;
			packetized =  (lqostat1 & LQOBUSFREE) != 0;
			if (!packetized
			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
				/*
				 * Assume packetized if we are not
				 * on the bus in a non-packetized
				 * capacity and any pending selection
				 * was a packetized selection.
				 */
				packetized = 1;
			break;
		}

#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MISC) != 0)
			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
			       busfreetime);
#endif
		/*
		 * Busfrees that occur in non-packetized phases are
		 * handled by the nonpkt_busfree handler.
		 */
		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
		} else {
			packetized = 0;
			restart = ahd_handle_nonpkt_busfree(ahd);
		}
		/*
		 * Clear the busfree interrupt status.  The setting of
		 * the interrupt is a pulse, so in a perfect world, we
		 * would not need to muck with the ENBUSFREE logic.  This
		 * would ensure that if the bus moves on to another
		 * connection, busfree protection is still in force.  If
		 * BUSFREEREV is broken, however, we must manually clear
		 * the ENBUSFREE if the busfree occurred during a non-pack
		 * connection so that we don't get false positives during
		 * future, packetized, connections.
		 */
		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
		if (packetized == 0
		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
			ahd_outb(ahd, SIMODE1,
				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);

		if (clear_fifo)
			ahd_clear_fifo(ahd, mode);

		ahd_clear_msg_state(ahd);
		ahd_outb(ahd, CLRINT, CLRSCSIINT);
		if (restart) {
			ahd_restart(ahd);
		} else {
			ahd_unpause(ahd);
		}
	} else {
		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
		       ahd_name(ahd), status);
		ahd_dump_card_state(ahd);
		ahd_clear_intstat(ahd);
		ahd_unpause(ahd);
	}
}

static void
ahd_handle_transmission_error(struct ahd_softc *ahd)
{
	struct	scb *scb;
	u_int	scbid;
	u_int	lqistat1;
	u_int	lqistat2;
	u_int	msg_out;
	u_int	curphase;
	u_int	lastphase;
	u_int	perrdiag;
	u_int	cur_col;
	int	silent;

	scb = NULL;
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
	lqistat2 = ahd_inb(ahd, LQISTAT2);
	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
		u_int lqistate;

		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
		lqistate = ahd_inb(ahd, LQISTATE);
		if ((lqistate >= 0x1E && lqistate <= 0x24)
		 || (lqistate == 0x29)) {
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
				printk("%s: NLQCRC found via LQISTATE\n",
				       ahd_name(ahd));
			}
#endif
			lqistat1 |= LQICRCI_NLQ;
		}
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	}

	ahd_outb(ahd, CLRLQIINT1, lqistat1);
	lastphase = ahd_inb(ahd, LASTPHASE);
	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
	perrdiag = ahd_inb(ahd, PERRDIAG);
	msg_out = MSG_INITIATOR_DET_ERR;
	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
	
	/*
	 * Try to find the SCB associated with this error.
	 */
	silent = FALSE;
	if (lqistat1 == 0
	 || (lqistat1 & LQICRCI_NLQ) != 0) {
	 	if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
			ahd_set_active_fifo(ahd);
		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb != NULL && SCB_IS_SILENT(scb))
			silent = TRUE;
	}

	cur_col = 0;
	if (silent == FALSE) {
		printk("%s: Transmission error detected\n", ahd_name(ahd));
		ahd_lqistat1_print(lqistat1, &cur_col, 50);
		ahd_lastphase_print(lastphase, &cur_col, 50);
		ahd_scsisigi_print(curphase, &cur_col, 50);
		ahd_perrdiag_print(perrdiag, &cur_col, 50);
		printk("\n");
		ahd_dump_card_state(ahd);
	}

	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
		if (silent == FALSE) {
			printk("%s: Gross protocol error during incoming "
			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
			       ahd_name(ahd), lqistat1);
		}
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
		return;
	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
		/*
		 * A CRC error has been detected on an incoming LQ.
		 * The bus is currently hung on the last ACK.
		 * Hit LQIRETRY to release the last ack, and
		 * wait for the sequencer to determine that ATNO
		 * is asserted while in message out to take us
		 * to our host message loop.  No NONPACKREQ or
		 * LQIPHASE type errors will occur in this
		 * scenario.  After this first LQIRETRY, the LQI
		 * manager will be in ISELO where it will
		 * happily sit until another packet phase begins.
		 * Unexpected bus free detection is enabled
		 * through any phases that occur after we release
		 * this last ack until the LQI manager sees a
		 * packet phase.  This implies we may have to
		 * ignore a perfectly valid "unexected busfree"
		 * after our "initiator detected error" message is
		 * sent.  A busfree is the expected response after
		 * we tell the target that it's L_Q was corrupted.
		 * (SPI4R09 10.7.3.3.3)
		 */
		ahd_outb(ahd, LQCTL2, LQIRETRY);
		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
		/*
		 * We detected a CRC error in a NON-LQ packet.
		 * The hardware has varying behavior in this situation
		 * depending on whether this packet was part of a
		 * stream or not.
		 *
		 * PKT by PKT mode:
		 * The hardware has already acked the complete packet.
		 * If the target honors our outstanding ATN condition,
		 * we should be (or soon will be) in MSGOUT phase.
		 * This will trigger the LQIPHASE_LQ status bit as the
		 * hardware was expecting another LQ.  Unexpected
		 * busfree detection is enabled.  Once LQIPHASE_LQ is
		 * true (first entry into host message loop is much
		 * the same), we must clear LQIPHASE_LQ and hit
		 * LQIRETRY so the hardware is ready to handle
		 * a future LQ.  NONPACKREQ will not be asserted again
		 * once we hit LQIRETRY until another packet is
		 * processed.  The target may either go busfree
		 * or start another packet in response to our message.
		 *
		 * Read Streaming P0 asserted:
		 * If we raise ATN and the target completes the entire
		 * stream (P0 asserted during the last packet), the
		 * hardware will ack all data and return to the ISTART
		 * state.  When the target reponds to our ATN condition,
		 * LQIPHASE_LQ will be asserted.  We should respond to
		 * this with an LQIRETRY to prepare for any future
		 * packets.  NONPACKREQ will not be asserted again
		 * once we hit LQIRETRY until another packet is
		 * processed.  The target may either go busfree or
		 * start another packet in response to our message.
		 * Busfree detection is enabled.
		 *
		 * Read Streaming P0 not asserted:
		 * If we raise ATN and the target transitions to
		 * MSGOUT in or after a packet where P0 is not
		 * asserted, the hardware will assert LQIPHASE_NLQ.
		 * We should respond to the LQIPHASE_NLQ with an
		 * LQIRETRY.  Should the target stay in a non-pkt
		 * phase after we send our message, the hardware
		 * will assert LQIPHASE_LQ.  Recovery is then just as
		 * listed above for the read streaming with P0 asserted.
		 * Busfree detection is enabled.
		 */
		if (silent == FALSE)
			printk("LQICRC_NLQ\n");
		if (scb == NULL) {
			printk("%s: No SCB valid for LQICRC_NLQ.  "
			       "Resetting bus\n", ahd_name(ahd));
			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
			return;
		}
	} else if ((lqistat1 & LQIBADLQI) != 0) {
		printk("Need to handle BADLQI!\n");
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
		return;
	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
		if ((curphase & ~P_DATAIN_DT) != 0) {
			/* Ack the byte.  So we can continue. */
			if (silent == FALSE)
				printk("Acking %s to clear perror\n",
				    ahd_lookup_phase_entry(curphase)->phasemsg);
			ahd_inb(ahd, SCSIDAT);
		}
	
		if (curphase == P_MESGIN)
			msg_out = MSG_PARITY_ERROR;
	}

	/*
	 * We've set the hardware to assert ATN if we 
	 * get a parity error on "in" phases, so all we
	 * need to do is stuff the message buffer with
	 * the appropriate message.  "In" phases have set
	 * mesg_out to something other than MSG_NOP.
	 */
	ahd->send_msg_perror = msg_out;
	if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
		scb->flags |= SCB_TRANSMISSION_ERROR;
	ahd_outb(ahd, MSG_OUT, HOST_MSG);
	ahd_outb(ahd, CLRINT, CLRSCSIINT);
	ahd_unpause(ahd);
}

static void
ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
{
	/*
	 * Clear the sources of the interrupts.
	 */
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	ahd_outb(ahd, CLRLQIINT1, lqistat1);

	/*
	 * If the "illegal" phase changes were in response
	 * to our ATN to flag a CRC error, AND we ended up
	 * on packet boundaries, clear the error, restart the
	 * LQI manager as appropriate, and go on our merry
	 * way toward sending the message.  Otherwise, reset
	 * the bus to clear the error.
	 */
	ahd_set_active_fifo(ahd);
	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
		if ((lqistat1 & LQIPHASE_LQ) != 0) {
			printk("LQIRETRY for LQIPHASE_LQ\n");
			ahd_outb(ahd, LQCTL2, LQIRETRY);
		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
			printk("LQIRETRY for LQIPHASE_NLQ\n");
			ahd_outb(ahd, LQCTL2, LQIRETRY);
		} else
			panic("ahd_handle_lqiphase_error: No phase errors\n");
		ahd_dump_card_state(ahd);
		ahd_outb(ahd, CLRINT, CLRSCSIINT);
		ahd_unpause(ahd);
	} else {
		printk("Resetting Channel for LQI Phase error\n");
		ahd_dump_card_state(ahd);
		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
	}
}

/*
 * Packetized unexpected or expected busfree.
 * Entered in mode based on busfreetime.
 */
static int
ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
{
	u_int lqostat1;

	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
	lqostat1 = ahd_inb(ahd, LQOSTAT1);
	if ((lqostat1 & LQOBUSFREE) != 0) {
		struct scb *scb;
		u_int scbid;
		u_int saved_scbptr;
		u_int waiting_h;
		u_int waiting_t;
		u_int next;

		/*
		 * The LQO manager detected an unexpected busfree
		 * either:
		 *
		 * 1) During an outgoing LQ.
		 * 2) After an outgoing LQ but before the first
		 *    REQ of the command packet.
		 * 3) During an outgoing command packet.
		 *
		 * In all cases, CURRSCB is pointing to the
		 * SCB that encountered the failure.  Clean
		 * up the queue, clear SELDO and LQOBUSFREE,
		 * and allow the sequencer to restart the select
		 * out at its lesure.
		 */
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
		scbid = ahd_inw(ahd, CURRSCB);
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL)
		       panic("SCB not valid during LQOBUSFREE");
		/*
		 * Clear the status.
		 */
		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
			ahd_outb(ahd, CLRLQOINT1, 0);
		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
		ahd_flush_device_writes(ahd);
		ahd_outb(ahd, CLRSINT0, CLRSELDO);

		/*
		 * Return the LQO manager to its idle loop.  It will
		 * not do this automatically if the busfree occurs
		 * after the first REQ of either the LQ or command
		 * packet or between the LQ and command packet.
		 */
		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);

		/*
		 * Update the waiting for selection queue so
		 * we restart on the correct SCB.
		 */
		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
		saved_scbptr = ahd_get_scbptr(ahd);
		if (waiting_h != scbid) {

			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
			if (waiting_t == waiting_h) {
				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
				next = SCB_LIST_NULL;
			} else {
				ahd_set_scbptr(ahd, waiting_h);
				next = ahd_inw_scbram(ahd, SCB_NEXT2);
			}
			ahd_set_scbptr(ahd, scbid);
			ahd_outw(ahd, SCB_NEXT2, next);
		}
		ahd_set_scbptr(ahd, saved_scbptr);
		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
			if (SCB_IS_SILENT(scb) == FALSE) {
				ahd_print_path(ahd, scb);
				printk("Probable outgoing LQ CRC error.  "
				       "Retrying command\n");
			}
			scb->crc_retry_count++;
		} else {
			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
			ahd_freeze_scb(scb);
			ahd_freeze_devq(ahd, scb);
		}
		/* Return unpausing the sequencer. */
		return (0);
	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
		/*
		 * Ignore what are really parity errors that
		 * occur on the last REQ of a free running
		 * clock prior to going busfree.  Some drives
		 * do not properly active negate just before
		 * going busfree resulting in a parity glitch.
		 */
		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
			printk("%s: Parity on last REQ detected "
			       "during busfree phase.\n",
			       ahd_name(ahd));
#endif
		/* Return unpausing the sequencer. */
		return (0);
	}
	if (ahd->src_mode != AHD_MODE_SCSI) {
		u_int	scbid;
		struct	scb *scb;

		scbid = ahd_get_scbptr(ahd);
		scb = ahd_lookup_scb(ahd, scbid);
		ahd_print_path(ahd, scb);
		printk("Unexpected PKT busfree condition\n");
		ahd_dump_card_state(ahd);
		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);

		/* Return restarting the sequencer. */
		return (1);
	}
	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
	ahd_dump_card_state(ahd);
	/* Restart the sequencer. */
	return (1);
}

/*
 * Non-packetized unexpected or expected busfree.
 */
static int
ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
{
	struct	ahd_devinfo devinfo;
	struct	scb *scb;
	u_int	lastphase;
	u_int	saved_scsiid;
	u_int	saved_lun;
	u_int	target;
	u_int	initiator_role_id;
	u_int	scbid;
	u_int	ppr_busfree;
	int	printerror;

	/*
	 * Look at what phase we were last in.  If its message out,
	 * chances are pretty good that the busfree was in response
	 * to one of our abort requests.
	 */
	lastphase = ahd_inb(ahd, LASTPHASE);
	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
	saved_lun = ahd_inb(ahd, SAVED_LUN);
	target = SCSIID_TARGET(ahd, saved_scsiid);
	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
	ahd_compile_devinfo(&devinfo, initiator_role_id,
			    target, saved_lun, 'A', ROLE_INITIATOR);
	printerror = 1;

	scbid = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scbid);
	if (scb != NULL
	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
		scb = NULL;

	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
	if (lastphase == P_MESGOUT) {
		u_int tag;

		tag = SCB_LIST_NULL;
		if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
		 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
			int found;
			int sent_msg;

			if (scb == NULL) {
				ahd_print_devinfo(ahd, &devinfo);
				printk("Abort for unidentified "
				       "connection completed.\n");
				/* restart the sequencer. */
				return (1);
			}
			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
			ahd_print_path(ahd, scb);
			printk("SCB %d - Abort%s Completed.\n",
			       SCB_GET_TAG(scb),
			       sent_msg == MSG_ABORT_TAG ? "" : " Tag");

			if (sent_msg == MSG_ABORT_TAG)
				tag = SCB_GET_TAG(scb);

			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
				/*
				 * This abort is in response to an
				 * unexpected switch to command phase
				 * for a packetized connection.  Since
				 * the identify message was never sent,
				 * "saved lun" is 0.  We really want to
				 * abort only the SCB that encountered
				 * this error, which could have a different
				 * lun.  The SCB will be retried so the OS
				 * will see the UA after renegotiating to
				 * packetized.
				 */
				tag = SCB_GET_TAG(scb);
				saved_lun = scb->hscb->lun;
			}
			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
					       tag, ROLE_INITIATOR,
					       CAM_REQ_ABORTED);
			printk("found == 0x%x\n", found);
			printerror = 0;
		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
					MSG_BUS_DEV_RESET, TRUE)) {
#ifdef __FreeBSD__
			/*
			 * Don't mark the user's request for this BDR
			 * as completing with CAM_BDR_SENT.  CAM3
			 * specifies CAM_REQ_CMP.
			 */
			if (scb != NULL
			 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV
			 && ahd_match_scb(ahd, scb, target, 'A',
					  CAM_LUN_WILDCARD, SCB_LIST_NULL,
					  ROLE_INITIATOR))
				ahd_set_transaction_status(scb, CAM_REQ_CMP);
#endif
			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
					    CAM_BDR_SENT, "Bus Device Reset",
					    /*verbose_level*/0);
			printerror = 0;
		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
			&& ppr_busfree == 0) {
			struct ahd_initiator_tinfo *tinfo;
			struct ahd_tmode_tstate *tstate;

			/*
			 * PPR Rejected.
			 *
			 * If the previous negotiation was packetized,
			 * this could be because the device has been
			 * reset without our knowledge.  Force our
			 * current negotiation to async and retry the
			 * negotiation.  Otherwise retry the command
			 * with non-ppr negotiation.
			 */
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("PPR negotiation rejected busfree.\n");
#endif
			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
						    devinfo.our_scsiid,
						    devinfo.target, &tstate);
			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
				ahd_set_width(ahd, &devinfo,
					      MSG_EXT_WDTR_BUS_8_BIT,
					      AHD_TRANS_CUR,
					      /*paused*/TRUE);
				ahd_set_syncrate(ahd, &devinfo,
						/*period*/0, /*offset*/0,
						/*ppr_options*/0,
						AHD_TRANS_CUR,
						/*paused*/TRUE);
				/*
				 * The expect PPR busfree handler below
				 * will effect the retry and necessary
				 * abort.
				 */
			} else {
				tinfo->curr.transport_version = 2;
				tinfo->goal.transport_version = 2;
				tinfo->goal.ppr_options = 0;
				if (scb != NULL) {
					/*
					 * Remove any SCBs in the waiting
					 * for selection queue that may
					 * also be for this target so that
					 * command ordering is preserved.
					 */
					ahd_freeze_devq(ahd, scb);
					ahd_qinfifo_requeue_tail(ahd, scb);
				}
				printerror = 0;
			}
		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
			&& ppr_busfree == 0) {
			/*
			 * Negotiation Rejected.  Go-narrow and
			 * retry command.
			 */
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("WDTR negotiation rejected busfree.\n");
#endif
			ahd_set_width(ahd, &devinfo,
				      MSG_EXT_WDTR_BUS_8_BIT,
				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
				      /*paused*/TRUE);
			if (scb != NULL) {
				/*
				 * Remove any SCBs in the waiting for
				 * selection queue that may also be for
				 * this target so that command ordering
				 * is preserved.
				 */
				ahd_freeze_devq(ahd, scb);
				ahd_qinfifo_requeue_tail(ahd, scb);
			}
			printerror = 0;
		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
			&& ppr_busfree == 0) {
			/*
			 * Negotiation Rejected.  Go-async and
			 * retry command.
			 */
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("SDTR negotiation rejected busfree.\n");
#endif
			ahd_set_syncrate(ahd, &devinfo,
					/*period*/0, /*offset*/0,
					/*ppr_options*/0,
					AHD_TRANS_CUR|AHD_TRANS_GOAL,
					/*paused*/TRUE);
			if (scb != NULL) {
				/*
				 * Remove any SCBs in the waiting for
				 * selection queue that may also be for
				 * this target so that command ordering
				 * is preserved.
				 */
				ahd_freeze_devq(ahd, scb);
				ahd_qinfifo_requeue_tail(ahd, scb);
			}
			printerror = 0;
		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
			&& ahd_sent_msg(ahd, AHDMSG_1B,
					 MSG_INITIATOR_DET_ERR, TRUE)) {

#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("Expected IDE Busfree\n");
#endif
			printerror = 0;
		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
			&& ahd_sent_msg(ahd, AHDMSG_1B,
					MSG_MESSAGE_REJECT, TRUE)) {

