// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020, Google LLC. */ #define _GNU_SOURCE #include <inttypes.h> #include <linux/bitmap.h> #include "kvm_util.h" #include "memstress.h" #include "processor.h" struct memstress_args memstress_args; /* * Guest virtual memory offset of the testing memory slot. * Must not conflict with identity mapped test code. */ static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM; struct vcpu_thread { /* The index of the vCPU. */ int vcpu_idx; /* The pthread backing the vCPU. */ pthread_t thread; /* Set to true once the vCPU thread is up and running. */ bool running; }; /* The vCPU threads involved in this test. */ static struct vcpu_thread vcpu_threads[KVM_MAX_VCPUS]; /* The function run by each vCPU thread, as provided by the test. */ static void (*vcpu_thread_fn)(struct memstress_vcpu_args *); /* Set to true once all vCPU threads are up and running. */ static bool all_vcpu_threads_running; static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; /* * Continuously write to the first 8 bytes of each page in the * specified region. */ void memstress_guest_code(uint32_t vcpu_idx) { struct memstress_args *args = &memstress_args; struct memstress_vcpu_args *vcpu_args = &args->vcpu_args[vcpu_idx]; struct guest_random_state rand_state; uint64_t gva; uint64_t pages; uint64_t addr; uint64_t page; int i; rand_state = new_guest_random_state(args->random_seed + vcpu_idx); gva = vcpu_args->gva; pages = vcpu_args->pages; /* Make sure vCPU args data structure is not corrupt. */ GUEST_ASSERT(vcpu_args->vcpu_idx == vcpu_idx); while (true) { for (i = 0; i < sizeof(memstress_args); i += args->guest_page_size) (void) *((volatile char *)args + i); for (i = 0; i < pages; i++) { if (args->random_access) page = guest_random_u32(&rand_state) % pages; else page = i; addr = gva + (page * args->guest_page_size); if (guest_random_u32(&rand_state) % 100 < args->write_percent) *(uint64_t *)addr = 0x0123456789ABCDEF; else READ_ONCE(*(uint64_t *)addr); } GUEST_SYNC(1); } } void memstress_setup_vcpus(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu *vcpus[], uint64_t vcpu_memory_bytes, bool partition_vcpu_memory_access) { struct memstress_args *args = &memstress_args; struct memstress_vcpu_args *vcpu_args; int i; for (i = 0; i < nr_vcpus; i++) { vcpu_args = &args->vcpu_args[i]; vcpu_args->vcpu = vcpus[i]; vcpu_args->vcpu_idx = i; if (partition_vcpu_memory_access) { vcpu_args->gva = guest_test_virt_mem + (i * vcpu_memory_bytes); vcpu_args->pages = vcpu_memory_bytes / args->guest_page_size; vcpu_args->gpa = args->gpa + (i * vcpu_memory_bytes); } else { vcpu_args->gva = guest_test_virt_mem; vcpu_args->pages = (nr_vcpus * vcpu_memory_bytes) / args->guest_page_size; vcpu_args->gpa = args->gpa; } vcpu_args_set(vcpus[i], 1, i); pr_debug("Added VCPU %d with test mem gpa [%lx, %lx)\n", i, vcpu_args->gpa, vcpu_args->gpa + (vcpu_args->pages * args->guest_page_size)); } } struct kvm_vm *memstress_create_vm(enum vm_guest_mode mode, int nr_vcpus, uint64_t vcpu_memory_bytes, int slots, enum vm_mem_backing_src_type backing_src, bool partition_vcpu_memory_access) { struct memstress_args *args = &memstress_args; struct kvm_vm *vm; uint64_t guest_num_pages, slot0_pages = 0; uint64_t backing_src_pagesz = get_backing_src_pagesz(backing_src); uint64_t region_end_gfn; int i; pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode)); /* By default vCPUs will write to memory. */ args->write_percent = 100; /* * Snapshot the non-huge page size. This is used by the guest code to * access/dirty pages at the logging granularity. */ args->guest_page_size = vm_guest_mode_params[mode].page_size; guest_num_pages = vm_adjust_num_guest_pages(mode, (nr_vcpus * vcpu_memory_bytes) / args->guest_page_size); TEST_ASSERT(vcpu_memory_bytes % getpagesize() == 0, "Guest memory size is not host page size aligned."); TEST_ASSERT(vcpu_memory_bytes % args->guest_page_size == 0, "Guest memory size is not guest page size aligned."); TEST_ASSERT(guest_num_pages % slots == 0, "Guest memory cannot be evenly divided into %d slots.", slots); /* * If using nested, allocate extra pages for the nested page tables and * in-memory data structures. */ if (args->nested) slot0_pages += memstress_nested_pages(nr_vcpus); /* * Pass guest_num_pages to populate the page tables for test memory. * The memory is also added to memslot 0, but that's a benign side * effect as KVM allows aliasing HVAs in meslots. */ vm = __vm_create_with_vcpus(mode, nr_vcpus, slot0_pages + guest_num_pages, memstress_guest_code, vcpus); args->vm = vm; /* Put the test region at the top guest physical memory. */ region_end_gfn = vm->max_gfn + 1; #ifdef __x86_64__ /* * When running vCPUs in L2, restrict the test region to 48 bits to * avoid needing 5-level page tables to identity map L2. */ if (args->nested) region_end_gfn = min(region_end_gfn, (1UL << 48) / args->guest_page_size); #endif /* * If there should be more memory in the guest test region than there * can be pages in the guest, it will definitely cause problems. */ TEST_ASSERT(guest_num_pages < region_end_gfn, "Requested more guest memory than address space allows.\n" " guest pages: %" PRIx64 " max gfn: %" PRIx64 " nr_vcpus: %d wss: %" PRIx64 "]\n", guest_num_pages, region_end_gfn - 1, nr_vcpus, vcpu_memory_bytes); args->gpa = (region_end_gfn - guest_num_pages - 1) * args->guest_page_size; args->gpa = align_down(args->gpa, backing_src_pagesz); #ifdef __s390x__ /* Align to 1M (segment size) */ args->gpa = align_down(args->gpa, 1 << 20); #endif args->size = guest_num_pages * args->guest_page_size; pr_info("guest physical test memory: [0x%lx, 0x%lx)\n", args->gpa, args->gpa + args->size); /* Add extra memory slots for testing */ for (i = 0; i < slots; i++) { uint64_t region_pages = guest_num_pages / slots; vm_paddr_t region_start = args->gpa + region_pages * args->guest_page_size * i; vm_userspace_mem_region_add(vm, backing_src, region_start, MEMSTRESS_MEM_SLOT_INDEX + i, region_pages, 0); } /* Do mapping for the demand paging memory slot */ virt_map(vm, guest_test_virt_mem, args->gpa, guest_num_pages); memstress_setup_vcpus(vm, nr_vcpus, vcpus, vcpu_memory_bytes, partition_vcpu_memory_access); if (args->nested) { pr_info("Configuring vCPUs to run in L2 (nested).