// SPDX-License-Identifier: GPL-2.0-only
/*
 *
 * Copyright IBM Corp. 2007
 * Copyright 2010-2011 Freescale Semiconductor, Inc.
 *
 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
 *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
 *          Scott Wood <scottwood@freescale.com>
 *          Varun Sethi <varun.sethi@freescale.com>
 */

#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
#include <linux/gfp.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>

#include <asm/cputable.h>
#include <linux/uaccess.h>
#include <asm/interrupt.h>
#include <asm/kvm_ppc.h>
#include <asm/cacheflush.h>
#include <asm/dbell.h>
#include <asm/hw_irq.h>
#include <asm/irq.h>
#include <asm/time.h>

#include "timing.h"
#include "booke.h"

#define CREATE_TRACE_POINTS
#include "trace_booke.h"

unsigned long kvmppc_booke_handlers;

const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
	KVM_GENERIC_VM_STATS(),
	STATS_DESC_ICOUNTER(VM, num_2M_pages),
	STATS_DESC_ICOUNTER(VM, num_1G_pages)
};

const struct kvm_stats_header kvm_vm_stats_header = {
	.name_size = KVM_STATS_NAME_SIZE,
	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
	.id_offset = sizeof(struct kvm_stats_header),
	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
		       sizeof(kvm_vm_stats_desc),
};

const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
	KVM_GENERIC_VCPU_STATS(),
	STATS_DESC_COUNTER(VCPU, sum_exits),
	STATS_DESC_COUNTER(VCPU, mmio_exits),
	STATS_DESC_COUNTER(VCPU, signal_exits),
	STATS_DESC_COUNTER(VCPU, light_exits),
	STATS_DESC_COUNTER(VCPU, itlb_real_miss_exits),
	STATS_DESC_COUNTER(VCPU, itlb_virt_miss_exits),
	STATS_DESC_COUNTER(VCPU, dtlb_real_miss_exits),
	STATS_DESC_COUNTER(VCPU, dtlb_virt_miss_exits),
	STATS_DESC_COUNTER(VCPU, syscall_exits),
	STATS_DESC_COUNTER(VCPU, isi_exits),
	STATS_DESC_COUNTER(VCPU, dsi_exits),
	STATS_DESC_COUNTER(VCPU, emulated_inst_exits),
	STATS_DESC_COUNTER(VCPU, dec_exits),
	STATS_DESC_COUNTER(VCPU, ext_intr_exits),
	STATS_DESC_COUNTER(VCPU, halt_successful_wait),
	STATS_DESC_COUNTER(VCPU, dbell_exits),
	STATS_DESC_COUNTER(VCPU, gdbell_exits),
	STATS_DESC_COUNTER(VCPU, ld),
	STATS_DESC_COUNTER(VCPU, st),
	STATS_DESC_COUNTER(VCPU, pthru_all),
	STATS_DESC_COUNTER(VCPU, pthru_host),
	STATS_DESC_COUNTER(VCPU, pthru_bad_aff)
};

const struct kvm_stats_header kvm_vcpu_stats_header = {
	.name_size = KVM_STATS_NAME_SIZE,
	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
	.id_offset = sizeof(struct kvm_stats_header),
	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
		       sizeof(kvm_vcpu_stats_desc),
};

/* TODO: use vcpu_printf() */
void kvmppc_dump_vcpu(struct kvm_vcpu *vcpu)
{
	int i;

	printk("pc:   %08lx msr:  %08llx\n", vcpu->arch.regs.nip,
			vcpu->arch.shared->msr);
	printk("lr:   %08lx ctr:  %08lx\n", vcpu->arch.regs.link,
			vcpu->arch.regs.ctr);
	printk("srr0: %08llx srr1: %08llx\n", vcpu->arch.shared->srr0,
					    vcpu->arch.shared->srr1);

	printk("exceptions: %08lx\n", vcpu->arch.pending_exceptions);

	for (i = 0; i < 32; i += 4) {
		printk("gpr%02d: %08lx %08lx %08lx %08lx\n", i,
		       kvmppc_get_gpr(vcpu, i),
		       kvmppc_get_gpr(vcpu, i+1),
		       kvmppc_get_gpr(vcpu, i+2),
		       kvmppc_get_gpr(vcpu, i+3));
	}
}

#ifdef CONFIG_SPE
void kvmppc_vcpu_disable_spe(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	enable_kernel_spe();
	kvmppc_save_guest_spe(vcpu);
	disable_kernel_spe();
	vcpu->arch.shadow_msr &= ~MSR_SPE;
	preempt_enable();
}

static void kvmppc_vcpu_enable_spe(struct kvm_vcpu *vcpu)
{
	preempt_disable();
	enable_kernel_spe();
	kvmppc_load_guest_spe(vcpu);
	disable_kernel_spe();
	vcpu->arch.shadow_msr |= MSR_SPE;
	preempt_enable();
}

static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.shared->msr & MSR_SPE) {
		if (!(vcpu->arch.shadow_msr & MSR_SPE))
			kvmppc_vcpu_enable_spe(vcpu);
	} else if (vcpu->arch.shadow_msr & MSR_SPE) {
		kvmppc_vcpu_disable_spe(vcpu);
	}
}
#else
static void kvmppc_vcpu_sync_spe(struct kvm_vcpu *vcpu)
{
}
#endif