#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("Expected QAS Reject Busfree\n");
#endif
			printerror = 0;
		}
	}

	/*
	 * The busfree required flag is honored at the end of
	 * the message phases.  We check it last in case we
	 * had to send some other message that caused a busfree.
	 */
	if (scb != NULL && printerror != 0
	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {

		ahd_freeze_devq(ahd, scb);
		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
		ahd_freeze_scb(scb);
		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
				       SCB_GET_CHANNEL(ahd, scb),
				       SCB_GET_LUN(scb), SCB_LIST_NULL,
				       ROLE_INITIATOR, CAM_REQ_ABORTED);
		} else {
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk("PPR Negotiation Busfree.\n");
#endif
			ahd_done(ahd, scb);
		}
		printerror = 0;
	}
	if (printerror != 0) {
		int aborted;

		aborted = 0;
		if (scb != NULL) {
			u_int tag;

			if ((scb->hscb->control & TAG_ENB) != 0)
				tag = SCB_GET_TAG(scb);
			else
				tag = SCB_LIST_NULL;
			ahd_print_path(ahd, scb);
			aborted = ahd_abort_scbs(ahd, target, 'A',
				       SCB_GET_LUN(scb), tag,
				       ROLE_INITIATOR,
				       CAM_UNEXP_BUSFREE);
		} else {
			/*
			 * We had not fully identified this connection,
			 * so we cannot abort anything.
			 */
			printk("%s: ", ahd_name(ahd));
		}
		printk("Unexpected busfree %s, %d SCBs aborted, "
		       "PRGMCNT == 0x%x\n",
		       ahd_lookup_phase_entry(lastphase)->phasemsg,
		       aborted,
		       ahd_inw(ahd, PRGMCNT));
		ahd_dump_card_state(ahd);
		if (lastphase != P_BUSFREE)
			ahd_force_renegotiation(ahd, &devinfo);
	}
	/* Always restart the sequencer. */
	return (1);
}

static void
ahd_handle_proto_violation(struct ahd_softc *ahd)
{
	struct	ahd_devinfo devinfo;
	struct	scb *scb;
	u_int	scbid;
	u_int	seq_flags;
	u_int	curphase;
	u_int	lastphase;
	int	found;

	ahd_fetch_devinfo(ahd, &devinfo);
	scbid = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scbid);
	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
	lastphase = ahd_inb(ahd, LASTPHASE);
	if ((seq_flags & NOT_IDENTIFIED) != 0) {

		/*
		 * The reconnecting target either did not send an
		 * identify message, or did, but we didn't find an SCB
		 * to match.
		 */
		ahd_print_devinfo(ahd, &devinfo);
		printk("Target did not send an IDENTIFY message. "
		       "LASTPHASE = 0x%x.\n", lastphase);
		scb = NULL;
	} else if (scb == NULL) {
		/*
		 * We don't seem to have an SCB active for this
		 * transaction.  Print an error and reset the bus.
		 */
		ahd_print_devinfo(ahd, &devinfo);
		printk("No SCB found during protocol violation\n");
		goto proto_violation_reset;
	} else {
		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
		if ((seq_flags & NO_CDB_SENT) != 0) {
			ahd_print_path(ahd, scb);
			printk("No or incomplete CDB sent to device.\n");
		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
			  & STATUS_RCVD) == 0) {
			/*
			 * The target never bothered to provide status to
			 * us prior to completing the command.  Since we don't
			 * know the disposition of this command, we must attempt
			 * to abort it.  Assert ATN and prepare to send an abort
			 * message.
			 */
			ahd_print_path(ahd, scb);
			printk("Completed command without status.\n");
		} else {
			ahd_print_path(ahd, scb);
			printk("Unknown protocol violation.\n");
			ahd_dump_card_state(ahd);
		}
	}
	if ((lastphase & ~P_DATAIN_DT) == 0
	 || lastphase == P_COMMAND) {
proto_violation_reset:
		/*
		 * Target either went directly to data
		 * phase or didn't respond to our ATN.
		 * The only safe thing to do is to blow
		 * it away with a bus reset.
		 */
		found = ahd_reset_channel(ahd, 'A', TRUE);
		printk("%s: Issued Channel %c Bus Reset. "
		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
	} else {
		/*
		 * Leave the selection hardware off in case
		 * this abort attempt will affect yet to
		 * be sent commands.
		 */
		ahd_outb(ahd, SCSISEQ0,
			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
		ahd_assert_atn(ahd);
		ahd_outb(ahd, MSG_OUT, HOST_MSG);
		if (scb == NULL) {
			ahd_print_devinfo(ahd, &devinfo);
			ahd->msgout_buf[0] = MSG_ABORT_TASK;
			ahd->msgout_len = 1;
			ahd->msgout_index = 0;
			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
		} else {
			ahd_print_path(ahd, scb);
			scb->flags |= SCB_ABORT;
		}
		printk("Protocol violation %s.  Attempting to abort.\n",
		       ahd_lookup_phase_entry(curphase)->phasemsg);
	}
}

/*
 * Force renegotiation to occur the next time we initiate
 * a command to the current device.
 */
static void
ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	struct	ahd_initiator_tinfo *targ_info;
	struct	ahd_tmode_tstate *tstate;

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
		ahd_print_devinfo(ahd, devinfo);
		printk("Forcing renegotiation\n");
	}
#endif
	targ_info = ahd_fetch_transinfo(ahd,
					devinfo->channel,
					devinfo->our_scsiid,
					devinfo->target,
					&tstate);
	ahd_update_neg_request(ahd, devinfo, tstate,
			       targ_info, AHD_NEG_IF_NON_ASYNC);
}

#define AHD_MAX_STEPS 2000
static void
ahd_clear_critical_section(struct ahd_softc *ahd)
{
	ahd_mode_state	saved_modes;
	int		stepping;
	int		steps;
	int		first_instr;
	u_int		simode0;
	u_int		simode1;
	u_int		simode3;
	u_int		lqimode0;
	u_int		lqimode1;
	u_int		lqomode0;
	u_int		lqomode1;

	if (ahd->num_critical_sections == 0)
		return;

	stepping = FALSE;
	steps = 0;
	first_instr = 0;
	simode0 = 0;
	simode1 = 0;
	simode3 = 0;
	lqimode0 = 0;
	lqimode1 = 0;
	lqomode0 = 0;
	lqomode1 = 0;
	saved_modes = ahd_save_modes(ahd);
	for (;;) {
		struct	cs *cs;
		u_int	seqaddr;
		u_int	i;

		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
		seqaddr = ahd_inw(ahd, CURADDR);

		cs = ahd->critical_sections;
		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
			
			if (cs->begin < seqaddr && cs->end >= seqaddr)
				break;
		}

		if (i == ahd->num_critical_sections)
			break;

		if (steps > AHD_MAX_STEPS) {
			printk("%s: Infinite loop in critical section\n"
			       "%s: First Instruction 0x%x now 0x%x\n",
			       ahd_name(ahd), ahd_name(ahd), first_instr,
			       seqaddr);
			ahd_dump_card_state(ahd);
			panic("critical section loop");
		}

		steps++;
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MISC) != 0)
			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
			       seqaddr);
#endif
		if (stepping == FALSE) {

			first_instr = seqaddr;
  			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
  			simode0 = ahd_inb(ahd, SIMODE0);
			simode3 = ahd_inb(ahd, SIMODE3);
			lqimode0 = ahd_inb(ahd, LQIMODE0);
			lqimode1 = ahd_inb(ahd, LQIMODE1);
			lqomode0 = ahd_inb(ahd, LQOMODE0);
			lqomode1 = ahd_inb(ahd, LQOMODE1);
			ahd_outb(ahd, SIMODE0, 0);
			ahd_outb(ahd, SIMODE3, 0);
			ahd_outb(ahd, LQIMODE0, 0);
			ahd_outb(ahd, LQIMODE1, 0);
			ahd_outb(ahd, LQOMODE0, 0);
			ahd_outb(ahd, LQOMODE1, 0);
			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
			simode1 = ahd_inb(ahd, SIMODE1);
			/*
			 * We don't clear ENBUSFREE.  Unfortunately
			 * we cannot re-enable busfree detection within
			 * the current connection, so we must leave it
			 * on while single stepping.
			 */
			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
			stepping = TRUE;
		}
		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
		ahd_outb(ahd, CLRINT, CLRSCSIINT);
		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
		ahd_outb(ahd, HCNTRL, ahd->unpause);
		while (!ahd_is_paused(ahd))
			ahd_delay(200);
		ahd_update_modes(ahd);
	}
	if (stepping) {
		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
		ahd_outb(ahd, SIMODE0, simode0);
		ahd_outb(ahd, SIMODE3, simode3);
		ahd_outb(ahd, LQIMODE0, lqimode0);
		ahd_outb(ahd, LQIMODE1, lqimode1);
		ahd_outb(ahd, LQOMODE0, lqomode0);
		ahd_outb(ahd, LQOMODE1, lqomode1);
		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
  		ahd_outb(ahd, SIMODE1, simode1);
		/*
		 * SCSIINT seems to glitch occasionally when
		 * the interrupt masks are restored.  Clear SCSIINT
		 * one more time so that only persistent errors
		 * are seen as a real interrupt.
		 */
		ahd_outb(ahd, CLRINT, CLRSCSIINT);
	}
	ahd_restore_modes(ahd, saved_modes);
}

/*
 * Clear any pending interrupt status.
 */
static void
ahd_clear_intstat(struct ahd_softc *ahd)
{
	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
	/* Clear any interrupt conditions this may have caused */
	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
				 |CLRLQOATNPKT|CLRLQOTCRC);
	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
		ahd_outb(ahd, CLRLQOINT0, 0);
		ahd_outb(ahd, CLRLQOINT1, 0);
	}
	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
			        |CLRIOERR|CLROVERRUN);
	ahd_outb(ahd, CLRINT, CLRSCSIINT);
}

/**************************** Debugging Routines ******************************/
#ifdef AHD_DEBUG
uint32_t ahd_debug = AHD_DEBUG_OPTS;
#endif

#if 0
void
ahd_print_scb(struct scb *scb)
{
	struct hardware_scb *hscb;
	int i;

	hscb = scb->hscb;
	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
	       (void *)scb,
	       hscb->control,
	       hscb->scsiid,
	       hscb->lun,
	       hscb->cdb_len);
	printk("Shared Data: ");
	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
		printk("%#02x", hscb->shared_data.idata.cdb[i]);
	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
	       ahd_le32toh(hscb->datacnt),
	       ahd_le32toh(hscb->sgptr),
	       SCB_GET_TAG(scb));
	ahd_dump_sglist(scb);
}
#endif  /*  0  */

/************************* Transfer Negotiation *******************************/
/*
 * Allocate per target mode instance (ID we respond to as a target)
 * transfer negotiation data structures.
 */
static struct ahd_tmode_tstate *
ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
{
	struct ahd_tmode_tstate *master_tstate;
	struct ahd_tmode_tstate *tstate;
	int i;

	master_tstate = ahd->enabled_targets[ahd->our_id];
	if (ahd->enabled_targets[scsi_id] != NULL
	 && ahd->enabled_targets[scsi_id] != master_tstate)
		panic("%s: ahd_alloc_tstate - Target already allocated",
		      ahd_name(ahd));
	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
	if (tstate == NULL)
		return (NULL);

	/*
	 * If we have allocated a master tstate, copy user settings from
	 * the master tstate (taken from SRAM or the EEPROM) for this
	 * channel, but reset our current and goal settings to async/narrow
	 * until an initiator talks to us.
	 */
	if (master_tstate != NULL) {
		memcpy(tstate, master_tstate, sizeof(*tstate));
		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
		for (i = 0; i < 16; i++) {
			memset(&tstate->transinfo[i].curr, 0,
			      sizeof(tstate->transinfo[i].curr));
			memset(&tstate->transinfo[i].goal, 0,
			      sizeof(tstate->transinfo[i].goal));
		}
	} else
		memset(tstate, 0, sizeof(*tstate));
	ahd->enabled_targets[scsi_id] = tstate;
	return (tstate);
}

#ifdef AHD_TARGET_MODE
/*
 * Free per target mode instance (ID we respond to as a target)
 * transfer negotiation data structures.
 */
static void
ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
{
	struct ahd_tmode_tstate *tstate;

	/*
	 * Don't clean up our "master" tstate.
	 * It has our default user settings.
	 */
	if (scsi_id == ahd->our_id
	 && force == FALSE)
		return;

	tstate = ahd->enabled_targets[scsi_id];
	if (tstate != NULL)
		kfree(tstate);
	ahd->enabled_targets[scsi_id] = NULL;
}
#endif

/*
 * Called when we have an active connection to a target on the bus,
 * this function finds the nearest period to the input period limited
 * by the capabilities of the bus connectivity of and sync settings for
 * the target.
 */
static void
ahd_devlimited_syncrate(struct ahd_softc *ahd,
			struct ahd_initiator_tinfo *tinfo,
			u_int *period, u_int *ppr_options, role_t role)
{
	struct	ahd_transinfo *transinfo;
	u_int	maxsync;

	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
		maxsync = AHD_SYNCRATE_PACED;
	} else {
		maxsync = AHD_SYNCRATE_ULTRA;
		/* Can't do DT related options on an SE bus */
		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
	}
	/*
	 * Never allow a value higher than our current goal
	 * period otherwise we may allow a target initiated
	 * negotiation to go above the limit as set by the
	 * user.  In the case of an initiator initiated
	 * sync negotiation, we limit based on the user
	 * setting.  This allows the system to still accept
	 * incoming negotiations even if target initiated
	 * negotiation is not performed.
	 */
	if (role == ROLE_TARGET)
		transinfo = &tinfo->user;
	else 
		transinfo = &tinfo->goal;
	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
	}
	if (transinfo->period == 0) {
		*period = 0;
		*ppr_options = 0;
	} else {
		*period = max(*period, (u_int)transinfo->period);
		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
	}
}

/*
 * Look up the valid period to SCSIRATE conversion in our table.
 * Return the period and offset that should be sent to the target
 * if this was the beginning of an SDTR.
 */
void
ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
		  u_int *ppr_options, u_int maxsync)
{
	if (*period < maxsync)
		*period = maxsync;

	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
	 && *period > AHD_SYNCRATE_MIN_DT)
		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
		
	if (*period > AHD_SYNCRATE_MIN)
		*period = 0;

	/* Honor PPR option conformance rules. */
	if (*period > AHD_SYNCRATE_PACED)
		*ppr_options &= ~MSG_EXT_PPR_RTI;

	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);

	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
		*ppr_options &= MSG_EXT_PPR_QAS_REQ;

	/* Skip all PACED only entries if IU is not available */
	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
	 && *period < AHD_SYNCRATE_DT)
		*period = AHD_SYNCRATE_DT;

	/* Skip all DT only entries if DT is not available */
	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
	 && *period < AHD_SYNCRATE_ULTRA2)
		*period = AHD_SYNCRATE_ULTRA2;
}

/*
 * Truncate the given synchronous offset to a value the
 * current adapter type and syncrate are capable of.
 */
static void
ahd_validate_offset(struct ahd_softc *ahd,
		    struct ahd_initiator_tinfo *tinfo,
		    u_int period, u_int *offset, int wide,
		    role_t role)
{
	u_int maxoffset;

	/* Limit offset to what we can do */
	if (period == 0)
		maxoffset = 0;
	else if (period <= AHD_SYNCRATE_PACED) {
		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
			maxoffset = MAX_OFFSET_PACED_BUG;
		else
			maxoffset = MAX_OFFSET_PACED;
	} else
		maxoffset = MAX_OFFSET_NON_PACED;
	*offset = min(*offset, maxoffset);
	if (tinfo != NULL) {
		if (role == ROLE_TARGET)
			*offset = min(*offset, (u_int)tinfo->user.offset);
		else
			*offset = min(*offset, (u_int)tinfo->goal.offset);
	}
}

/*
 * Truncate the given transfer width parameter to a value the
 * current adapter type is capable of.
 */
static void
ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
		   u_int *bus_width, role_t role)
{
	switch (*bus_width) {
	default:
		if (ahd->features & AHD_WIDE) {
			/* Respond Wide */
			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
			break;
		}
		/* FALLTHROUGH */
	case MSG_EXT_WDTR_BUS_8_BIT:
		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
		break;
	}
	if (tinfo != NULL) {
		if (role == ROLE_TARGET)
			*bus_width = min((u_int)tinfo->user.width, *bus_width);
		else
			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
	}
}

/*
 * Update the bitmask of targets for which the controller should
 * negotiate with at the next convenient opportunity.  This currently
 * means the next time we send the initial identify messages for
 * a new transaction.
 */
int
ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		       struct ahd_tmode_tstate *tstate,
		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
{
	u_int auto_negotiate_orig;

	auto_negotiate_orig = tstate->auto_negotiate;
	if (neg_type == AHD_NEG_ALWAYS) {
		/*
		 * Force our "current" settings to be
		 * unknown so that unless a bus reset
		 * occurs the need to renegotiate is
		 * recorded persistently.
		 */
		if ((ahd->features & AHD_WIDE) != 0)
			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
	}
	if (tinfo->curr.period != tinfo->goal.period
	 || tinfo->curr.width != tinfo->goal.width
	 || tinfo->curr.offset != tinfo->goal.offset
	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
	 || (neg_type == AHD_NEG_IF_NON_ASYNC
	  && (tinfo->goal.offset != 0
	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
	   || tinfo->goal.ppr_options != 0)))
		tstate->auto_negotiate |= devinfo->target_mask;
	else
		tstate->auto_negotiate &= ~devinfo->target_mask;

	return (auto_negotiate_orig != tstate->auto_negotiate);
}

/*
 * Update the user/goal/curr tables of synchronous negotiation
 * parameters as well as, in the case of a current or active update,
 * any data structures on the host controller.  In the case of an
 * active update, the specified target is currently talking to us on
 * the bus, so the transfer parameter update must take effect
 * immediately.
 */
void
ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		 u_int period, u_int offset, u_int ppr_options,
		 u_int type, int paused)
{
	struct	ahd_initiator_tinfo *tinfo;
	struct	ahd_tmode_tstate *tstate;
	u_int	old_period;
	u_int	old_offset;
	u_int	old_ppr;
	int	active;
	int	update_needed;