\n"); memstress_setup_nested(vm, nr_vcpus, vcpus); } /* Export the shared variables to the guest. */ sync_global_to_guest(vm, memstress_args); return vm; } void memstress_destroy_vm(struct kvm_vm *vm) { kvm_vm_free(vm); } void memstress_set_write_percent(struct kvm_vm *vm, uint32_t write_percent) { memstress_args.write_percent = write_percent; sync_global_to_guest(vm, memstress_args.write_percent); } void memstress_set_random_seed(struct kvm_vm *vm, uint32_t random_seed) { memstress_args.random_seed = random_seed; sync_global_to_guest(vm, memstress_args.random_seed); } void memstress_set_random_access(struct kvm_vm *vm, bool random_access) { memstress_args.random_access = random_access; sync_global_to_guest(vm, memstress_args.random_access); } uint64_t __weak memstress_nested_pages(int nr_vcpus) { return 0; } void __weak memstress_setup_nested(struct kvm_vm *vm, int nr_vcpus, struct kvm_vcpu **vcpus) { pr_info("%s() not support on this architecture, skipping.\n", __func__); exit(KSFT_SKIP); } static void *vcpu_thread_main(void *data) { struct vcpu_thread *vcpu = data; int vcpu_idx = vcpu->vcpu_idx; if (memstress_args.pin_vcpus) kvm_pin_this_task_to_pcpu(memstress_args.vcpu_to_pcpu[vcpu_idx]); WRITE_ONCE(vcpu->running, true); /* * Wait for all vCPU threads to be up and running before calling the test- * provided vCPU thread function. This prevents thread creation (which * requires taking the mmap_sem in write mode) from interfering with the * guest faulting in its memory. */ while (!READ_ONCE(all_vcpu_threads_running)) ; vcpu_thread_fn(&memstress_args.vcpu_args[vcpu_idx]); return NULL; } void memstress_start_vcpu_threads(int nr_vcpus, void (*vcpu_fn)(struct memstress_vcpu_args *)) { int i; vcpu_thread_fn = vcpu_fn; WRITE_ONCE(all_vcpu_threads_running, false); WRITE_ONCE(memstress_args.stop_vcpus, false); for (i = 0; i < nr_vcpus; i++) { struct vcpu_thread *vcpu = &vcpu_threads[i]; vcpu->vcpu_idx = i; WRITE_ONCE(vcpu->running, false); pthread_create(&vcpu->thread, NULL, vcpu_thread_main, vcpu); } for (i = 0; i < nr_vcpus; i++) { while (!READ_ONCE(vcpu_threads[i].running)) ; } WRITE_ONCE(all_vcpu_threads_running, true); } void memstress_join_vcpu_threads(int nr_vcpus) { int i; WRITE_ONCE(memstress_args.stop_vcpus, true); for (i = 0; i < nr_vcpus; i++) pthread_join(vcpu_threads[i].thread, NULL); } static void toggle_dirty_logging(struct kvm_vm *vm, int slots, bool enable) { int i; for (i = 0; i < slots; i++) { int slot = MEMSTRESS_MEM_SLOT_INDEX + i; int flags = enable ? KVM_MEM_LOG_DIRTY_PAGES : 0; vm_mem_region_set_flags(vm, slot, flags); } } void memstress_enable_dirty_logging(struct kvm_vm *vm, int slots) { toggle_dirty_logging(vm, slots, true); } void memstress_disable_dirty_logging(struct kvm_vm *vm, int slots) { toggle_dirty_logging(vm, slots, false); } void memstress_get_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots) { int i; for (i = 0; i < slots; i++) { int slot = MEMSTRESS_MEM_SLOT_INDEX + i; kvm_vm_get_dirty_log(vm, slot, bitmaps[i]); } } void memstress_clear_dirty_log(struct kvm_vm *vm, unsigned long *bitmaps[], int slots, uint64_t pages_per_slot) { int i; for (i = 0; i < slots; i++) { int slot = MEMSTRESS_MEM_SLOT_INDEX + i; kvm_vm_clear_dirty_log(vm, slot, bitmaps[i], 0, pages_per_slot); } } unsigned long **memstress_alloc_bitmaps(int slots, uint64_t pages_per_slot) { unsigned long **bitmaps; int i; bitmaps = malloc(slots * sizeof(bitmaps[0])); TEST_ASSERT(bitmaps, "Failed to allocate bitmaps array."); for (i = 0; i < slots; i++) { bitmaps[i] = bitmap_zalloc(pages_per_slot); TEST_ASSERT(bitmaps[i], "Failed to allocate slot bitmap."); } return bitmaps; } void memstress_free_bitmaps(unsigned long *bitmaps[], int slots) { int i; for (i = 0; i < slots; i++) free(bitmaps[i]); free(bitmaps); }