/*
 * Load up guest vcpu FP state if it's needed.
 * It also set the MSR_FP in thread so that host know
 * we're holding FPU, and then host can help to save
 * guest vcpu FP state if other threads require to use FPU.
 * This simulates an FP unavailable fault.
 *
 * It requires to be called with preemption disabled.
 */
static inline void kvmppc_load_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
	if (!(current->thread.regs->msr & MSR_FP)) {
		enable_kernel_fp();
		load_fp_state(&vcpu->arch.fp);
		disable_kernel_fp();
		current->thread.fp_save_area = &vcpu->arch.fp;
		current->thread.regs->msr |= MSR_FP;
	}
#endif
}

/*
 * Save guest vcpu FP state into thread.
 * It requires to be called with preemption disabled.
 */
static inline void kvmppc_save_guest_fp(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_PPC_FPU
	if (current->thread.regs->msr & MSR_FP)
		giveup_fpu(current);
	current->thread.fp_save_area = NULL;
#endif
}

static void kvmppc_vcpu_sync_fpu(struct kvm_vcpu *vcpu)
{
#if defined(CONFIG_PPC_FPU) && !defined(CONFIG_KVM_BOOKE_HV)
	/* We always treat the FP bit as enabled from the host
	   perspective, so only need to adjust the shadow MSR */
	vcpu->arch.shadow_msr &= ~MSR_FP;
	vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_FP;
#endif
}

/*
 * Simulate AltiVec unavailable fault to load guest state
 * from thread to AltiVec unit.
 * It requires to be called with preemption disabled.
 */
static inline void kvmppc_load_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
		if (!(current->thread.regs->msr & MSR_VEC)) {
			enable_kernel_altivec();
			load_vr_state(&vcpu->arch.vr);
			disable_kernel_altivec();
			current->thread.vr_save_area = &vcpu->arch.vr;
			current->thread.regs->msr |= MSR_VEC;
		}
	}
#endif
}

/*
 * Save guest vcpu AltiVec state into thread.
 * It requires to be called with preemption disabled.
 */
static inline void kvmppc_save_guest_altivec(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC)) {
		if (current->thread.regs->msr & MSR_VEC)
			giveup_altivec(current);
		current->thread.vr_save_area = NULL;
	}
#endif
}

static void kvmppc_vcpu_sync_debug(struct kvm_vcpu *vcpu)
{
	/* Synchronize guest's desire to get debug interrupts into shadow MSR */
#ifndef CONFIG_KVM_BOOKE_HV
	vcpu->arch.shadow_msr &= ~MSR_DE;
	vcpu->arch.shadow_msr |= vcpu->arch.shared->msr & MSR_DE;
#endif

	/* Force enable debug interrupts when user space wants to debug */
	if (vcpu->guest_debug) {
#ifdef CONFIG_KVM_BOOKE_HV
		/*
		 * Since there is no shadow MSR, sync MSR_DE into the guest
		 * visible MSR.
		 */
		vcpu->arch.shared->msr |= MSR_DE;
#else
		vcpu->arch.shadow_msr |= MSR_DE;
		vcpu->arch.shared->msr &= ~MSR_DE;
#endif
	}
}

/*
 * Helper function for "full" MSR writes.  No need to call this if only
 * EE/CE/ME/DE/RI are changing.
 */
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr)
{
	u32 old_msr = vcpu->arch.shared->msr;

#ifdef CONFIG_KVM_BOOKE_HV
	new_msr |= MSR_GS;
#endif

	vcpu->arch.shared->msr = new_msr;

	kvmppc_mmu_msr_notify(vcpu, old_msr);
	kvmppc_vcpu_sync_spe(vcpu);
	kvmppc_vcpu_sync_fpu(vcpu);
	kvmppc_vcpu_sync_debug(vcpu);
}

static void kvmppc_booke_queue_irqprio(struct kvm_vcpu *vcpu,
                                       unsigned int priority)
{
	trace_kvm_booke_queue_irqprio(vcpu, priority);
	set_bit(priority, &vcpu->arch.pending_exceptions);
}

void kvmppc_core_queue_dtlb_miss(struct kvm_vcpu *vcpu,
				 ulong dear_flags, ulong esr_flags)
{
	vcpu->arch.queued_dear = dear_flags;
	vcpu->arch.queued_esr = esr_flags;
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DTLB_MISS);
}