	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
	update_needed = 0;

	if (period == 0 || offset == 0) {
		period = 0;
		offset = 0;
	}

	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
				    devinfo->target, &tstate);

	if ((type & AHD_TRANS_USER) != 0) {
		tinfo->user.period = period;
		tinfo->user.offset = offset;
		tinfo->user.ppr_options = ppr_options;
	}

	if ((type & AHD_TRANS_GOAL) != 0) {
		tinfo->goal.period = period;
		tinfo->goal.offset = offset;
		tinfo->goal.ppr_options = ppr_options;
	}

	old_period = tinfo->curr.period;
	old_offset = tinfo->curr.offset;
	old_ppr	   = tinfo->curr.ppr_options;

	if ((type & AHD_TRANS_CUR) != 0
	 && (old_period != period
	  || old_offset != offset
	  || old_ppr != ppr_options)) {

		update_needed++;

		tinfo->curr.period = period;
		tinfo->curr.offset = offset;
		tinfo->curr.ppr_options = ppr_options;

		ahd_send_async(ahd, devinfo->channel, devinfo->target,
			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
		if (bootverbose) {
			if (offset != 0) {
				int options;

				printk("%s: target %d synchronous with "
				       "period = 0x%x, offset = 0x%x",
				       ahd_name(ahd), devinfo->target,
				       period, offset);
				options = 0;
				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
					printk("(RDSTRM");
					options++;
				}
				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
					printk("%s", options ? "|DT" : "(DT");
					options++;
				}
				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
					printk("%s", options ? "|IU" : "(IU");
					options++;
				}
				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
					printk("%s", options ? "|RTI" : "(RTI");
					options++;
				}
				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
					printk("%s", options ? "|QAS" : "(QAS");
					options++;
				}
				if (options != 0)
					printk(")\n");
				else
					printk("\n");
			} else {
				printk("%s: target %d using "
				       "asynchronous transfers%s\n",
				       ahd_name(ahd), devinfo->target,
				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
				     ?  "(QAS)" : "");
			}
		}
	}
	/*
	 * Always refresh the neg-table to handle the case of the
	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
	 * We will always renegotiate in that case if this is a
	 * packetized request.  Also manage the busfree expected flag
	 * from this common routine so that we catch changes due to
	 * WDTR or SDTR messages.
	 */
	if ((type & AHD_TRANS_CUR) != 0) {
		if (!paused)
			ahd_pause(ahd);
		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
		if (!paused)
			ahd_unpause(ahd);
		if (ahd->msg_type != MSG_TYPE_NONE) {
			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
#ifdef AHD_DEBUG
				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
					ahd_print_devinfo(ahd, devinfo);
					printk("Expecting IU Change busfree\n");
				}
#endif
				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
					       |  MSG_FLAG_IU_REQ_CHANGED;
			}
			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
#ifdef AHD_DEBUG
				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
					printk("PPR with IU_REQ outstanding\n");
#endif
				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
			}
		}
	}

	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
						tinfo, AHD_NEG_TO_GOAL);

	if (update_needed && active)
		ahd_update_pending_scbs(ahd);
}

/*
 * Update the user/goal/curr tables of wide negotiation
 * parameters as well as, in the case of a current or active update,
 * any data structures on the host controller.  In the case of an
 * active update, the specified target is currently talking to us on
 * the bus, so the transfer parameter update must take effect
 * immediately.
 */
void
ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
	      u_int width, u_int type, int paused)
{
	struct	ahd_initiator_tinfo *tinfo;
	struct	ahd_tmode_tstate *tstate;
	u_int	oldwidth;
	int	active;
	int	update_needed;

	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
	update_needed = 0;
	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
				    devinfo->target, &tstate);

	if ((type & AHD_TRANS_USER) != 0)
		tinfo->user.width = width;

	if ((type & AHD_TRANS_GOAL) != 0)
		tinfo->goal.width = width;

	oldwidth = tinfo->curr.width;
	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {

		update_needed++;

		tinfo->curr.width = width;
		ahd_send_async(ahd, devinfo->channel, devinfo->target,
			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
		if (bootverbose) {
			printk("%s: target %d using %dbit transfers\n",
			       ahd_name(ahd), devinfo->target,
			       8 * (0x01 << width));
		}
	}

	if ((type & AHD_TRANS_CUR) != 0) {
		if (!paused)
			ahd_pause(ahd);
		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
		if (!paused)
			ahd_unpause(ahd);
	}

	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
						tinfo, AHD_NEG_TO_GOAL);
	if (update_needed && active)
		ahd_update_pending_scbs(ahd);

}

/*
 * Update the current state of tagged queuing for a given target.
 */
static void
ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
{
	struct scsi_device *sdev = cmd->device;

	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
	ahd_send_async(ahd, devinfo->channel, devinfo->target,
		       devinfo->lun, AC_TRANSFER_NEG);
}

static void
ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		     struct ahd_transinfo *tinfo)
{
	ahd_mode_state	saved_modes;
	u_int		period;
	u_int		ppr_opts;
	u_int		con_opts;
	u_int		offset;
	u_int		saved_negoaddr;
	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
	ahd_outb(ahd, NEGOADDR, devinfo->target);
	period = tinfo->period;
	offset = tinfo->offset;
	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts)); 
	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
	con_opts = 0;
	if (period == 0)
		period = AHD_SYNCRATE_ASYNC;
	if (period == AHD_SYNCRATE_160) {

		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
			/*
			 * When the SPI4 spec was finalized, PACE transfers
			 * was not made a configurable option in the PPR
			 * message.  Instead it is assumed to be enabled for
			 * any syncrate faster than 80MHz.  Nevertheless,
			 * Harpoon2A4 allows this to be configurable.
			 *
			 * Harpoon2A4 also assumes at most 2 data bytes per
			 * negotiated REQ/ACK offset.  Paced transfers take
			 * 4, so we must adjust our offset.
			 */
			ppr_opts |= PPROPT_PACE;
			offset *= 2;

			/*
			 * Harpoon2A assumed that there would be a
			 * fallback rate between 160MHz and 80MHz,
			 * so 7 is used as the period factor rather
			 * than 8 for 160MHz.
			 */
			period = AHD_SYNCRATE_REVA_160;
		}
		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
			    ~AHD_PRECOMP_MASK;
	} else {
		/*
		 * Precomp should be disabled for non-paced transfers.
		 */
		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;

		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
			/*
			 * Slow down our CRC interval to be
			 * compatible with non-packetized
			 * U160 devices that can't handle a
			 * CRC at full speed.
			 */
			con_opts |= ENSLOWCRC;
		}

		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
			/*
			 * On H2A4, revert to a slower slewrate
			 * on non-paced transfers.
			 */
			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
			    ~AHD_SLEWRATE_MASK;
		}
	}

	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);

	ahd_outb(ahd, NEGPERIOD, period);
	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
	ahd_outb(ahd, NEGOFFSET, offset);

	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
		con_opts |= WIDEXFER;

	/*
	 * Slow down our CRC interval to be
	 * compatible with packetized U320 devices
	 * that can't handle a CRC at full speed
	 */
	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
		con_opts |= ENSLOWCRC;
	}

	/*
	 * During packetized transfers, the target will
	 * give us the opportunity to send command packets
	 * without us asserting attention.
	 */
	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
		con_opts |= ENAUTOATNO;
	ahd_outb(ahd, NEGCONOPTS, con_opts);
	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
	ahd_restore_modes(ahd, saved_modes);
}

/*
 * When the transfer settings for a connection change, setup for
 * negotiation in pending SCBs to effect the change as quickly as
 * possible.  We also cancel any negotiations that are scheduled
 * for inflight SCBs that have not been started yet.
 */
static void
ahd_update_pending_scbs(struct ahd_softc *ahd)
{
	struct		scb *pending_scb;
	int		pending_scb_count;
	int		paused;
	u_int		saved_scbptr;
	ahd_mode_state	saved_modes;

	/*
	 * Traverse the pending SCB list and ensure that all of the
	 * SCBs there have the proper settings.  We can only safely
	 * clear the negotiation required flag (setting requires the
	 * execution queue to be modified) and this is only possible
	 * if we are not already attempting to select out for this
	 * SCB.  For this reason, all callers only call this routine
	 * if we are changing the negotiation settings for the currently
	 * active transaction on the bus.
	 */
	pending_scb_count = 0;
	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
		struct ahd_devinfo devinfo;
		struct ahd_initiator_tinfo *tinfo;
		struct ahd_tmode_tstate *tstate;

		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
		tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
					    devinfo.our_scsiid,
					    devinfo.target, &tstate);
		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
			pending_scb->hscb->control &= ~MK_MESSAGE;
		}
		ahd_sync_scb(ahd, pending_scb,
			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
		pending_scb_count++;
	}

	if (pending_scb_count == 0)
		return;

	if (ahd_is_paused(ahd)) {
		paused = 1;
	} else {
		paused = 0;
		ahd_pause(ahd);
	}

	/*
	 * Force the sequencer to reinitialize the selection for
	 * the command at the head of the execution queue if it
	 * has already been setup.  The negotiation changes may
	 * effect whether we select-out with ATN.  It is only
	 * safe to clear ENSELO when the bus is not free and no
	 * selection is in progres or completed.
	 */
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
	saved_scbptr = ahd_get_scbptr(ahd);
	/* Ensure that the hscbs down on the card match the new information */
	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
		u_int	scb_tag;
		u_int	control;

		scb_tag = SCB_GET_TAG(pending_scb);
		ahd_set_scbptr(ahd, scb_tag);
		control = ahd_inb_scbram(ahd, SCB_CONTROL);
		control &= ~MK_MESSAGE;
		control |= pending_scb->hscb->control & MK_MESSAGE;
		ahd_outb(ahd, SCB_CONTROL, control);
	}
	ahd_set_scbptr(ahd, saved_scbptr);
	ahd_restore_modes(ahd, saved_modes);

	if (paused == 0)
		ahd_unpause(ahd);
}

/**************************** Pathing Information *****************************/
static void
ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	ahd_mode_state	saved_modes;
	u_int		saved_scsiid;
	role_t		role;
	int		our_id;

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	if (ahd_inb(ahd, SSTAT0) & TARGET)
		role = ROLE_TARGET;
	else
		role = ROLE_INITIATOR;

	if (role == ROLE_TARGET
	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
		/* We were selected, so pull our id from TARGIDIN */
		our_id = ahd_inb(ahd, TARGIDIN) & OID;
	} else if (role == ROLE_TARGET)
		our_id = ahd_inb(ahd, TOWNID);
	else
		our_id = ahd_inb(ahd, IOWNID);

	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
	ahd_compile_devinfo(devinfo,
			    our_id,
			    SCSIID_TARGET(ahd, saved_scsiid),
			    ahd_inb(ahd, SAVED_LUN),
			    SCSIID_CHANNEL(ahd, saved_scsiid),
			    role);
	ahd_restore_modes(ahd, saved_modes);
}

void
ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
	       devinfo->target, devinfo->lun);
}

static const struct ahd_phase_table_entry*
ahd_lookup_phase_entry(int phase)
{
	const struct ahd_phase_table_entry *entry;
	const struct ahd_phase_table_entry *last_entry;

	/*
	 * num_phases doesn't include the default entry which
	 * will be returned if the phase doesn't match.
	 */
	last_entry = &ahd_phase_table[num_phases];
	for (entry = ahd_phase_table; entry < last_entry; entry++) {
		if (phase == entry->phase)
			break;
	}
	return (entry);
}

void
ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
		    u_int lun, char channel, role_t role)
{
	devinfo->our_scsiid = our_id;
	devinfo->target = target;
	devinfo->lun = lun;
	devinfo->target_offset = target;
	devinfo->channel = channel;
	devinfo->role = role;
	if (channel == 'B')
		devinfo->target_offset += 8;
	devinfo->target_mask = (0x01 << devinfo->target_offset);
}

static void
ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		struct scb *scb)
{
	role_t	role;
	int	our_id;

	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
	role = ROLE_INITIATOR;
	if ((scb->hscb->control & TARGET_SCB) != 0)
		role = ROLE_TARGET;
	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
}


/************************ Message Phase Processing ****************************/
/*
 * When an initiator transaction with the MK_MESSAGE flag either reconnects
 * or enters the initial message out phase, we are interrupted.  Fill our
 * outgoing message buffer with the appropriate message and beging handing
 * the message phase(s) manually.
 */
static void
ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
			   struct scb *scb)
{
	/*
	 * To facilitate adding multiple messages together,
	 * each routine should increment the index and len
	 * variables instead of setting them explicitly.
	 */
	ahd->msgout_index = 0;
	ahd->msgout_len = 0;

	if (ahd_currently_packetized(ahd))
		ahd->msg_flags |= MSG_FLAG_PACKETIZED;

	if (ahd->send_msg_perror
	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
		ahd->msgout_len++;
		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
			printk("Setting up for Parity Error delivery\n");
#endif
		return;
	} else if (scb == NULL) {
		printk("%s: WARNING. No pending message for "
		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
		ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
		ahd->msgout_len++;
		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
		return;
	}

	if ((scb->flags & SCB_DEVICE_RESET) == 0
	 && (scb->flags & SCB_PACKETIZED) == 0
	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
		u_int identify_msg;

		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
		if ((scb->hscb->control & DISCENB) != 0)
			identify_msg |= MSG_IDENTIFY_DISCFLAG;
		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
		ahd->msgout_len++;

		if ((scb->hscb->control & TAG_ENB) != 0) {
			ahd->msgout_buf[ahd->msgout_index++] =
			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
			ahd->msgout_len += 2;
		}
	}

	if (scb->flags & SCB_DEVICE_RESET) {
		ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
		ahd->msgout_len++;
		ahd_print_path(ahd, scb);
		printk("Bus Device Reset Message Sent\n");
		/*
		 * Clear our selection hardware in advance of
		 * the busfree.  We may have an entry in the waiting
		 * Q for this target, and we don't want to go about
		 * selecting while we handle the busfree and blow it
		 * away.
		 */
		ahd_outb(ahd, SCSISEQ0, 0);
	} else if ((scb->flags & SCB_ABORT) != 0) {

		if ((scb->hscb->control & TAG_ENB) != 0) {
			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
		} else {
			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
		}
		ahd->msgout_len++;
		ahd_print_path(ahd, scb);
		printk("Abort%s Message Sent\n",
		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
		/*
		 * Clear our selection hardware in advance of
		 * the busfree.  We may have an entry in the waiting
		 * Q for this target, and we don't want to go about
		 * selecting while we handle the busfree and blow it
		 * away.
		 */
		ahd_outb(ahd, SCSISEQ0, 0);
	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
		ahd_build_transfer_msg(ahd, devinfo);
		/*
		 * Clear our selection hardware in advance of potential
		 * PPR IU status change busfree.  We may have an entry in
		 * the waiting Q for this target, and we don't want to go
		 * about selecting while we handle the busfree and blow
		 * it away.
		 */
		ahd_outb(ahd, SCSISEQ0, 0);
	} else {
		printk("ahd_intr: AWAITING_MSG for an SCB that "
		       "does not have a waiting message\n");
		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
		       devinfo->target_mask);
		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
		      scb->flags);
	}

	/*
	 * Clear the MK_MESSAGE flag from the SCB so we aren't
	 * asked to send this message again.
	 */
	ahd_outb(ahd, SCB_CONTROL,
		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
	scb->hscb->control &= ~MK_MESSAGE;
	ahd->msgout_index = 0;
	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
}

/*
 * Build an appropriate transfer negotiation message for the
 * currently active target.
 */
static void
ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	/*
	 * We need to initiate transfer negotiations.
	 * If our current and goal settings are identical,
	 * we want to renegotiate due to a check condition.
	 */
	struct	ahd_initiator_tinfo *tinfo;
	struct	ahd_tmode_tstate *tstate;
	int	dowide;
	int	dosync;
	int	doppr;
	u_int	period;
	u_int	ppr_options;
	u_int	offset;

	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
				    devinfo->target, &tstate);
	/*
	 * Filter our period based on the current connection.
	 * If we can't perform DT transfers on this segment (not in LVD
	 * mode for instance), then our decision to issue a PPR message
	 * may change.
	 */
	period = tinfo->goal.period;
	offset = tinfo->goal.offset;
	ppr_options = tinfo->goal.ppr_options;
	/* Target initiated PPR is not allowed in the SCSI spec */
	if (devinfo->role == ROLE_TARGET)
		ppr_options = 0;
	ahd_devlimited_syncrate(ahd, tinfo, &period,
				&ppr_options, devinfo->role);
	dowide = tinfo->curr.width != tinfo->goal.width;
	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
	/*
	 * Only use PPR if we have options that need it, even if the device
	 * claims to support it.  There might be an expander in the way
	 * that doesn't.
	 */
	doppr = ppr_options != 0;

	if (!dowide && !dosync && !doppr) {
		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
		dosync = tinfo->goal.offset != 0;
	}

	if (!dowide && !dosync && !doppr) {
		/*
		 * Force async with a WDTR message if we have a wide bus,
		 * or just issue an SDTR with a 0 offset.
		 */
		if ((ahd->features & AHD_WIDE) != 0)
			dowide = 1;
		else
			dosync = 1;

		if (bootverbose) {
			ahd_print_devinfo(ahd, devinfo);
			printk("Ensuring async\n");
		}
	}
	/* Target initiated PPR is not allowed in the SCSI spec */
	if (devinfo->role == ROLE_TARGET)
		doppr = 0;

	/*
	 * Both the PPR message and SDTR message require the
	 * goal syncrate to be limited to what the target device
	 * is capable of handling (based on whether an LVD->SE
	 * expander is on the bus), so combine these two cases.
	 * Regardless, guarantee that if we are using WDTR and SDTR
	 * messages that WDTR comes first.
	 */
	if (doppr || (dosync && !dowide)) {

		offset = tinfo->goal.offset;
		ahd_validate_offset(ahd, tinfo, period, &offset,
				    doppr ? tinfo->goal.width
					  : tinfo->curr.width,
				    devinfo->role);
		if (doppr) {
			ahd_construct_ppr(ahd, devinfo, period, offset,
					  tinfo->goal.width, ppr_options);
		} else {
			ahd_construct_sdtr(ahd, devinfo, period, offset);
		}
	} else {
		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
	}
}

/*
 * Build a synchronous negotiation message in our message
 * buffer based on the input parameters.
 */
static void
ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		   u_int period, u_int offset)
{
	if (offset == 0)
		period = AHD_ASYNC_XFER_PERIOD;
	ahd->msgout_index += spi_populate_sync_msg(
			ahd->msgout_buf + ahd->msgout_index, period, offset);
	ahd->msgout_len += 5;
	if (bootverbose) {
		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
		       ahd_name(ahd), devinfo->channel, devinfo->target,
		       devinfo->lun, period, offset);
	}
}

/*
 * Build a wide negotiateion message in our message
 * buffer based on the input parameters.
 */
static void
ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		   u_int bus_width)
{
	ahd->msgout_index += spi_populate_width_msg(
			ahd->msgout_buf + ahd->msgout_index, bus_width);
	ahd->msgout_len += 4;
	if (bootverbose) {
		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
		       ahd_name(ahd), devinfo->channel, devinfo->target,
		       devinfo->lun, bus_width);
	}
}

/*
 * Build a parallel protocol request message in our message
 * buffer based on the input parameters.
 */
static void
ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		  u_int period, u_int offset, u_int bus_width,
		  u_int ppr_options)
{
	/*
	 * Always request precompensation from
	 * the other target if we are running
	 * at paced syncrates.
	 */
	if (period <= AHD_SYNCRATE_PACED)
		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
	if (offset == 0)
		period = AHD_ASYNC_XFER_PERIOD;
	ahd->msgout_index += spi_populate_ppr_msg(
			ahd->msgout_buf + ahd->msgout_index, period, offset,
			bus_width, ppr_options);
	ahd->msgout_len += 8;
	if (bootverbose) {
		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
		       "offset %x, ppr_options %x\n", ahd_name(ahd),
		       devinfo->channel, devinfo->target, devinfo->lun,
		       bus_width, period, offset, ppr_options);
	}
}

/*
 * Clear any active message state.
 */
static void
ahd_clear_msg_state(struct ahd_softc *ahd)
{
	ahd_mode_state saved_modes;

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	ahd->send_msg_perror = 0;
	ahd->msg_flags = MSG_FLAG_NONE;
	ahd->msgout_len = 0;
	ahd->msgin_index = 0;
	ahd->msg_type = MSG_TYPE_NONE;
	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
		/*
		 * The target didn't care to respond to our
		 * message request, so clear ATN.
		 */
		ahd_outb(ahd, CLRSINT1, CLRATNO);
	}
	ahd_outb(ahd, MSG_OUT, MSG_NOOP);
	ahd_outb(ahd, SEQ_FLAGS2,
		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
	ahd_restore_modes(ahd, saved_modes);
}

/*
 * Manual message loop handler.
 */
static void
ahd_handle_message_phase(struct ahd_softc *ahd)
{
	struct	ahd_devinfo devinfo;
	u_int	bus_phase;
	int	end_session;

	ahd_fetch_devinfo(ahd, &devinfo);
	end_session = FALSE;
	bus_phase = ahd_inb(ahd, LASTPHASE);

	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
		ahd_outb(ahd, LQCTL2, LQIRETRY);
	}
reswitch:
	switch (ahd->msg_type) {
	case MSG_TYPE_INITIATOR_MSGOUT:
	{
		int lastbyte;
		int phasemis;
		int msgdone;

		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
			panic("HOST_MSG_LOOP interrupt with no active message");

#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
			ahd_print_devinfo(ahd, &devinfo);
			printk("INITIATOR_MSG_OUT");
		}
#endif
		phasemis = bus_phase != P_MESGOUT;
		if (phasemis) {
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
				printk(" PHASEMIS %s\n",
				       ahd_lookup_phase_entry(bus_phase)
							     ->phasemsg);
			}
#endif
			if (bus_phase == P_MESGIN) {
				/*
				 * Change gears and see if
				 * this messages is of interest to
				 * us or should be passed back to
				 * the sequencer.
				 */
				ahd_outb(ahd, CLRSINT1, CLRATNO);
				ahd->send_msg_perror = 0;
				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
				ahd->msgin_index = 0;
				goto reswitch;
			}
			end_session = TRUE;
			break;
		}

		if (ahd->send_msg_perror) {
			ahd_outb(ahd, CLRSINT1, CLRATNO);
			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
				printk(" byte 0x%x\n", ahd->send_msg_perror);
#endif
			/*
			 * If we are notifying the target of a CRC error
			 * during packetized operations, the target is
			 * within its rights to acknowledge our message
			 * with a busfree.
			 */
			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
			 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;

			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
			break;
		}

		msgdone	= ahd->msgout_index == ahd->msgout_len;
		if (msgdone) {
			/*
			 * The target has requested a retry.
			 * Re-assert ATN, reset our message index to
			 * 0, and try again.
			 */
			ahd->msgout_index = 0;
			ahd_assert_atn(ahd);
		}

		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
		if (lastbyte) {
			/* Last byte is signified by dropping ATN */
			ahd_outb(ahd, CLRSINT1, CLRATNO);
		}

		/*
		 * Clear our interrupt status and present
		 * the next byte on the bus.
		 */
		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
			printk(" byte 0x%x\n",
			       ahd->msgout_buf[ahd->msgout_index]);
#endif
		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
		break;
	}
	case MSG_TYPE_INITIATOR_MSGIN:
	{
		int phasemis;
		int message_done;

#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
			ahd_print_devinfo(ahd, &devinfo);
			printk("INITIATOR_MSG_IN");
		}
#endif
		phasemis = bus_phase != P_MESGIN;
		if (phasemis) {
#ifdef AHD_DEBUG
			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
				printk(" PHASEMIS %s\n",
				       ahd_lookup_phase_entry(bus_phase)
							     ->phasemsg);
			}
#endif
			ahd->msgin_index = 0;
			if (bus_phase == P_MESGOUT
			 && (ahd->send_msg_perror != 0
			  || (ahd->msgout_len != 0
			   && ahd->msgout_index == 0))) {
				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
				goto reswitch;
			}
			end_session = TRUE;
			break;
		}

		/* Pull the byte in without acking it */
		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
			printk(" byte 0x%x\n",
			       ahd->msgin_buf[ahd->msgin_index]);
#endif

		message_done = ahd_parse_msg(ahd, &devinfo);

		if (message_done) {
			/*
			 * Clear our incoming message buffer in case there
			 * is another message following this one.
			 */
			ahd->msgin_index = 0;

			/*
			 * If this message illicited a response,
			 * assert ATN so the target takes us to the
			 * message out phase.
			 */
			if (ahd->msgout_len != 0) {
#ifdef AHD_DEBUG
				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
					ahd_print_devinfo(ahd, &devinfo);
					printk("Asserting ATN for response\n");
				}
#endif
				ahd_assert_atn(ahd);
			}
		} else 
			ahd->msgin_index++;

		if (message_done == MSGLOOP_TERMINATED) {
			end_session = TRUE;
		} else {
			/* Ack the byte */
			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
		}
		break;
	}
	case MSG_TYPE_TARGET_MSGIN:
	{
		int msgdone;
		int msgout_request;

		/*
		 * By default, the message loop will continue.
		 */
		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);

		if (ahd->msgout_len == 0)
			panic("Target MSGIN with no active message");

		/*
		 * If we interrupted a mesgout session, the initiator
		 * will not know this until our first REQ.  So, we
		 * only honor mesgout requests after we've sent our
		 * first byte.
		 */
		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
		 && ahd->msgout_index > 0)
			msgout_request = TRUE;
		else
			msgout_request = FALSE;

		if (msgout_request) {

			/*
			 * Change gears and see if
			 * this messages is of interest to
			 * us or should be passed back to
			 * the sequencer.
			 */
			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
			ahd->msgin_index = 0;
			/* Dummy read to REQ for first byte */
			ahd_inb(ahd, SCSIDAT);
			ahd_outb(ahd, SXFRCTL0,
				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
			break;
		}

		msgdone = ahd->msgout_index == ahd->msgout_len;
		if (msgdone) {
			ahd_outb(ahd, SXFRCTL0,
				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
			end_session = TRUE;
			break;
		}

		/*
		 * Present the next byte on the bus.
		 */
		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
		break;
	}
	case MSG_TYPE_TARGET_MSGOUT:
	{
		int lastbyte;
		int msgdone;

		/*
		 * By default, the message loop will continue.
		 */
		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);

		/*
		 * The initiator signals that this is
		 * the last byte by dropping ATN.
		 */
		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;

		/*
		 * Read the latched byte, but turn off SPIOEN first
		 * so that we don't inadvertently cause a REQ for the
		 * next byte.
		 */
		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
		msgdone = ahd_parse_msg(ahd, &devinfo);
		if (msgdone == MSGLOOP_TERMINATED) {
			/*
			 * The message is *really* done in that it caused
			 * us to go to bus free.  The sequencer has already
			 * been reset at this point, so pull the ejection
			 * handle.
			 */
			return;
		}
		
		ahd->msgin_index++;

		/*
		 * XXX Read spec about initiator dropping ATN too soon
		 *     and use msgdone to detect it.
		 */
		if (msgdone == MSGLOOP_MSGCOMPLETE) {
			ahd->msgin_index = 0;

			/*
			 * If this message illicited a response, transition
			 * to the Message in phase and send it.
			 */
			if (ahd->msgout_len != 0) {
				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
				ahd_outb(ahd, SXFRCTL0,
					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
				ahd->msgin_index = 0;
				break;
			}
		}

		if (lastbyte)
			end_session = TRUE;
		else {
			/* Ask for the next byte. */
			ahd_outb(ahd, SXFRCTL0,
				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
		}

		break;
	}
	default:
		panic("Unknown REQINIT message type");
	}

	if (end_session) {
		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
			printk("%s: Returning to Idle Loop\n",
			       ahd_name(ahd));
			ahd_clear_msg_state(ahd);

			/*
			 * Perform the equivalent of a clear_target_state.
			 */
			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
		} else {
			ahd_clear_msg_state(ahd);
			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
		}
	}
}

/*
 * See if we sent a particular extended message to the target.
 * If "full" is true, return true only if the target saw the full
 * message.  If "full" is false, return true if the target saw at
 * least the first byte of the message.
 */
static int
ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
{
	int found;
	u_int index;

	found = FALSE;
	index = 0;

	while (index < ahd->msgout_len) {
		if (ahd->msgout_buf[index] == MSG_EXTENDED) {
			u_int end_index;

			end_index = index + 1 + ahd->msgout_buf[index + 1];
			if (ahd->msgout_buf[index+2] == msgval
			 && type == AHDMSG_EXT) {

				if (full) {
					if (ahd->msgout_index > end_index)
						found = TRUE;
				} else if (ahd->msgout_index > index)
					found = TRUE;
			}
			index = end_index;
		} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
			&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {

			/* Skip tag type and tag id or residue param*/
			index += 2;
		} else {
			/* Single byte message */
			if (type == AHDMSG_1B
			 && ahd->msgout_index > index
			 && (ahd->msgout_buf[index] == msgval
			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
			   && msgval == MSG_IDENTIFYFLAG)))
				found = TRUE;
			index++;
		}

		if (found)
			break;
	}
	return (found);
}

/*
 * Wait for a complete incoming message, parse it, and respond accordingly.
 */
static int
ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	struct	ahd_initiator_tinfo *tinfo;
	struct	ahd_tmode_tstate *tstate;
	int	reject;
	int	done;
	int	response;

	done = MSGLOOP_IN_PROG;
	response = FALSE;
	reject = FALSE;
	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
				    devinfo->target, &tstate);

	/*
	 * Parse as much of the message as is available,
	 * rejecting it if we don't support it.  When
	 * the entire message is available and has been
	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
	 * that we have parsed an entire message.
	 *
	 * In the case of extended messages, we accept the length
	 * byte outright and perform more checking once we know the
	 * extended message type.
	 */
	switch (ahd->msgin_buf[0]) {
	case MSG_DISCONNECT:
	case MSG_SAVEDATAPOINTER:
	case MSG_CMDCOMPLETE:
	case MSG_RESTOREPOINTERS:
	case MSG_IGN_WIDE_RESIDUE:
		/*
		 * End our message loop as these are messages
		 * the sequencer handles on its own.
		 */
		done = MSGLOOP_TERMINATED;
		break;
	case MSG_MESSAGE_REJECT:
		response = ahd_handle_msg_reject(ahd, devinfo);
		/* FALLTHROUGH */
	case MSG_NOOP:
		done = MSGLOOP_MSGCOMPLETE;
		break;
	case MSG_EXTENDED:
	{
		/* Wait for enough of the message to begin validation */
		if (ahd->msgin_index < 2)
			break;
		switch (ahd->msgin_buf[2]) {
		case MSG_EXT_SDTR:
		{
			u_int	 period;
			u_int	 ppr_options;
			u_int	 offset;
			u_int	 saved_offset;
			
			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
				reject = TRUE;
				break;
			}

			/*
			 * Wait until we have both args before validating
			 * and acting on this message.
			 *
			 * Add one to MSG_EXT_SDTR_LEN to account for
			 * the extended message preamble.
			 */
			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
				break;

			period = ahd->msgin_buf[3];
			ppr_options = 0;
			saved_offset = offset = ahd->msgin_buf[4];
			ahd_devlimited_syncrate(ahd, tinfo, &period,
						&ppr_options, devinfo->role);
			ahd_validate_offset(ahd, tinfo, period, &offset,
					    tinfo->curr.width, devinfo->role);
			if (bootverbose) {
				printk("(%s:%c:%d:%d): Received "
				       "SDTR period %x, offset %x\n\t"
				       "Filtered to period %x, offset %x\n",
				       ahd_name(ahd), devinfo->channel,
				       devinfo->target, devinfo->lun,
				       ahd->msgin_buf[3], saved_offset,
				       period, offset);
			}
			ahd_set_syncrate(ahd, devinfo, period,
					 offset, ppr_options,
					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
					 /*paused*/TRUE);

			/*
			 * See if we initiated Sync Negotiation
			 * and didn't have to fall down to async
			 * transfers.
			 */
			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
				/* We started it */
				if (saved_offset != offset) {
					/* Went too low - force async */
					reject = TRUE;
				}
			} else {
				/*
				 * Send our own SDTR in reply
				 */
				if (bootverbose
				 && devinfo->role == ROLE_INITIATOR) {
					printk("(%s:%c:%d:%d): Target "
					       "Initiated SDTR\n",
					       ahd_name(ahd), devinfo->channel,
					       devinfo->target, devinfo->lun);
				}
				ahd->msgout_index = 0;
				ahd->msgout_len = 0;
				ahd_construct_sdtr(ahd, devinfo,
						   period, offset);
				ahd->msgout_index = 0;
				response = TRUE;
			}
			done = MSGLOOP_MSGCOMPLETE;
			break;
		}
		case MSG_EXT_WDTR:
		{
			u_int bus_width;
			u_int saved_width;
			u_int sending_reply;

			sending_reply = FALSE;
			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
				reject = TRUE;
				break;
			}

			/*
			 * Wait until we have our arg before validating
			 * and acting on this message.
			 *
			 * Add one to MSG_EXT_WDTR_LEN to account for
			 * the extended message preamble.
			 */
			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
				break;

			bus_width = ahd->msgin_buf[3];
			saved_width = bus_width;
			ahd_validate_width(ahd, tinfo, &bus_width,
					   devinfo->role);
			if (bootverbose) {
				printk("(%s:%c:%d:%d): Received WDTR "
				       "%x filtered to %x\n",
				       ahd_name(ahd), devinfo->channel,
				       devinfo->target, devinfo->lun,
				       saved_width, bus_width);
			}

			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
				/*
				 * Don't send a WDTR back to the
				 * target, since we asked first.
				 * If the width went higher than our
				 * request, reject it.
				 */
				if (saved_width > bus_width) {
					reject = TRUE;
					printk("(%s:%c:%d:%d): requested %dBit "
					       "transfers.  Rejecting...\n",
					       ahd_name(ahd), devinfo->channel,
					       devinfo->target, devinfo->lun,
					       8 * (0x01 << bus_width));
					bus_width = 0;
				}
			} else {
				/*
				 * Send our own WDTR in reply
				 */
				if (bootverbose
				 && devinfo->role == ROLE_INITIATOR) {
					printk("(%s:%c:%d:%d): Target "
					       "Initiated WDTR\n",
					       ahd_name(ahd), devinfo->channel,
					       devinfo->target, devinfo->lun);
				}
				ahd->msgout_index = 0;
				ahd->msgout_len = 0;
				ahd_construct_wdtr(ahd, devinfo, bus_width);
				ahd->msgout_index = 0;
				response = TRUE;
				sending_reply = TRUE;
			}
			/*
			 * After a wide message, we are async, but
			 * some devices don't seem to honor this portion
			 * of the spec.  Force a renegotiation of the
			 * sync component of our transfer agreement even
			 * if our goal is async.  By updating our width
			 * after forcing the negotiation, we avoid
			 * renegotiating for width.
			 */
			ahd_update_neg_request(ahd, devinfo, tstate,
					       tinfo, AHD_NEG_ALWAYS);
			ahd_set_width(ahd, devinfo, bus_width,
				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
				      /*paused*/TRUE);
			if (sending_reply == FALSE && reject == FALSE) {

				/*
				 * We will always have an SDTR to send.
				 */
				ahd->msgout_index = 0;
				ahd->msgout_len = 0;
				ahd_build_transfer_msg(ahd, devinfo);
				ahd->msgout_index = 0;
				response = TRUE;
			}
			done = MSGLOOP_MSGCOMPLETE;
			break;
		}
		case MSG_EXT_PPR:
		{
			u_int	period;
			u_int	offset;
			u_int	bus_width;
			u_int	ppr_options;
			u_int	saved_width;
			u_int	saved_offset;
			u_int	saved_ppr_options;

			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
				reject = TRUE;
				break;
			}

			/*
			 * Wait until we have all args before validating
			 * and acting on this message.
			 *
			 * Add one to MSG_EXT_PPR_LEN to account for
			 * the extended message preamble.
			 */
			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
				break;

			period = ahd->msgin_buf[3];
			offset = ahd->msgin_buf[5];
			bus_width = ahd->msgin_buf[6];
			saved_width = bus_width;
			ppr_options = ahd->msgin_buf[7];
			/*
			 * According to the spec, a DT only
			 * period factor with no DT option
			 * set implies async.
			 */
			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
			 && period <= 9)
				offset = 0;
			saved_ppr_options = ppr_options;
			saved_offset = offset;

			/*
			 * Transfer options are only available if we
			 * are negotiating wide.
			 */
			if (bus_width == 0)
				ppr_options &= MSG_EXT_PPR_QAS_REQ;

			ahd_validate_width(ahd, tinfo, &bus_width,
					   devinfo->role);
			ahd_devlimited_syncrate(ahd, tinfo, &period,
						&ppr_options, devinfo->role);
			ahd_validate_offset(ahd, tinfo, period, &offset,
					    bus_width, devinfo->role);

			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
				/*
				 * If we are unable to do any of the
				 * requested options (we went too low),
				 * then we'll have to reject the message.
				 */
				if (saved_width > bus_width
				 || saved_offset != offset
				 || saved_ppr_options != ppr_options) {
					reject = TRUE;
					period = 0;
					offset = 0;
					bus_width = 0;
					ppr_options = 0;
				}
			} else {
				if (devinfo->role != ROLE_TARGET)
					printk("(%s:%c:%d:%d): Target "
					       "Initiated PPR\n",
					       ahd_name(ahd), devinfo->channel,
					       devinfo->target, devinfo->lun);
				else
					printk("(%s:%c:%d:%d): Initiator "
					       "Initiated PPR\n",
					       ahd_name(ahd), devinfo->channel,
					       devinfo->target, devinfo->lun);
				ahd->msgout_index = 0;
				ahd->msgout_len = 0;
				ahd_construct_ppr(ahd, devinfo, period, offset,
						  bus_width, ppr_options);
				ahd->msgout_index = 0;
				response = TRUE;
			}
			if (bootverbose) {
				printk("(%s:%c:%d:%d): Received PPR width %x, "
				       "period %x, offset %x,options %x\n"
				       "\tFiltered to width %x, period %x, "
				       "offset %x, options %x\n",
				       ahd_name(ahd), devinfo->channel,
				       devinfo->target, devinfo->lun,
				       saved_width, ahd->msgin_buf[3],
				       saved_offset, saved_ppr_options,
				       bus_width, period, offset, ppr_options);
			}
			ahd_set_width(ahd, devinfo, bus_width,
				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
				      /*paused*/TRUE);
			ahd_set_syncrate(ahd, devinfo, period,
					 offset, ppr_options,
					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
					 /*paused*/TRUE);

			done = MSGLOOP_MSGCOMPLETE;
			break;
		}
		default:
			/* Unknown extended message.  Reject it. */
			reject = TRUE;
			break;
		}
		break;
	}
#ifdef AHD_TARGET_MODE
	case MSG_BUS_DEV_RESET:
		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
				    CAM_BDR_SENT,
				    "Bus Device Reset Received",
				    /*verbose_level*/0);
		ahd_restart(ahd);
		done = MSGLOOP_TERMINATED;
		break;
	case MSG_ABORT_TAG:
	case MSG_ABORT:
	case MSG_CLEAR_QUEUE:
	{
		int tag;