void kvmppc_core_queue_data_storage(struct kvm_vcpu *vcpu, ulong srr1_flags,
				    ulong dear_flags, ulong esr_flags)
{
	WARN_ON_ONCE(srr1_flags);
	vcpu->arch.queued_dear = dear_flags;
	vcpu->arch.queued_esr = esr_flags;
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DATA_STORAGE);
}

void kvmppc_core_queue_itlb_miss(struct kvm_vcpu *vcpu)
{
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
}

void kvmppc_core_queue_inst_storage(struct kvm_vcpu *vcpu, ulong esr_flags)
{
	vcpu->arch.queued_esr = esr_flags;
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_INST_STORAGE);
}

static void kvmppc_core_queue_alignment(struct kvm_vcpu *vcpu, ulong dear_flags,
					ulong esr_flags)
{
	vcpu->arch.queued_dear = dear_flags;
	vcpu->arch.queued_esr = esr_flags;
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALIGNMENT);
}

void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong esr_flags)
{
	vcpu->arch.queued_esr = esr_flags;
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_PROGRAM);
}

void kvmppc_core_queue_fpunavail(struct kvm_vcpu *vcpu, ulong srr1_flags)
{
	WARN_ON_ONCE(srr1_flags);
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
}

#ifdef CONFIG_ALTIVEC
void kvmppc_core_queue_vec_unavail(struct kvm_vcpu *vcpu, ulong srr1_flags)
{
	WARN_ON_ONCE(srr1_flags);
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
}
#endif

void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu)
{
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DECREMENTER);
}

int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu)
{
	return test_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}

void kvmppc_core_dequeue_dec(struct kvm_vcpu *vcpu)
{
	clear_bit(BOOKE_IRQPRIO_DECREMENTER, &vcpu->arch.pending_exceptions);
}

void kvmppc_core_queue_external(struct kvm_vcpu *vcpu,
                                struct kvm_interrupt *irq)
{
	unsigned int prio = BOOKE_IRQPRIO_EXTERNAL;

	if (irq->irq == KVM_INTERRUPT_SET_LEVEL)
		prio = BOOKE_IRQPRIO_EXTERNAL_LEVEL;

	kvmppc_booke_queue_irqprio(vcpu, prio);
}

void kvmppc_core_dequeue_external(struct kvm_vcpu *vcpu)
{
	clear_bit(BOOKE_IRQPRIO_EXTERNAL, &vcpu->arch.pending_exceptions);
	clear_bit(BOOKE_IRQPRIO_EXTERNAL_LEVEL, &vcpu->arch.pending_exceptions);
}

static void kvmppc_core_queue_watchdog(struct kvm_vcpu *vcpu)
{
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_WATCHDOG);
}

static void kvmppc_core_dequeue_watchdog(struct kvm_vcpu *vcpu)
{
	clear_bit(BOOKE_IRQPRIO_WATCHDOG, &vcpu->arch.pending_exceptions);
}

void kvmppc_core_queue_debug(struct kvm_vcpu *vcpu)
{
	kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_DEBUG);
}

void kvmppc_core_dequeue_debug(struct kvm_vcpu *vcpu)
{
	clear_bit(BOOKE_IRQPRIO_DEBUG, &vcpu->arch.pending_exceptions);
}

static void set_guest_srr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
	kvmppc_set_srr0(vcpu, srr0);
	kvmppc_set_srr1(vcpu, srr1);
}

static void set_guest_csrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
	vcpu->arch.csrr0 = srr0;
	vcpu->arch.csrr1 = srr1;
}

static void set_guest_dsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) {
		vcpu->arch.dsrr0 = srr0;
		vcpu->arch.dsrr1 = srr1;
	} else {
		set_guest_csrr(vcpu, srr0, srr1);
	}
}

static void set_guest_mcsrr(struct kvm_vcpu *vcpu, unsigned long srr0, u32 srr1)
{
	vcpu->arch.mcsrr0 = srr0;
	vcpu->arch.mcsrr1 = srr1;
}

/* Deliver the interrupt of the corresponding priority, if possible. */
static int kvmppc_booke_irqprio_deliver(struct kvm_vcpu *vcpu,
                                        unsigned int priority)
{
	int allowed = 0;
	ulong msr_mask = 0;
	bool update_esr = false, update_dear = false, update_epr = false;
	ulong crit_raw = vcpu->arch.shared->critical;
	ulong crit_r1 = kvmppc_get_gpr(vcpu, 1);
	bool crit;
	bool keep_irq = false;
	enum int_class int_class;
	ulong new_msr = vcpu->arch.shared->msr;

	/* Truncate crit indicators in 32 bit mode */
	if (!(vcpu->arch.shared->msr & MSR_SF)) {
		crit_raw &= 0xffffffff;
		crit_r1 &= 0xffffffff;
	}