		/* Target mode messages */
		if (devinfo->role != ROLE_TARGET) {
			reject = TRUE;
			break;
		}
		tag = SCB_LIST_NULL;
		if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
			tag = ahd_inb(ahd, INITIATOR_TAG);
		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
			       devinfo->lun, tag, ROLE_TARGET,
			       CAM_REQ_ABORTED);

		tstate = ahd->enabled_targets[devinfo->our_scsiid];
		if (tstate != NULL) {
			struct ahd_tmode_lstate* lstate;

			lstate = tstate->enabled_luns[devinfo->lun];
			if (lstate != NULL) {
				ahd_queue_lstate_event(ahd, lstate,
						       devinfo->our_scsiid,
						       ahd->msgin_buf[0],
						       /*arg*/tag);
				ahd_send_lstate_events(ahd, lstate);
			}
		}
		ahd_restart(ahd);
		done = MSGLOOP_TERMINATED;
		break;
	}
#endif
	case MSG_QAS_REQUEST:
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
#endif
		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
		/* FALLTHROUGH */
	case MSG_TERM_IO_PROC:
	default:
		reject = TRUE;
		break;
	}

	if (reject) {
		/*
		 * Setup to reject the message.
		 */
		ahd->msgout_index = 0;
		ahd->msgout_len = 1;
		ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
		done = MSGLOOP_MSGCOMPLETE;
		response = TRUE;
	}

	if (done != MSGLOOP_IN_PROG && !response)
		/* Clear the outgoing message buffer */
		ahd->msgout_len = 0;

	return (done);
}

/*
 * Process a message reject message.
 */
static int
ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	/*
	 * What we care about here is if we had an
	 * outstanding SDTR or WDTR message for this
	 * target.  If we did, this is a signal that
	 * the target is refusing negotiation.
	 */
	struct scb *scb;
	struct ahd_initiator_tinfo *tinfo;
	struct ahd_tmode_tstate *tstate;
	u_int scb_index;
	u_int last_msg;
	int   response = 0;

	scb_index = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scb_index);
	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
				    devinfo->our_scsiid,
				    devinfo->target, &tstate);
	/* Might be necessary */
	last_msg = ahd_inb(ahd, LAST_MSG);

	if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
		if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
			/*
			 * Target may not like our SPI-4 PPR Options.
			 * Attempt to negotiate 80MHz which will turn
			 * off these options.
			 */
			if (bootverbose) {
				printk("(%s:%c:%d:%d): PPR Rejected. "
				       "Trying simple U160 PPR\n",
				       ahd_name(ahd), devinfo->channel,
				       devinfo->target, devinfo->lun);
			}
			tinfo->goal.period = AHD_SYNCRATE_DT;
			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
						|  MSG_EXT_PPR_QAS_REQ
						|  MSG_EXT_PPR_DT_REQ;
		} else {
			/*
			 * Target does not support the PPR message.
			 * Attempt to negotiate SPI-2 style.
			 */
			if (bootverbose) {
				printk("(%s:%c:%d:%d): PPR Rejected. "
				       "Trying WDTR/SDTR\n",
				       ahd_name(ahd), devinfo->channel,
				       devinfo->target, devinfo->lun);
			}
			tinfo->goal.ppr_options = 0;
			tinfo->curr.transport_version = 2;
			tinfo->goal.transport_version = 2;
		}
		ahd->msgout_index = 0;
		ahd->msgout_len = 0;
		ahd_build_transfer_msg(ahd, devinfo);
		ahd->msgout_index = 0;
		response = 1;
	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {

		/* note 8bit xfers */
		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
		       "8bit transfers\n", ahd_name(ahd),
		       devinfo->channel, devinfo->target, devinfo->lun);
		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
			      /*paused*/TRUE);
		/*
		 * No need to clear the sync rate.  If the target
		 * did not accept the command, our syncrate is
		 * unaffected.  If the target started the negotiation,
		 * but rejected our response, we already cleared the
		 * sync rate before sending our WDTR.
		 */
		if (tinfo->goal.offset != tinfo->curr.offset) {

			/* Start the sync negotiation */
			ahd->msgout_index = 0;
			ahd->msgout_len = 0;
			ahd_build_transfer_msg(ahd, devinfo);
			ahd->msgout_index = 0;
			response = 1;
		}
	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
		/* note asynch xfers and clear flag */
		ahd_set_syncrate(ahd, devinfo, /*period*/0,
				 /*offset*/0, /*ppr_options*/0,
				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
				 /*paused*/TRUE);
		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
		       "Using asynchronous transfers\n",
		       ahd_name(ahd), devinfo->channel,
		       devinfo->target, devinfo->lun);
	} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
		int tag_type;
		int mask;

		tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);

		if (tag_type == MSG_SIMPLE_TASK) {
			printk("(%s:%c:%d:%d): refuses tagged commands.  "
			       "Performing non-tagged I/O\n", ahd_name(ahd),
			       devinfo->channel, devinfo->target, devinfo->lun);
			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
			mask = ~0x23;
		} else {
			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
			       "Performing simple queue tagged I/O only\n",
			       ahd_name(ahd), devinfo->channel, devinfo->target,
			       devinfo->lun, tag_type == MSG_ORDERED_TASK
			       ? "ordered" : "head of queue");
			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
			mask = ~0x03;
		}

		/*
		 * Resend the identify for this CCB as the target
		 * may believe that the selection is invalid otherwise.
		 */
		ahd_outb(ahd, SCB_CONTROL,
			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
	 	scb->hscb->control &= mask;
		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
					/*type*/MSG_SIMPLE_TASK);
		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
		ahd_assert_atn(ahd);
		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
			     SCB_GET_TAG(scb));

		/*
		 * Requeue all tagged commands for this target
		 * currently in our possession so they can be
		 * converted to untagged commands.
		 */
		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
				   SCB_GET_CHANNEL(ahd, scb),
				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
				   SEARCH_COMPLETE);
	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
		/*
		 * Most likely the device believes that we had
		 * previously negotiated packetized.
		 */
		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
			       |  MSG_FLAG_IU_REQ_CHANGED;

		ahd_force_renegotiation(ahd, devinfo);
		ahd->msgout_index = 0;
		ahd->msgout_len = 0;
		ahd_build_transfer_msg(ahd, devinfo);
		ahd->msgout_index = 0;
		response = 1;
	} else {
		/*
		 * Otherwise, we ignore it.
		 */
		printk("%s:%c:%d: Message reject for %x -- ignored\n",
		       ahd_name(ahd), devinfo->channel, devinfo->target,
		       last_msg);
	}
	return (response);
}

/*
 * Process an ingnore wide residue message.
 */
static void
ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
{
	u_int scb_index;
	struct scb *scb;

	scb_index = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scb_index);
	/*
	 * XXX Actually check data direction in the sequencer?
	 * Perhaps add datadir to some spare bits in the hscb?
	 */
	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
		/*
		 * Ignore the message if we haven't
		 * seen an appropriate data phase yet.
		 */
	} else {
		/*
		 * If the residual occurred on the last
		 * transfer and the transfer request was
		 * expected to end on an odd count, do
		 * nothing.  Otherwise, subtract a byte
		 * and update the residual count accordingly.
		 */
		uint32_t sgptr;

		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
		if ((sgptr & SG_LIST_NULL) != 0
		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
		     & SCB_XFERLEN_ODD) != 0) {
			/*
			 * If the residual occurred on the last
			 * transfer and the transfer request was
			 * expected to end on an odd count, do
			 * nothing.
			 */
		} else {
			uint32_t data_cnt;
			uint64_t data_addr;
			uint32_t sglen;

			/* Pull in the rest of the sgptr */
			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
			if ((sgptr & SG_LIST_NULL) != 0) {
				/*
				 * The residual data count is not updated
				 * for the command run to completion case.
				 * Explicitly zero the count.
				 */
				data_cnt &= ~AHD_SG_LEN_MASK;
			}
			data_addr = ahd_inq(ahd, SHADDR);
			data_cnt += 1;
			data_addr -= 1;
			sgptr &= SG_PTR_MASK;
			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
				struct ahd_dma64_seg *sg;

				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);

				/*
				 * The residual sg ptr points to the next S/G
				 * to load so we must go back one.
				 */
				sg--;
				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
				if (sg != scb->sg_list
				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {

					sg--;
					sglen = ahd_le32toh(sg->len);
					/*
					 * Preserve High Address and SG_LIST
					 * bits while setting the count to 1.
					 */
					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
					data_addr = ahd_le64toh(sg->addr)
						  + (sglen & AHD_SG_LEN_MASK)
						  - 1;

					/*
					 * Increment sg so it points to the
					 * "next" sg.
					 */
					sg++;
					sgptr = ahd_sg_virt_to_bus(ahd, scb,
								   sg);
				}
			} else {
				struct ahd_dma_seg *sg;

				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);

				/*
				 * The residual sg ptr points to the next S/G
				 * to load so we must go back one.
				 */
				sg--;
				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
				if (sg != scb->sg_list
				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {

					sg--;
					sglen = ahd_le32toh(sg->len);
					/*
					 * Preserve High Address and SG_LIST
					 * bits while setting the count to 1.
					 */
					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
					data_addr = ahd_le32toh(sg->addr)
						  + (sglen & AHD_SG_LEN_MASK)
						  - 1;

					/*
					 * Increment sg so it points to the
					 * "next" sg.
					 */
					sg++;
					sgptr = ahd_sg_virt_to_bus(ahd, scb,
								  sg);
				}
			}
			/*
			 * Toggle the "oddness" of the transfer length
			 * to handle this mid-transfer ignore wide
			 * residue.  This ensures that the oddness is
			 * correct for subsequent data transfers.
			 */
			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
			    ^ SCB_XFERLEN_ODD);

			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
			/*
			 * The FIFO's pointers will be updated if/when the
			 * sequencer re-enters a data phase.
			 */
		}
	}
}


/*
 * Reinitialize the data pointers for the active transfer
 * based on its current residual.
 */
static void
ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
{
	struct		 scb *scb;
	ahd_mode_state	 saved_modes;
	u_int		 scb_index;
	u_int		 wait;
	uint32_t	 sgptr;
	uint32_t	 resid;
	uint64_t	 dataptr;

	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
			 
	scb_index = ahd_get_scbptr(ahd);
	scb = ahd_lookup_scb(ahd, scb_index);

	/*
	 * Release and reacquire the FIFO so we
	 * have a clean slate.
	 */
	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
	wait = 1000;
	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
		ahd_delay(100);
	if (wait == 0) {
		ahd_print_path(ahd, scb);
		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
	}
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	ahd_outb(ahd, DFFSTAT,
		 ahd_inb(ahd, DFFSTAT)
		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));

	/*
	 * Determine initial values for data_addr and data_cnt
	 * for resuming the data phase.
	 */
	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
	sgptr &= SG_PTR_MASK;

	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);

	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
		struct ahd_dma64_seg *sg;

		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);

		/* The residual sg_ptr always points to the next sg */
		sg--;

		dataptr = ahd_le64toh(sg->addr)
			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
			- resid;
		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
	} else {
		struct	 ahd_dma_seg *sg;

		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);

		/* The residual sg_ptr always points to the next sg */
		sg--;

		dataptr = ahd_le32toh(sg->addr)
			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
			- resid;
		ahd_outb(ahd, HADDR + 4,
			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
	}
	ahd_outl(ahd, HADDR, dataptr);
	ahd_outb(ahd, HCNT + 2, resid >> 16);
	ahd_outb(ahd, HCNT + 1, resid >> 8);
	ahd_outb(ahd, HCNT, resid);
}

/*
 * Handle the effects of issuing a bus device reset message.
 */
static void
ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		    u_int lun, cam_status status, char *message,
		    int verbose_level)
{
#ifdef AHD_TARGET_MODE
	struct ahd_tmode_tstate* tstate;
#endif
	int found;

	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
			       lun, SCB_LIST_NULL, devinfo->role,
			       status);

#ifdef AHD_TARGET_MODE
	/*
	 * Send an immediate notify ccb to all target mord peripheral
	 * drivers affected by this action.
	 */
	tstate = ahd->enabled_targets[devinfo->our_scsiid];
	if (tstate != NULL) {
		u_int cur_lun;
		u_int max_lun;

		if (lun != CAM_LUN_WILDCARD) {
			cur_lun = 0;
			max_lun = AHD_NUM_LUNS - 1;
		} else {
			cur_lun = lun;
			max_lun = lun;
		}
		for (;cur_lun <= max_lun; cur_lun++) {
			struct ahd_tmode_lstate* lstate;

			lstate = tstate->enabled_luns[cur_lun];
			if (lstate == NULL)
				continue;

			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
					       MSG_BUS_DEV_RESET, /*arg*/0);
			ahd_send_lstate_events(ahd, lstate);
		}
	}
#endif

	/*
	 * Go back to async/narrow transfers and renegotiate.
	 */
	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
		      AHD_TRANS_CUR, /*paused*/TRUE);
	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
			 /*ppr_options*/0, AHD_TRANS_CUR,
			 /*paused*/TRUE);
	
	if (status != CAM_SEL_TIMEOUT)
		ahd_send_async(ahd, devinfo->channel, devinfo->target,
			       CAM_LUN_WILDCARD, AC_SENT_BDR);

	if (message != NULL && bootverbose)
		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
		       message, devinfo->channel, devinfo->target, found);
}

#ifdef AHD_TARGET_MODE
static void
ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
		       struct scb *scb)
{

	/*              
	 * To facilitate adding multiple messages together,
	 * each routine should increment the index and len
	 * variables instead of setting them explicitly.
	 */             
	ahd->msgout_index = 0;
	ahd->msgout_len = 0;

	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
		ahd_build_transfer_msg(ahd, devinfo);
	else
		panic("ahd_intr: AWAITING target message with no message");

	ahd->msgout_index = 0;
	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
}
#endif
/**************************** Initialization **********************************/
static u_int
ahd_sglist_size(struct ahd_softc *ahd)
{
	bus_size_t list_size;

	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
	return (list_size);
}

/*
 * Calculate the optimum S/G List allocation size.  S/G elements used
 * for a given transaction must be physically contiguous.  Assume the
 * OS will allocate full pages to us, so it doesn't make sense to request
 * less than a page.
 */
static u_int
ahd_sglist_allocsize(struct ahd_softc *ahd)
{
	bus_size_t sg_list_increment;
	bus_size_t sg_list_size;
	bus_size_t max_list_size;
	bus_size_t best_list_size;

	/* Start out with the minimum required for AHD_NSEG. */
	sg_list_increment = ahd_sglist_size(ahd);
	sg_list_size = sg_list_increment;

	/* Get us as close as possible to a page in size. */
	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
		sg_list_size += sg_list_increment;

	/*
	 * Try to reduce the amount of wastage by allocating
	 * multiple pages.
	 */
	best_list_size = sg_list_size;
	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
	if (max_list_size < 4 * PAGE_SIZE)
		max_list_size = 4 * PAGE_SIZE;
	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
	while ((sg_list_size + sg_list_increment) <= max_list_size
	   &&  (sg_list_size % PAGE_SIZE) != 0) {
		bus_size_t new_mod;
		bus_size_t best_mod;

		sg_list_size += sg_list_increment;
		new_mod = sg_list_size % PAGE_SIZE;
		best_mod = best_list_size % PAGE_SIZE;
		if (new_mod > best_mod || new_mod == 0) {
			best_list_size = sg_list_size;
		}
	}
	return (best_list_size);
}

/*
 * Allocate a controller structure for a new device
 * and perform initial initializion.
 */
struct ahd_softc *
ahd_alloc(void *platform_arg, char *name)
{
	struct  ahd_softc *ahd;

#ifndef	__FreeBSD__
	ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC);
	if (!ahd) {
		printk("aic7xxx: cannot malloc softc!\n");
		kfree(name);
		return NULL;
	}
#else
	ahd = device_get_softc((device_t)platform_arg);
#endif
	memset(ahd, 0, sizeof(*ahd));
	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
	if (ahd->seep_config == NULL) {
#ifndef	__FreeBSD__
		kfree(ahd);
#endif
		kfree(name);
		return (NULL);
	}
	LIST_INIT(&ahd->pending_scbs);
	/* We don't know our unit number until the OSM sets it */
	ahd->name = name;
	ahd->unit = -1;
	ahd->description = NULL;
	ahd->bus_description = NULL;
	ahd->channel = 'A';
	ahd->chip = AHD_NONE;
	ahd->features = AHD_FENONE;
	ahd->bugs = AHD_BUGNONE;
	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
	ahd->int_coalescing_stop_threshold =
	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
		       ahd_name(ahd), (u_int)sizeof(struct scb),
		       (u_int)sizeof(struct hardware_scb));
	}
#endif
	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
		ahd_free(ahd);
		ahd = NULL;
	}
	return (ahd);
}

int
ahd_softc_init(struct ahd_softc *ahd)
{

	ahd->unpause = 0;
	ahd->pause = PAUSE; 
	return (0);
}

void
ahd_set_unit(struct ahd_softc *ahd, int unit)
{
	ahd->unit = unit;
}

void
ahd_set_name(struct ahd_softc *ahd, char *name)
{
	if (ahd->name != NULL)
		kfree(ahd->name);
	ahd->name = name;
}

void
ahd_free(struct ahd_softc *ahd)
{
	int i;

	switch (ahd->init_level) {
	default:
	case 5:
		ahd_shutdown(ahd);
		/* FALLTHROUGH */
	case 4:
		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
				  ahd->shared_data_map.dmamap);
		/* FALLTHROUGH */
	case 3:
		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
				ahd->shared_data_map.dmamap);
		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
				   ahd->shared_data_map.dmamap);
		/* FALLTHROUGH */
	case 2:
		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
	case 1:
		break;
	case 0:
		break;
	}

	ahd_platform_free(ahd);
	ahd_fini_scbdata(ahd);
	for (i = 0; i < AHD_NUM_TARGETS; i++) {
		struct ahd_tmode_tstate *tstate;

		tstate = ahd->enabled_targets[i];
		if (tstate != NULL) {
#ifdef AHD_TARGET_MODE
			int j;

			for (j = 0; j < AHD_NUM_LUNS; j++) {
				struct ahd_tmode_lstate *lstate;

				lstate = tstate->enabled_luns[j];
				if (lstate != NULL) {
					xpt_free_path(lstate->path);
					kfree(lstate);
				}
			}
#endif
			kfree(tstate);
		}
	}
#ifdef AHD_TARGET_MODE
	if (ahd->black_hole != NULL) {
		xpt_free_path(ahd->black_hole->path);
		kfree(ahd->black_hole);
	}
#endif
	if (ahd->name != NULL)
		kfree(ahd->name);
	if (ahd->seep_config != NULL)
		kfree(ahd->seep_config);
	if (ahd->saved_stack != NULL)
		kfree(ahd->saved_stack);
#ifndef __FreeBSD__
	kfree(ahd);
#endif
	return;
}

static void
ahd_shutdown(void *arg)
{
	struct	ahd_softc *ahd;

	ahd = (struct ahd_softc *)arg;

	/*
	 * Stop periodic timer callbacks.
	 */
	del_timer_sync(&ahd->stat_timer);

	/* This will reset most registers to 0, but not all */
	ahd_reset(ahd, /*reinit*/FALSE);
}

/*
 * Reset the controller and record some information about it
 * that is only available just after a reset.  If "reinit" is
 * non-zero, this reset occurred after initial configuration
 * and the caller requests that the chip be fully reinitialized
 * to a runable state.  Chip interrupts are *not* enabled after
 * a reinitialization.  The caller must enable interrupts via
 * ahd_intr_enable().
 */
int
ahd_reset(struct ahd_softc *ahd, int reinit)
{
	u_int	 sxfrctl1;
	int	 wait;
	uint32_t cmd;
	
	/*
	 * Preserve the value of the SXFRCTL1 register for all channels.
	 * It contains settings that affect termination and we don't want
	 * to disturb the integrity of the bus.
	 */
	ahd_pause(ahd);
	ahd_update_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);

	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
		uint32_t mod_cmd;

		/*
		 * A4 Razor #632
		 * During the assertion of CHIPRST, the chip
		 * does not disable its parity logic prior to
		 * the start of the reset.  This may cause a
		 * parity error to be detected and thus a
		 * spurious SERR or PERR assertion.  Disable
		 * PERR and SERR responses during the CHIPRST.
		 */
		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
				     mod_cmd, /*bytes*/2);
	}
	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);

	/*
	 * Ensure that the reset has finished.  We delay 1000us
	 * prior to reading the register to make sure the chip
	 * has sufficiently completed its reset to handle register
	 * accesses.
	 */
	wait = 1000;
	do {
		ahd_delay(1000);
	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));

	if (wait == 0) {
		printk("%s: WARNING - Failed chip reset!  "
		       "Trying to initialize anyway.\n", ahd_name(ahd));
	}
	ahd_outb(ahd, HCNTRL, ahd->pause);

	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
		/*
		 * Clear any latched PCI error status and restore
		 * previous SERR and PERR response enables.
		 */
		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
				     0xFF, /*bytes*/1);
		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
				     cmd, /*bytes*/2);
	}

	/*
	 * Mode should be SCSI after a chip reset, but lets
	 * set it just to be safe.  We touch the MODE_PTR
	 * register directly so as to bypass the lazy update
	 * code in ahd_set_modes().
	 */
	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	ahd_outb(ahd, MODE_PTR,
		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));

	/*
	 * Restore SXFRCTL1.
	 *
	 * We must always initialize STPWEN to 1 before we
	 * restore the saved values.  STPWEN is initialized
	 * to a tri-state condition which can only be cleared
	 * by turning it on.
	 */
	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
	ahd_outb(ahd, SXFRCTL1, sxfrctl1);

	/* Determine chip configuration */
	ahd->features &= ~AHD_WIDE;
	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
		ahd->features |= AHD_WIDE;

	/*
	 * If a recovery action has forced a chip reset,
	 * re-initialize the chip to our liking.
	 */
	if (reinit != 0)
		ahd_chip_init(ahd);

	return (0);
}

/*
 * Determine the number of SCBs available on the controller
 */
static int
ahd_probe_scbs(struct ahd_softc *ahd) {
	int i;

	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
	for (i = 0; i < AHD_SCB_MAX; i++) {
		int j;

		ahd_set_scbptr(ahd, i);
		ahd_outw(ahd, SCB_BASE, i);
		for (j = 2; j < 64; j++)
			ahd_outb(ahd, SCB_BASE+j, 0);
		/* Start out life as unallocated (needing an abort) */
		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
			break;
		ahd_set_scbptr(ahd, 0);
		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
			break;
	}
	return (i);
}

static void
ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 
{
	dma_addr_t *baddr;

	baddr = (dma_addr_t *)arg;
	*baddr = segs->ds_addr;
}

static void
ahd_initialize_hscbs(struct ahd_softc *ahd)
{
	int i;

	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
		ahd_set_scbptr(ahd, i);

		/* Clear the control byte. */
		ahd_outb(ahd, SCB_CONTROL, 0);

		/* Set the next pointer */
		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
	}
}

static int
ahd_init_scbdata(struct ahd_softc *ahd)
{
	struct	scb_data *scb_data;
	int	i;

	scb_data = &ahd->scb_data;
	TAILQ_INIT(&scb_data->free_scbs);
	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
		LIST_INIT(&scb_data->free_scb_lists[i]);
	LIST_INIT(&scb_data->any_dev_free_scb_list);
	SLIST_INIT(&scb_data->hscb_maps);
	SLIST_INIT(&scb_data->sg_maps);
	SLIST_INIT(&scb_data->sense_maps);

	/* Determine the number of hardware SCBs and initialize them */
	scb_data->maxhscbs = ahd_probe_scbs(ahd);
	if (scb_data->maxhscbs == 0) {
		printk("%s: No SCB space found\n", ahd_name(ahd));
		return (ENXIO);
	}

	ahd_initialize_hscbs(ahd);

	/*
	 * Create our DMA tags.  These tags define the kinds of device
	 * accessible memory allocations and memory mappings we will
	 * need to perform during normal operation.
	 *
	 * Unless we need to further restrict the allocation, we rely
	 * on the restrictions of the parent dmat, hence the common
	 * use of MAXADDR and MAXSIZE.
	 */

	/* DMA tag for our hardware scb structures */
	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
			       /*highaddr*/BUS_SPACE_MAXADDR,
			       /*filter*/NULL, /*filterarg*/NULL,
			       PAGE_SIZE, /*nsegments*/1,
			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
		goto error_exit;
	}

	scb_data->init_level++;

	/* DMA tag for our S/G structures. */
	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
			       /*highaddr*/BUS_SPACE_MAXADDR,
			       /*filter*/NULL, /*filterarg*/NULL,
			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
			       /*flags*/0, &scb_data->sg_dmat) != 0) {
		goto error_exit;
	}
#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
		       ahd_sglist_allocsize(ahd));
#endif

	scb_data->init_level++;

	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
			       /*highaddr*/BUS_SPACE_MAXADDR,
			       /*filter*/NULL, /*filterarg*/NULL,
			       PAGE_SIZE, /*nsegments*/1,
			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
			       /*flags*/0, &scb_data->sense_dmat) != 0) {
		goto error_exit;
	}

	scb_data->init_level++;

	/* Perform initial CCB allocation */
	ahd_alloc_scbs(ahd);

	if (scb_data->numscbs == 0) {
		printk("%s: ahd_init_scbdata - "
		       "Unable to allocate initial scbs\n",
		       ahd_name(ahd));
		goto error_exit;
	}

	/*
	 * Note that we were successful
	 */
	return (0); 

error_exit:

	return (ENOMEM);
}

static struct scb *
ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
{
	struct scb *scb;

	/*
	 * Look on the pending list.
	 */
	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
		if (SCB_GET_TAG(scb) == tag)
			return (scb);
	}

	/*
	 * Then on all of the collision free lists.
	 */
	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
		struct scb *list_scb;

		list_scb = scb;
		do {
			if (SCB_GET_TAG(list_scb) == tag)
				return (list_scb);
			list_scb = LIST_NEXT(list_scb, collision_links);
		} while (list_scb);
	}

	/*
	 * And finally on the generic free list.
	 */
	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
		if (SCB_GET_TAG(scb) == tag)
			return (scb);
	}

	return (NULL);
}

static void
ahd_fini_scbdata(struct ahd_softc *ahd)
{
	struct scb_data *scb_data;

	scb_data = &ahd->scb_data;
	if (scb_data == NULL)
		return;

	switch (scb_data->init_level) {
	default:
	case 7:
	{
		struct map_node *sns_map;

		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
					  sns_map->dmamap);
			ahd_dmamem_free(ahd, scb_data->sense_dmat,
					sns_map->vaddr, sns_map->dmamap);
			kfree(sns_map);
		}
		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
	}
		/* fall through */
	case 6:
	{
		struct map_node *sg_map;

		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
					  sg_map->dmamap);
			ahd_dmamem_free(ahd, scb_data->sg_dmat,
					sg_map->vaddr, sg_map->dmamap);
			kfree(sg_map);
		}
		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
	}
		/* fall through */
	case 5:
	{
		struct map_node *hscb_map;

		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
					  hscb_map->dmamap);
			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
					hscb_map->vaddr, hscb_map->dmamap);
			kfree(hscb_map);
		}
		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
		/* FALLTHROUGH */
	}
	case 4:
	case 3:
	case 2:
	case 1:
	case 0:
		break;
	}
}

/*
 * DSP filter Bypass must be enabled until the first selection
 * after a change in bus mode (Razor #491 and #493).
 */
static void
ahd_setup_iocell_workaround(struct ahd_softc *ahd)
{
	ahd_mode_state saved_modes;

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MISC) != 0)
		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
#endif
	ahd_restore_modes(ahd, saved_modes);
	ahd->flags &= ~AHD_HAD_FIRST_SEL;
}

static void
ahd_iocell_first_selection(struct ahd_softc *ahd)
{
	ahd_mode_state	saved_modes;
	u_int		sblkctl;

	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
		return;
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	sblkctl = ahd_inb(ahd, SBLKCTL);
	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_MISC) != 0)
		printk("%s: iocell first selection\n", ahd_name(ahd));
#endif
	if ((sblkctl & ENAB40) != 0) {
		ahd_outb(ahd, DSPDATACTL,
			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MISC) != 0)
			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
#endif
	}
	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
	ahd_outb(ahd, CLRINT, CLRSCSIINT);
	ahd_restore_modes(ahd, saved_modes);
	ahd->flags |= AHD_HAD_FIRST_SEL;
}

/*************************** SCB Management ***********************************/
static void
ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
{
	struct	scb_list *free_list;
	struct	scb_tailq *free_tailq;
	struct	scb *first_scb;

	scb->flags |= SCB_ON_COL_LIST;
	AHD_SET_SCB_COL_IDX(scb, col_idx);
	free_list = &ahd->scb_data.free_scb_lists[col_idx];
	free_tailq = &ahd->scb_data.free_scbs;
	first_scb = LIST_FIRST(free_list);
	if (first_scb != NULL) {
		LIST_INSERT_AFTER(first_scb, scb, collision_links);
	} else {
		LIST_INSERT_HEAD(free_list, scb, collision_links);
		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
	}
}

static void
ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
{
	struct	scb_list *free_list;
	struct	scb_tailq *free_tailq;
	struct	scb *first_scb;
	u_int	col_idx;

	scb->flags &= ~SCB_ON_COL_LIST;
	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
	free_list = &ahd->scb_data.free_scb_lists[col_idx];
	free_tailq = &ahd->scb_data.free_scbs;
	first_scb = LIST_FIRST(free_list);
	if (first_scb == scb) {
		struct scb *next_scb;

		/*
		 * Maintain order in the collision free
		 * lists for fairness if this device has
		 * other colliding tags active.
		 */
		next_scb = LIST_NEXT(scb, collision_links);
		if (next_scb != NULL) {
			TAILQ_INSERT_AFTER(free_tailq, scb,
					   next_scb, links.tqe);
		}
		TAILQ_REMOVE(free_tailq, scb, links.tqe);
	}
	LIST_REMOVE(scb, collision_links);
}

/*
 * Get a free scb. If there are none, see if we can allocate a new SCB.
 */
struct scb *
ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
{
	struct scb *scb;
	int tries;

	tries = 0;
look_again:
	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
			ahd_rem_col_list(ahd, scb);
			goto found;
		}
	}
	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {

		if (tries++ != 0)
			return (NULL);
		ahd_alloc_scbs(ahd);
		goto look_again;
	}
	LIST_REMOVE(scb, links.le);
	if (col_idx != AHD_NEVER_COL_IDX
	 && (scb->col_scb != NULL)
	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
		LIST_REMOVE(scb->col_scb, links.le);
		ahd_add_col_list(ahd, scb->col_scb, col_idx);
	}
found:
	scb->flags |= SCB_ACTIVE;
	return (scb);
}

/*
 * Return an SCB resource to the free list.
 */
void
ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
{
	/* Clean up for the next user */
	scb->flags = SCB_FLAG_NONE;
	scb->hscb->control = 0;
	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;

	if (scb->col_scb == NULL) {

		/*
		 * No collision possible.  Just free normally.
		 */
		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
				 scb, links.le);
	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {

		/*
		 * The SCB we might have collided with is on
		 * a free collision list.  Put both SCBs on
		 * the generic list.
		 */
		ahd_rem_col_list(ahd, scb->col_scb);
		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
				 scb, links.le);
		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
				 scb->col_scb, links.le);
	} else if ((scb->col_scb->flags
		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {

		/*
		 * The SCB we might collide with on the next allocation
		 * is still active in a non-packetized, tagged, context.
		 * Put us on the SCB collision list.
		 */
		ahd_add_col_list(ahd, scb,
				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
	} else {
		/*
		 * The SCB we might collide with on the next allocation
		 * is either active in a packetized context, or free.
		 * Since we can't collide, put this SCB on the generic
		 * free list.
		 */
		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
				 scb, links.le);
	}

	ahd_platform_scb_free(ahd, scb);
}

static void
ahd_alloc_scbs(struct ahd_softc *ahd)
{
	struct scb_data *scb_data;
	struct scb	*next_scb;
	struct hardware_scb *hscb;
	struct map_node *hscb_map;
	struct map_node *sg_map;
	struct map_node *sense_map;
	uint8_t		*segs;
	uint8_t		*sense_data;
	dma_addr_t	 hscb_busaddr;
	dma_addr_t	 sg_busaddr;
	dma_addr_t	 sense_busaddr;
	int		 newcount;
	int		 i;

	scb_data = &ahd->scb_data;
	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
		/* Can't allocate any more */
		return;

	if (scb_data->scbs_left != 0) {
		int offset;

		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
	} else {
		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);

		if (hscb_map == NULL)
			return;

		/* Allocate the next batch of hardware SCBs */
		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
				     (void **)&hscb_map->vaddr,
				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
			kfree(hscb_map);
			return;
		}

		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);

		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
				&hscb_map->physaddr, /*flags*/0);

		hscb = (struct hardware_scb *)hscb_map->vaddr;
		hscb_busaddr = hscb_map->physaddr;
		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
	}

	if (scb_data->sgs_left != 0) {
		int offset;

		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
		sg_map = SLIST_FIRST(&scb_data->sg_maps);
		segs = sg_map->vaddr + offset;
		sg_busaddr = sg_map->physaddr + offset;
	} else {
		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);

		if (sg_map == NULL)
			return;

		/* Allocate the next batch of S/G lists */
		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
				     (void **)&sg_map->vaddr,
				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
			kfree(sg_map);
			return;
		}

		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);

		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
				sg_map->vaddr, ahd_sglist_allocsize(ahd),
				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);

		segs = sg_map->vaddr;
		sg_busaddr = sg_map->physaddr;
		scb_data->sgs_left =
		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
#ifdef AHD_DEBUG
		if (ahd_debug & AHD_SHOW_MEMORY)
			printk("Mapped SG data\n");
#endif
	}

	if (scb_data->sense_left != 0) {
		int offset;

		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
		sense_map = SLIST_FIRST(&scb_data->sense_maps);
		sense_data = sense_map->vaddr + offset;
		sense_busaddr = sense_map->physaddr + offset;
	} else {
		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);

		if (sense_map == NULL)
			return;

		/* Allocate the next batch of sense buffers */
		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
				     (void **)&sense_map->vaddr,
				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
			kfree(sense_map);
			return;
		}

		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);

		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
				&sense_map->physaddr, /*flags*/0);

		sense_data = sense_map->vaddr;
		sense_busaddr = sense_map->physaddr;
		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
#ifdef AHD_DEBUG
		if (ahd_debug & AHD_SHOW_MEMORY)
			printk("Mapped sense data\n");
#endif
	}

	newcount = min(scb_data->sense_left, scb_data->scbs_left);
	newcount = min(newcount, scb_data->sgs_left);
	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
	for (i = 0; i < newcount; i++) {
		struct scb_platform_data *pdata;
		u_int col_tag;

		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
		if (next_scb == NULL)
			break;

		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
		if (pdata == NULL) {
			kfree(next_scb);
			break;
		}
		next_scb->platform_data = pdata;
		next_scb->hscb_map = hscb_map;
		next_scb->sg_map = sg_map;
		next_scb->sense_map = sense_map;
		next_scb->sg_list = segs;
		next_scb->sense_data = sense_data;
		next_scb->sense_busaddr = sense_busaddr;
		memset(hscb, 0, sizeof(*hscb));
		next_scb->hscb = hscb;
		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);

		/*
		 * The sequencer always starts with the second entry.
		 * The first entry is embedded in the scb.
		 */
		next_scb->sg_list_busaddr = sg_busaddr;
		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
			next_scb->sg_list_busaddr
			    += sizeof(struct ahd_dma64_seg);
		else
			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
		next_scb->ahd_softc = ahd;
		next_scb->flags = SCB_FLAG_NONE;
		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
		col_tag = scb_data->numscbs ^ 0x100;
		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
		if (next_scb->col_scb != NULL)
			next_scb->col_scb->col_scb = next_scb;
		ahd_free_scb(ahd, next_scb);
		hscb++;
		hscb_busaddr += sizeof(*hscb);
		segs += ahd_sglist_size(ahd);
		sg_busaddr += ahd_sglist_size(ahd);
		sense_data += AHD_SENSE_BUFSIZE;
		sense_busaddr += AHD_SENSE_BUFSIZE;
		scb_data->numscbs++;
		scb_data->sense_left--;
		scb_data->scbs_left--;
		scb_data->sgs_left--;
	}
}

void
ahd_controller_info(struct ahd_softc *ahd, char *buf)
{
	const char *speed;
	const char *type;
	int len;

	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
	buf += len;

	speed = "Ultra320 ";
	if ((ahd->features & AHD_WIDE) != 0) {
		type = "Wide ";
	} else {
		type = "Single ";
	}
	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
		      speed, type, ahd->channel, ahd->our_id);
	buf += len;

	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
		ahd->scb_data.maxhscbs);
}

static const char *channel_strings[] = {
	"Primary Low",
	"Primary High",
	"Secondary Low", 
	"Secondary High"
};

static const char *termstat_strings[] = {
	"Terminated Correctly",
	"Over Terminated",
	"Under Terminated",
	"Not Configured"
};

/***************************** Timer Facilities *******************************/
static void
ahd_timer_reset(struct timer_list *timer, int usec)
{
	del_timer(timer);
	timer->expires = jiffies + (usec * HZ)/1000000;
	add_timer(timer);
}

/*
 * Start the board, ready for normal operation
 */
int
ahd_init(struct ahd_softc *ahd)
{
	uint8_t		*next_vaddr;
	dma_addr_t	 next_baddr;
	size_t		 driver_data_size;
	int		 i;
	int		 error;
	u_int		 warn_user;
	uint8_t		 current_sensing;
	uint8_t		 fstat;

	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);

	ahd->stack_size = ahd_probe_stack_size(ahd);
	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
					 GFP_ATOMIC);
	if (ahd->saved_stack == NULL)
		return (ENOMEM);

	/*
	 * Verify that the compiler hasn't over-aggressively
	 * padded important structures.
	 */
	if (sizeof(struct hardware_scb) != 64)
		panic("Hardware SCB size is incorrect");

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
		ahd->flags |= AHD_SEQUENCER_DEBUG;
#endif

	/*
	 * Default to allowing initiator operations.
	 */
	ahd->flags |= AHD_INITIATORROLE;

	/*
	 * Only allow target mode features if this unit has them enabled.
	 */
	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
		ahd->features &= ~AHD_TARGETMODE;

	ahd->init_level++;

	/*
	 * DMA tag for our command fifos and other data in system memory
	 * the card's sequencer must be able to access.  For initiator
	 * roles, we need to allocate space for the qoutfifo.  When providing
	 * for the target mode role, we must additionally provide space for
	 * the incoming target command fifo.
	 */
	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
			 + sizeof(struct hardware_scb);
	if ((ahd->features & AHD_TARGETMODE) != 0)
		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
		driver_data_size += PKT_OVERRUN_BUFSIZE;
	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
			       /*highaddr*/BUS_SPACE_MAXADDR,
			       /*filter*/NULL, /*filterarg*/NULL,
			       driver_data_size,
			       /*nsegments*/1,
			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
		return (ENOMEM);
	}

	ahd->init_level++;

	/* Allocation of driver data */
	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
			     (void **)&ahd->shared_data_map.vaddr,
			     BUS_DMA_NOWAIT,
			     &ahd->shared_data_map.dmamap) != 0) {
		return (ENOMEM);
	}

	ahd->init_level++;

	/* And permanently map it in */
	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
			ahd->shared_data_map.vaddr, driver_data_size,
			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
			/*flags*/0);
	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
	next_baddr = ahd->shared_data_map.physaddr
		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
	if ((ahd->features & AHD_TARGETMODE) != 0) {
		ahd->targetcmds = (struct target_cmd *)next_vaddr;
		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
	}

	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
		ahd->overrun_buf = next_vaddr;
		next_vaddr += PKT_OVERRUN_BUFSIZE;
		next_baddr += PKT_OVERRUN_BUFSIZE;
	}

	/*
	 * We need one SCB to serve as the "next SCB".  Since the
	 * tag identifier in this SCB will never be used, there is
	 * no point in using a valid HSCB tag from an SCB pulled from
	 * the standard free pool.  So, we allocate this "sentinel"
	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
	 */
	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
	ahd->next_queued_hscb_map = &ahd->shared_data_map;
	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);

	ahd->init_level++;

	/* Allocate SCB data now that buffer_dmat is initialized */
	if (ahd_init_scbdata(ahd) != 0)
		return (ENOMEM);

	if ((ahd->flags & AHD_INITIATORROLE) == 0)
		ahd->flags &= ~AHD_RESET_BUS_A;

	/*
	 * Before committing these settings to the chip, give
	 * the OSM one last chance to modify our configuration.
	 */
	ahd_platform_init(ahd);

	/* Bring up the chip. */
	ahd_chip_init(ahd);

	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);

	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
		goto init_done;

	/*
	 * Verify termination based on current draw and
	 * warn user if the bus is over/under terminated.
	 */
	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
				   CURSENSE_ENB);
	if (error != 0) {
		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
		goto init_done;
	}
	for (i = 20, fstat = FLX_FSTAT_BUSY;
	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
		if (error != 0) {
			printk("%s: current sensing timeout 2\n",
			       ahd_name(ahd));
			goto init_done;
		}
	}
	if (i == 0) {
		printk("%s: Timedout during current-sensing test\n",
		       ahd_name(ahd));
		goto init_done;
	}

	/* Latch Current Sensing status. */
	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
	if (error != 0) {
		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
		goto init_done;
	}

	/* Diable current sensing. */
	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);

#ifdef AHD_DEBUG
	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
		printk("%s: current_sensing == 0x%x\n",
		       ahd_name(ahd), current_sensing);
	}
#endif
	warn_user = 0;
	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
		u_int term_stat;

		term_stat = (current_sensing & FLX_CSTAT_MASK);
		switch (term_stat) {
		case FLX_CSTAT_OVER:
		case FLX_CSTAT_UNDER:
			warn_user++;
			/* fall through */
		case FLX_CSTAT_INVALID:
		case FLX_CSTAT_OKAY:
			if (warn_user == 0 && bootverbose == 0)
				break;
			printk("%s: %s Channel %s\n", ahd_name(ahd),
			       channel_strings[i], termstat_strings[term_stat]);
			break;
		}
	}
	if (warn_user) {
		printk("%s: WARNING. Termination is not configured correctly.\n"
		       "%s: WARNING. SCSI bus operations may FAIL.\n",
		       ahd_name(ahd), ahd_name(ahd));
	}
init_done:
	ahd_restart(ahd);
	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
	return (0);
}

/*
 * (Re)initialize chip state after a chip reset.
 */
static void
ahd_chip_init(struct ahd_softc *ahd)
{
	uint32_t busaddr;
	u_int	 sxfrctl1;
	u_int	 scsiseq_template;
	u_int	 wait;
	u_int	 i;
	u_int	 target;

	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	/*
	 * Take the LED out of diagnostic mode
	 */
	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));

	/*
	 * Return HS_MAILBOX to its default value.
	 */
	ahd->hs_mailbox = 0;
	ahd_outb(ahd, HS_MAILBOX, 0);

	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
	ahd_outb(ahd, IOWNID, ahd->our_id);
	ahd_outb(ahd, TOWNID, ahd->our_id);
	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
	 && (ahd->seltime != STIMESEL_MIN)) {
		/*
		 * The selection timer duration is twice as long
		 * as it should be.  Halve it by adding "1" to
		 * the user specified setting.
		 */
		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
	} else {
		sxfrctl1 |= ahd->seltime;
	}
		
	ahd_outb(ahd, SXFRCTL0, DFON);
	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);

	/*
	 * Now that termination is set, wait for up
	 * to 500ms for our transceivers to settle.  If
	 * the adapter does not have a cable attached,
	 * the transceivers may never settle, so don't
	 * complain if we fail here.
	 */
	for (wait = 10000;
	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
	     wait--)
		ahd_delay(100);

	/* Clear any false bus resets due to the transceivers settling */
	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
	ahd_outb(ahd, CLRINT, CLRSCSIINT);

	/* Initialize mode specific S/G state. */
	for (i = 0; i < 2; i++) {
		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
		ahd_outb(ahd, SG_STATE, 0);
		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
		ahd_outb(ahd, SEQIMODE,
			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
	}

	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
	} else {
		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
	}
	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
		/*
		 * Do not issue a target abort when a split completion
		 * error occurs.  Let our PCIX interrupt handler deal
		 * with it instead. H2A4 Razor #625
		 */
		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);

	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);

	/*
	 * Tweak IOCELL settings.
	 */
	if ((ahd->flags & AHD_HP_BOARD) != 0) {
		for (i = 0; i < NUMDSPS; i++) {
			ahd_outb(ahd, DSPSELECT, i);
			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
		}
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MISC) != 0)
			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
			       WRTBIASCTL_HP_DEFAULT);
#endif
	}
	ahd_setup_iocell_workaround(ahd);

	/*
	 * Enable LQI Manager interrupts.
	 */
	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
	/*
	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
	 * manually for the command phase at the start of a packetized
	 * selection case.  ENLQOBUSFREE should be made redundant by
	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
	 * events fail to assert the BUSFREE interrupt so we must
	 * also enable LQOBUSFREE interrupts.
	 */
	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);

	/*
	 * Setup sequencer interrupt handlers.
	 */
	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));

	/*
	 * Setup SCB Offset registers.
	 */
	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
			 pkt_long_lun));
	} else {
		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
	}
	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
				       shared_data.idata.cdb));
	ahd_outb(ahd, QNEXTPTR,
		 offsetof(struct hardware_scb, next_hscb_busaddr));
	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
		ahd_outb(ahd, LUNLEN,
			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
	} else {
		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
	}
	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
	ahd_outb(ahd, MAXCMD, 0xFF);
	ahd_outb(ahd, SCBAUTOPTR,
		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));

	/* We haven't been enabled for target mode yet. */
	ahd_outb(ahd, MULTARGID, 0);
	ahd_outb(ahd, MULTARGID + 1, 0);

	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	/* Initialize the negotiation table. */
	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
		/*
		 * Clear the spare bytes in the neg table to avoid
		 * spurious parity errors.
		 */
		for (target = 0; target < AHD_NUM_TARGETS; target++) {
			ahd_outb(ahd, NEGOADDR, target);
			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
				ahd_outb(ahd, ANNEXDAT, 0);
		}
	}
	for (target = 0; target < AHD_NUM_TARGETS; target++) {
		struct	 ahd_devinfo devinfo;
		struct	 ahd_initiator_tinfo *tinfo;
		struct	 ahd_tmode_tstate *tstate;

		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
					    target, &tstate);
		ahd_compile_devinfo(&devinfo, ahd->our_id,
				    target, CAM_LUN_WILDCARD,
				    'A', ROLE_INITIATOR);
		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
	}

	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
	ahd_outb(ahd, CLRINT, CLRSCSIINT);

#ifdef NEEDS_MORE_TESTING
	/*
	 * Always enable abort on incoming L_Qs if this feature is
	 * supported.  We use this to catch invalid SCB references.
	 */
	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
		ahd_outb(ahd, LQCTL1, ABORTPENDING);
	else
#endif
		ahd_outb(ahd, LQCTL1, 0);

	/* All of our queues are empty */
	ahd->qoutfifonext = 0;
	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
	for (i = 0; i < AHD_QOUT_SIZE; i++)
		ahd->qoutfifo[i].valid_tag = 0;
	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);

	ahd->qinfifonext = 0;
	for (i = 0; i < AHD_QIN_SIZE; i++)
		ahd->qinfifo[i] = SCB_LIST_NULL;

	if ((ahd->features & AHD_TARGETMODE) != 0) {
		/* All target command blocks start out invalid. */
		for (i = 0; i < AHD_TMODE_CMDS; i++)
			ahd->targetcmds[i].cmd_valid = 0;
		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
		ahd->tqinfifonext = 1;
		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
	}

	/* Initialize Scratch Ram. */
	ahd_outb(ahd, SEQ_FLAGS, 0);
	ahd_outb(ahd, SEQ_FLAGS2, 0);

	/* We don't have any waiting selections */
	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
	for (i = 0; i < AHD_NUM_TARGETS; i++)
		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);

	/*
	 * Nobody is waiting to be DMAed into the QOUTFIFO.
	 */
	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);

	/*
	 * The Freeze Count is 0.
	 */
	ahd->qfreeze_cnt = 0;
	ahd_outw(ahd, QFREEZE_COUNT, 0);
	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);

	/*
	 * Tell the sequencer where it can find our arrays in memory.
	 */
	busaddr = ahd->shared_data_map.physaddr;
	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);

	/*
	 * Setup the allowed SCSI Sequences based on operational mode.
	 * If we are a target, we'll enable select in operations once
	 * we've had a lun enabled.
	 */
	scsiseq_template = ENAUTOATNP;
	if ((ahd->flags & AHD_INITIATORROLE) != 0)
		scsiseq_template |= ENRSELI;
	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);

	/* There are no busy SCBs yet. */
	for (target = 0; target < AHD_NUM_TARGETS; target++) {
		int lun;

		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
	}

	/*
	 * Initialize the group code to command length table.
	 * Vendor Unique codes are set to 0 so we only capture
	 * the first byte of the cdb.  These can be overridden
	 * when target mode is enabled.
	 */
	ahd_outb(ahd, CMDSIZE_TABLE, 5);
	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
		
	/* Tell the sequencer of our initial queue positions */
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
	ahd->qinfifonext = 0;
	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
	ahd_set_hescb_qoff(ahd, 0);
	ahd_set_snscb_qoff(ahd, 0);
	ahd_set_sescb_qoff(ahd, 0);
	ahd_set_sdscb_qoff(ahd, 0);

	/*
	 * Tell the sequencer which SCB will be the next one it receives.
	 */
	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);

	/*
	 * Default to coalescing disabled.
	 */
	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
	ahd_outw(ahd, CMDS_PENDING, 0);
	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
				     ahd->int_coalescing_maxcmds,
				     ahd->int_coalescing_mincmds);
	ahd_enable_coalescing(ahd, FALSE);

	ahd_loadseq(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);

		negodat3 |= ENSLOWCRC;
		ahd_outb(ahd, NEGCONOPTS, negodat3);
		negodat3 = ahd_inb(ahd, NEGCONOPTS);
		if (!(negodat3 & ENSLOWCRC))
			printk("aic79xx: failed to set the SLOWCRC bit\n");
		else
			printk("aic79xx: SLOWCRC bit set\n");
	}
}

/*
 * Setup default device and controller settings.
 * This should only be called if our probe has
 * determined that no configuration data is available.
 */
int
ahd_default_config(struct ahd_softc *ahd)
{
	int	targ;

	ahd->our_id = 7;

	/*
	 * Allocate a tstate to house information for our
	 * initiator presence on the bus as well as the user
	 * data for any target mode initiator.
	 */
	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
		printk("%s: unable to allocate ahd_tmode_tstate.  "
		       "Failing attach\n", ahd_name(ahd));
		return (ENOMEM);
	}

	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
		struct	 ahd_devinfo devinfo;
		struct	 ahd_initiator_tinfo *tinfo;
		struct	 ahd_tmode_tstate *tstate;
		uint16_t target_mask;

		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
					    targ, &tstate);
		/*
		 * We support SPC2 and SPI4.
		 */
		tinfo->user.protocol_version = 4;
		tinfo->user.transport_version = 4;

		target_mask = 0x01 << targ;
		ahd->user_discenable |= target_mask;
		tstate->discenable |= target_mask;
		ahd->user_tagenable |= target_mask;
#ifdef AHD_FORCE_160
		tinfo->user.period = AHD_SYNCRATE_DT;
#else
		tinfo->user.period = AHD_SYNCRATE_160;
#endif
		tinfo->user.offset = MAX_OFFSET;
		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
					| MSG_EXT_PPR_WR_FLOW
					| MSG_EXT_PPR_HOLD_MCS
					| MSG_EXT_PPR_IU_REQ
					| MSG_EXT_PPR_QAS_REQ
					| MSG_EXT_PPR_DT_REQ;
		if ((ahd->features & AHD_RTI) != 0)
			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;

		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;

		/*
		 * Start out Async/Narrow/Untagged and with
		 * conservative protocol support.
		 */
		tinfo->goal.protocol_version = 2;
		tinfo->goal.transport_version = 2;
		tinfo->curr.protocol_version = 2;
		tinfo->curr.transport_version = 2;
		ahd_compile_devinfo(&devinfo, ahd->our_id,
				    targ, CAM_LUN_WILDCARD,
				    'A', ROLE_INITIATOR);
		tstate->tagenable &= ~target_mask;
		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
				 /*paused*/TRUE);
	}
	return (0);
}

/*
 * Parse device configuration information.
 */
int
ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
{
	int targ;
	int max_targ;

	max_targ = sc->max_targets & CFMAXTARG;
	ahd->our_id = sc->brtime_id & CFSCSIID;

	/*
	 * Allocate a tstate to house information for our
	 * initiator presence on the bus as well as the user
	 * data for any target mode initiator.
	 */
	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
		printk("%s: unable to allocate ahd_tmode_tstate.  "
		       "Failing attach\n", ahd_name(ahd));
		return (ENOMEM);
	}

	for (targ = 0; targ < max_targ; targ++) {
		struct	 ahd_devinfo devinfo;
		struct	 ahd_initiator_tinfo *tinfo;
		struct	 ahd_transinfo *user_tinfo;
		struct	 ahd_tmode_tstate *tstate;
		uint16_t target_mask;

		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
					    targ, &tstate);
		user_tinfo = &tinfo->user;

		/*
		 * We support SPC2 and SPI4.
		 */
		tinfo->user.protocol_version = 4;
		tinfo->user.transport_version = 4;

		target_mask = 0x01 << targ;
		ahd->user_discenable &= ~target_mask;
		tstate->discenable &= ~target_mask;
		ahd->user_tagenable &= ~target_mask;
		if (sc->device_flags[targ] & CFDISC) {
			tstate->discenable |= target_mask;
			ahd->user_discenable |= target_mask;
			ahd->user_tagenable |= target_mask;
		} else {
			/*
			 * Cannot be packetized without disconnection.
			 */
			sc->device_flags[targ] &= ~CFPACKETIZED;
		}

		user_tinfo->ppr_options = 0;
		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
		if (user_tinfo->period < CFXFER_ASYNC) {
			if (user_tinfo->period <= AHD_PERIOD_10MHz)
				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
			user_tinfo->offset = MAX_OFFSET;
		} else  {
			user_tinfo->offset = 0;
			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
		}
#ifdef AHD_FORCE_160
		if (user_tinfo->period <= AHD_SYNCRATE_160)
			user_tinfo->period = AHD_SYNCRATE_DT;
#endif

		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
						|  MSG_EXT_PPR_WR_FLOW
						|  MSG_EXT_PPR_HOLD_MCS
						|  MSG_EXT_PPR_IU_REQ;
			if ((ahd->features & AHD_RTI) != 0)
				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
		}

		if ((sc->device_flags[targ] & CFQAS) != 0)
			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;

		if ((sc->device_flags[targ] & CFWIDEB) != 0)
			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
		else
			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
#ifdef AHD_DEBUG
		if ((ahd_debug & AHD_SHOW_MISC) != 0)
			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
			       user_tinfo->period, user_tinfo->offset,
			       user_tinfo->ppr_options);
#endif
		/*
		 * Start out Async/Narrow/Untagged and with
		 * conservative protocol support.
		 */
		tstate->tagenable &= ~target_mask;
		tinfo->goal.protocol_version = 2;
		tinfo->goal.transport_version = 2;
		tinfo->curr.protocol_version = 2;
		tinfo->curr.transport_version = 2;
		ahd_compile_devinfo(&devinfo, ahd->our_id,
				    targ, CAM_LUN_WILDCARD,
				    'A', ROLE_INITIATOR);
		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
				 /*paused*/TRUE);
	}

	ahd->flags &= ~AHD_SPCHK_ENB_A;
	if (sc->bios_control & CFSPARITY)
		ahd->flags |= AHD_SPCHK_ENB_A;

	ahd->flags &= ~AHD_RESET_BUS_A;
	if (sc->bios_control & CFRESETB)
		ahd->flags |= AHD_RESET_BUS_A;

	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
	if (sc->bios_control & CFEXTEND)
		ahd->flags |= AHD_EXTENDED_TRANS_A;

	ahd->flags &= ~AHD_BIOS_ENABLED;
	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
		ahd->flags |= AHD_BIOS_ENABLED;

	ahd->flags &= ~AHD_STPWLEVEL_A;
	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
		ahd->flags |= AHD_STPWLEVEL_A;

	return (0);
}

/*
 * Parse device configuration information.
 */
int
ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
{
	int error;

	error = ahd_verify_vpd_cksum(vpd);
	if (error == 0)
		return (EINVAL);
	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
		ahd->flags |= AHD_BOOT_CHANNEL;
	return (0);
}

void
ahd_intr_enable(struct ahd_softc *ahd, int enable)
{
	u_int hcntrl;

	hcntrl = ahd_inb(ahd, HCNTRL);
	hcntrl &= ~INTEN;
	ahd->pause &= ~INTEN;
	ahd->unpause &= ~INTEN;
	if (enable) {
		hcntrl |= INTEN;
		ahd->pause |= INTEN;
		ahd->unpause |= INTEN;
	}
	ahd_outb(ahd, HCNTRL, hcntrl);
}

static void
ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
			     u_int mincmds)
{
	if (timer > AHD_TIMER_MAX_US)
		timer = AHD_TIMER_MAX_US;
	ahd->int_coalescing_timer = timer;

	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
	ahd->int_coalescing_maxcmds = maxcmds;
	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
}

static void
ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
{

	ahd->hs_mailbox &= ~ENINT_COALESCE;
	if (enable)
		ahd->hs_mailbox |= ENINT_COALESCE;
	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
	ahd_flush_device_writes(ahd);
	ahd_run_qoutfifo(ahd);
}

/*
 * Ensure that the card is paused in a location
 * outside of all critical sections and that all
 * pending work is completed prior to returning.
 * This routine should only be called from outside
 * an interrupt context.
 */
void
ahd_pause_and_flushwork(struct ahd_softc *ahd)
{
	u_int intstat;
	u_int maxloops;

	maxloops = 1000;
	ahd->flags |= AHD_ALL_INTERRUPTS;
	ahd_pause(ahd);
	/*
	 * Freeze the outgoing selections.  We do this only
	 * until we are safely paused without further selections
	 * pending.
	 */
	ahd->qfreeze_cnt--;
	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
	do {

		ahd_unpause(ahd);
		/*
		 * Give the sequencer some time to service
		 * any active selections.
		 */
		ahd_delay(500);

		ahd_intr(ahd);
		ahd_pause(ahd);
		intstat = ahd_inb(ahd, INTSTAT);
		if ((intstat & INT_PEND) == 0) {
			ahd_clear_critical_section(ahd);
			intstat = ahd_inb(ahd, INTSTAT);
		}
	} while (--maxloops
	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
	      && ((intstat & INT_PEND) != 0
	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));

	if (maxloops == 0) {
		printk("Infinite interrupt loop, INTSTAT = %x",
		      ahd_inb(ahd, INTSTAT));
	}
	ahd->qfreeze_cnt++;
	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);

	ahd_flush_qoutfifo(ahd);

	ahd->flags &= ~AHD_ALL_INTERRUPTS;
}

#ifdef CONFIG_PM
int
ahd_suspend(struct ahd_softc *ahd)
{

	ahd_pause_and_flushwork(ahd);

	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
		ahd_unpause(ahd);
		return (EBUSY);
	}
	ahd_shutdown(ahd);
	return (0);
}

void
ahd_resume(struct ahd_softc *ahd)
{

	ahd_reset(ahd, /*reinit*/TRUE);
	ahd_intr_enable(ahd, TRUE); 
	ahd_restart(ahd);
}
#endif

/************************** Busy Target Table *********************************/
/*
 * Set SCBPTR to the SCB that contains the busy
 * table entry for TCL.  Return the offset into
 * the SCB that contains the entry for TCL.
 * saved_scbid is dereferenced and set to the
 * scbid that should be restored once manipualtion
 * of the TCL entry is complete.
 */
static inline u_int
ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
{
	/*
	 * Index to the SCB that contains the busy entry.
	 */
	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
	*saved_scbid = ahd_get_scbptr(ahd);
	ahd_set_scbptr(ahd, TCL_LUN(tcl)
		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));

	/*
	 * And now calculate the SCB offset to the entry.
	 * Each entry is 2 bytes wide, hence the
	 * multiplication by 2.
	 */
	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
}

/*
 * Return the untagged transaction id for a given target/channel lun.
 */
static u_int
ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
{
	u_int scbid;
	u_int scb_offset;
	u_int saved_scbptr;
		
	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
	scbid = ahd_inw_scbram(ahd, scb_offset);
	ahd_set_scbptr(ahd, saved_scbptr);
	return (scbid);
}

static void
ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
{
	u_int scb_offset;
	u_int saved_scbptr;
		
	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
	ahd_outw(ahd, scb_offset, scbid);
	ahd_set_scbptr(ahd, saved_scbptr);
}

/************************** SCB and SCB queue management **********************/
static int
ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
	      char channel, int lun, u_int tag, role_t role)
{
	int targ = SCB_GET_TARGET(ahd, scb);
	char chan = SCB_GET_CHANNEL(ahd, scb);
	int slun = SCB_GET_LUN(scb);
	int match;

	match = ((chan == channel) || (channel == ALL_CHANNELS));
	if (match != 0)
		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
	if (match != 0)
		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
	if (match != 0) {
#ifdef AHD_TARGET_MODE
		int group;

		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
		if (role == ROLE_INITIATOR) {
			match = (group != XPT_FC_GROUP_TMODE)
			      && ((tag == SCB_GET_TAG(scb))
			       || (tag == SCB_LIST_NULL));
		} else if (role == ROLE_TARGET) {
			match = (group == XPT_FC_GROUP_TMODE)
			      && ((tag == scb->io_ctx->csio.tag_id)
			       || (tag == SCB_LIST_NULL));
		}
#else /* !AHD_TARGET_MODE */
		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
#endif /* AHD_TARGET_MODE */
	}

	return match;
}

static void
ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
{
	int	target;
	char	channel;
	int	lun;

	target = SCB_GET_TARGET(ahd, scb);
	lun = SCB_GET_LUN(scb);
	channel = SCB_GET_CHANNEL(ahd, scb);
	
	ahd_search_qinfifo(ahd, target, channel, lun,
			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);

	ahd_platform_freeze_devq(ahd, scb);
}

void
ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
{
	struct scb	*prev_scb;
	ahd_mode_state	 saved_modes;

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
	prev_scb = NULL;
	if (ahd_qinfifo_count(ahd) != 0) {
		u_int prev_tag;
		u_int prev_pos;

		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
		prev_tag = ahd->qinfifo[prev_pos];
		prev_scb = ahd_lookup_scb(ahd, prev_tag);
	}
	ahd_qinfifo_requeue(ahd, prev_scb, scb);
	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
	ahd_restore_modes(ahd, saved_modes);
}

static void
ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
		    struct scb *scb)
{
	if (prev_scb == NULL) {
		uint32_t busaddr;

		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
	} else {
		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
		ahd_sync_scb(ahd, prev_scb, 
			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
	}
	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
	ahd->qinfifonext++;
	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}

static int
ahd_qinfifo_count(struct ahd_softc *ahd)
{
	u_int qinpos;
	u_int wrap_qinpos;
	u_int wrap_qinfifonext;

	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
	qinpos = ahd_get_snscb_qoff(ahd);
	wrap_qinpos = AHD_QIN_WRAP(qinpos);
	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
	if (wrap_qinfifonext >= wrap_qinpos)
		return (wrap_qinfifonext - wrap_qinpos);
	else
		return (wrap_qinfifonext
		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
}

static void
ahd_reset_cmds_pending(struct ahd_softc *ahd)
{
	struct		scb *scb;
	ahd_mode_state	saved_modes;
	u_int		pending_cmds;

	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);

	/*
	 * Don't count any commands as outstanding that the
	 * sequencer has already marked for completion.
	 */
	ahd_flush_qoutfifo(ahd);

	pending_cmds = 0;
	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
		pending_cmds++;
	}
	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
	ahd_restore_modes(ahd, saved_modes);
	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
}

static void
ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
{
	cam_status ostat;
	cam_status cstat;

	ostat = ahd_get_transaction_status(scb);
	if (ostat == CAM_REQ_INPROG)
		ahd_set_transaction_status(scb, status);
	cstat = ahd_get_transaction_status(scb);
	if (cstat != CAM_REQ_CMP)
		ahd_freeze_scb(scb);
	ahd_done(ahd, scb);
}

int
ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
		   int lun, u_int tag, role_t role, uint32_t status,
		   ahd_search_action action)
{
	struct scb	*scb;
	struct scb	*mk_msg_scb;
	struct scb	*prev_scb;
	ahd_mode_state	 saved_modes;
	u_int		 qinstart;
	u_int		 qinpos;
	u_int		 qintail;
	u_int		 tid_next;
	u_int		 tid_prev;
	u_int		 scbid;
	u_int		 seq_flags2;
	u_int		 savedscbptr;
	uint32_t	 busaddr;
	int		 found;
	int		 targets;

	/* Must be in CCHAN mode */
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);

	/*
	 * Halt any pending SCB DMA.  The sequencer will reinitiate
	 * this dma if the qinfifo is not empty once we unpause.
	 */
	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
		ahd_outb(ahd, CCSCBCTL,
			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
			;
	}
	/* Determine sequencer's position in the qinfifo. */
	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
	qinstart = ahd_get_snscb_qoff(ahd);
	qinpos = AHD_QIN_WRAP(qinstart);
	found = 0;
	prev_scb = NULL;

	if (action == SEARCH_PRINT) {
		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
		       qinstart, ahd->qinfifonext);
	}

	/*
	 * Start with an empty queue.  Entries that are not chosen
	 * for removal will be re-added to the queue as we go.
	 */
	ahd->qinfifonext = qinstart;
	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);

	while (qinpos != qintail) {
		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
		if (scb == NULL) {
			printk("qinpos = %d, SCB index = %d\n",
				qinpos, ahd->qinfifo[qinpos]);
			panic("Loop 1\n");
		}

		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
			/*
			 * We found an scb that needs to be acted on.
			 */
			found++;
			switch (action) {
			case SEARCH_COMPLETE:
				if ((scb->flags & SCB_ACTIVE) == 0)
					printk("Inactive SCB in qinfifo\n");
				ahd_done_with_status(ahd, scb, status);
				/* FALLTHROUGH */
			case SEARCH_REMOVE:
				break;
			case SEARCH_PRINT:
				printk(" 0x%x", ahd->qinfifo[qinpos]);
				/* FALLTHROUGH */
			case SEARCH_COUNT:
				ahd_qinfifo_requeue(ahd, prev_scb, scb);
				prev_scb = scb;
				break;
			}
		} else {
			ahd_qinfifo_requeue(ahd, prev_scb, scb);
			prev_scb = scb;
		}
		qinpos = AHD_QIN_WRAP(qinpos+1);
	}

	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);

	if (action == SEARCH_PRINT)
		printk("\nWAITING_TID_QUEUES:\n");

	/*
	 * Search waiting for selection lists.  We traverse the
	 * list of "their ids" waiting for selection and, if
	 * appropriate, traverse the SCBs of each "their id"
	 * looking for matches.
	 */
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
	} else
		mk_msg_scb = NULL;
	savedscbptr = ahd_get_scbptr(ahd);
	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
	tid_prev = SCB_LIST_NULL;
	targets = 0;
	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
		u_int tid_head;
		u_int tid_tail;

		targets++;
		if (targets > AHD_NUM_TARGETS)
			panic("TID LIST LOOP");

		if (scbid >= ahd->scb_data.numscbs) {
			printk("%s: Waiting TID List inconsistency. "
			       "SCB index == 0x%x, yet numscbs == 0x%x.",
			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
			ahd_dump_card_state(ahd);
			panic("for safety");
		}
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: SCB = 0x%x Not Active!\n",
			       ahd_name(ahd), scbid);
			panic("Waiting TID List traversal\n");
		}
		ahd_set_scbptr(ahd, scbid);
		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
			tid_prev = scbid;
			continue;
		}

		/*
		 * We found a list of scbs that needs to be searched.
		 */
		if (action == SEARCH_PRINT)
			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
		tid_head = scbid;
		found += ahd_search_scb_list(ahd, target, channel,
					     lun, tag, role, status,
					     action, &tid_head, &tid_tail,
					     SCB_GET_TARGET(ahd, scb));
		/*
		 * Check any MK_MESSAGE SCB that is still waiting to
		 * enter this target's waiting for selection queue.
		 */
		if (mk_msg_scb != NULL
		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
				  lun, tag, role)) {

			/*
			 * We found an scb that needs to be acted on.
			 */
			found++;
			switch (action) {
			case SEARCH_COMPLETE:
				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
					printk("Inactive SCB pending MK_MSG\n");
				ahd_done_with_status(ahd, mk_msg_scb, status);
				/* FALLTHROUGH */
			case SEARCH_REMOVE:
			{
				u_int tail_offset;

				printk("Removing MK_MSG scb\n");

				/*
				 * Reset our tail to the tail of the
				 * main per-target list.
				 */
				tail_offset = WAITING_SCB_TAILS
				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
				ahd_outw(ahd, tail_offset, tid_tail);

				seq_flags2 &= ~PENDING_MK_MESSAGE;
				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
				ahd_outw(ahd, CMDS_PENDING,
					 ahd_inw(ahd, CMDS_PENDING)-1);
				mk_msg_scb = NULL;
				break;
			}
			case SEARCH_PRINT:
				printk(" 0x%x", SCB_GET_TAG(scb));
				/* FALLTHROUGH */
			case SEARCH_COUNT:
				break;
			}
		}

		if (mk_msg_scb != NULL
		 && SCBID_IS_NULL(tid_head)
		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
				  SCB_LIST_NULL, ROLE_UNKNOWN)) {

			/*
			 * When removing the last SCB for a target
			 * queue with a pending MK_MESSAGE scb, we
			 * must queue the MK_MESSAGE scb.
			 */
			printk("Queueing mk_msg_scb\n");
			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
			seq_flags2 &= ~PENDING_MK_MESSAGE;
			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
			mk_msg_scb = NULL;
		}
		if (tid_head != scbid)
			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
		if (!SCBID_IS_NULL(tid_head))
			tid_prev = tid_head;
		if (action == SEARCH_PRINT)
			printk(")\n");
	}

	/* Restore saved state. */
	ahd_set_scbptr(ahd, savedscbptr);
	ahd_restore_modes(ahd, saved_modes);
	return (found);
}

static int
ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
		    int lun, u_int tag, role_t role, uint32_t status,
		    ahd_search_action action, u_int *list_head, 
		    u_int *list_tail, u_int tid)
{
	struct	scb *scb;
	u_int	scbid;
	u_int	next;
	u_int	prev;
	int	found;

	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
	found = 0;
	prev = SCB_LIST_NULL;
	next = *list_head;
	*list_tail = SCB_LIST_NULL;
	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
		if (scbid >= ahd->scb_data.numscbs) {
			printk("%s:SCB List inconsistency. "
			       "SCB == 0x%x, yet numscbs == 0x%x.",
			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
			ahd_dump_card_state(ahd);
			panic("for safety");
		}
		scb = ahd_lookup_scb(ahd, scbid);
		if (scb == NULL) {
			printk("%s: SCB = %d Not Active!\n",
			       ahd_name(ahd), scbid);
			panic("Waiting List traversal\n");
		}
		ahd_set_scbptr(ahd, scbid);
		*list_tail = scbid;
		next = ahd_inw_scbram(ahd, SCB_NEXT);
		if (ahd_match_scb(ahd, scb, target, channel,
				  lun, SCB_LIST_NULL, role) == 0) {
			prev = scbid;
			continue;
		}
		found++;
		switch (action) {
		case SEARCH_COMPLETE:
			if ((scb->flags & SCB_ACTIVE) == 0)
				printk("Inactive SCB in Waiting List\n");
			ahd_done_with_status(ahd, scb, status);
			/* fall through */
		case SEARCH_REMOVE:
			ahd_rem_wscb(ahd, scbid, prev, next, tid);
			*list_tail = prev;
			if (SCBID_IS_NULL(prev))
				*list_head = next;
			break;
		case SEARCH_PRINT:
			printk("0x%x ", scbid);
			/* fall through */
		case SEARCH_COUNT:
			prev = scbid;
			break;
		}
		if (found > AHD_SCB_MAX)
			panic("SCB LIST LOOP");
	}
	if (action == SEARCH_COMPLETE
	 || action == SEARCH_REMOVE)
		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
	return (found);
}

static void
ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
		    u_int tid_cur, u_int tid_next)
{
	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);

	if (SCBID_IS_NULL(tid_cur)) {

		/* Bypass current TID list */
		if (SCBID_IS_NULL(tid_prev)) {
			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
		} else {
			ahd_set_scbptr(ahd, tid_prev);
			ahd_outw(ahd, SCB_NEXT2, tid_next);
		}
		if (SCBID_IS_NULL(tid_next))
			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
	} else {

		/* Stitch through tid_cur */
		if (SCBID_IS_NULL(tid_prev)) {
			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
		} else {
			ahd_set_scbptr(ahd, tid_prev);
			ahd_outw(ahd, SCB_NEXT2, tid_cur);
		}
		ahd_set_scbptr(ahd, tid_cur);
		ahd_outw(ahd, SCB_NEXT2, tid_next);

		if (SCBID_IS_NULL(tid_next))
			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
	}
}

/*
 * Manipulate the waiting for selection list and return the
 * scb that follows the one that we remove.
 */
static u_int
ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
	     u_int prev, u_int next, u_int tid)
{
	u_int tail_offset;

	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
	if (!SCBID_IS_NULL(prev)) {
		ahd_set_scbptr(ahd, prev);
		ahd_outw(ahd, SCB_NEXT, next);
	}

	/*
	 * SCBs that have MK_MESSAGE set in them may
	 * cause the tail pointer to be updated without
	 * setting the next pointer of the previous tail.
	 * Only clear the tail if the removed SCB was
	 * the tail.
	 */
	tail_offset = WAITING_SCB_TAILS + (2 * tid);
	if (SCBID_IS_NULL(next)
	 && ahd_inw(ahd, tail_offset) == scbid)
		ahd_outw(ahd, tail_offset, prev);

	ahd_add_scb_to_free_list(ahd, scbid);
	return (next);
}

/*
 * Add the SCB as selected by SCBPTR onto the on chip list of
 * free hardware SCBs.  This list is empty/unused if we are not
 * performing SCB paging.
 */
static void
ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
{
/* XXX Need some other mechanism to designate "free". */
	/*
	 * Invalidate the tag so that our abort
	 * routines don't think it's active.
	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
	 */
}

/******************************** Error Handling ******************************/
/*
 * Abort all SCBs that match the given description (target/channel/lun/tag),
 * setting their status to the passed in status if the status has not already
 * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
 * is paused before it is called.
 */
static int
ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
	       int lun, u_int tag, role_t role, uint32_t status)
{
	struct		scb *scbp;
	struct		scb *scbp_next;
	u_int		i, j;
	u_int		maxtarget;
	u_int		minlun;
	u_int		maxlun;
	int		found;
	ahd_mode_state	saved_modes;

	/* restore this when we're done */
	saved_modes = ahd_save_modes(ahd);
	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);

	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);

	/*
	 * Clean out the busy target table for any untagged commands.
	 */
	i = 0;
	maxtarget = 16;
	if (target != CAM_TARGET_WILDCARD) {
		i = target;
		if (channel == 'B')
			i += 8;
		maxtarget = i + 1;
	}

	if (