	/* Critical section when crit == r1 */
	crit = (crit_raw == crit_r1);
	/* ... and we're in supervisor mode */
	crit = crit && !(vcpu->arch.shared->msr & MSR_PR);

	if (priority == BOOKE_IRQPRIO_EXTERNAL_LEVEL) {
		priority = BOOKE_IRQPRIO_EXTERNAL;
		keep_irq = true;
	}

	if ((priority == BOOKE_IRQPRIO_EXTERNAL) && vcpu->arch.epr_flags)
		update_epr = true;

	switch (priority) {
	case BOOKE_IRQPRIO_DTLB_MISS:
	case BOOKE_IRQPRIO_DATA_STORAGE:
	case BOOKE_IRQPRIO_ALIGNMENT:
		update_dear = true;
		fallthrough;
	case BOOKE_IRQPRIO_INST_STORAGE:
	case BOOKE_IRQPRIO_PROGRAM:
		update_esr = true;
		fallthrough;
	case BOOKE_IRQPRIO_ITLB_MISS:
	case BOOKE_IRQPRIO_SYSCALL:
	case BOOKE_IRQPRIO_FP_UNAVAIL:
#ifdef CONFIG_SPE_POSSIBLE
	case BOOKE_IRQPRIO_SPE_UNAVAIL:
	case BOOKE_IRQPRIO_SPE_FP_DATA:
	case BOOKE_IRQPRIO_SPE_FP_ROUND:
#endif
#ifdef CONFIG_ALTIVEC
	case BOOKE_IRQPRIO_ALTIVEC_UNAVAIL:
	case BOOKE_IRQPRIO_ALTIVEC_ASSIST:
#endif
	case BOOKE_IRQPRIO_AP_UNAVAIL:
		allowed = 1;
		msr_mask = MSR_CE | MSR_ME | MSR_DE;
		int_class = INT_CLASS_NONCRIT;
		break;
	case BOOKE_IRQPRIO_WATCHDOG:
	case BOOKE_IRQPRIO_CRITICAL:
	case BOOKE_IRQPRIO_DBELL_CRIT:
		allowed = vcpu->arch.shared->msr & MSR_CE;
		allowed = allowed && !crit;
		msr_mask = MSR_ME;
		int_class = INT_CLASS_CRIT;
		break;
	case BOOKE_IRQPRIO_MACHINE_CHECK:
		allowed = vcpu->arch.shared->msr & MSR_ME;
		allowed = allowed && !crit;
		int_class = INT_CLASS_MC;
		break;
	case BOOKE_IRQPRIO_DECREMENTER:
	case BOOKE_IRQPRIO_FIT:
		keep_irq = true;
		fallthrough;
	case BOOKE_IRQPRIO_EXTERNAL:
	case BOOKE_IRQPRIO_DBELL:
		allowed = vcpu->arch.shared->msr & MSR_EE;
		allowed = allowed && !crit;
		msr_mask = MSR_CE | MSR_ME | MSR_DE;
		int_class = INT_CLASS_NONCRIT;
		break;
	case BOOKE_IRQPRIO_DEBUG:
		allowed = vcpu->arch.shared->msr & MSR_DE;
		allowed = allowed && !crit;
		msr_mask = MSR_ME;
		if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
			int_class = INT_CLASS_DBG;
		else
			int_class = INT_CLASS_CRIT;

		break;
	}

	if (allowed) {
		switch (int_class) {
		case INT_CLASS_NONCRIT:
			set_guest_srr(vcpu, vcpu->arch.regs.nip,
				      vcpu->arch.shared->msr);
			break;
		case INT_CLASS_CRIT:
			set_guest_csrr(vcpu, vcpu->arch.regs.nip,
				       vcpu->arch.shared->msr);
			break;
		case INT_CLASS_DBG:
			set_guest_dsrr(vcpu, vcpu->arch.regs.nip,
				       vcpu->arch.shared->msr);
			break;
		case INT_CLASS_MC:
			set_guest_mcsrr(vcpu, vcpu->arch.regs.nip,
					vcpu->arch.shared->msr);
			break;
		}

		vcpu->arch.regs.nip = vcpu->arch.ivpr |
					vcpu->arch.ivor[priority];
		if (update_esr)
			kvmppc_set_esr(vcpu, vcpu->arch.queued_esr);
		if (update_dear)
			kvmppc_set_dar(vcpu, vcpu->arch.queued_dear);
		if (update_epr) {
			if (vcpu->arch.epr_flags & KVMPPC_EPR_USER)
				kvm_make_request(KVM_REQ_EPR_EXIT, vcpu);
			else if (vcpu->arch.epr_flags & KVMPPC_EPR_KERNEL) {
				BUG_ON(vcpu->arch.irq_type != KVMPPC_IRQ_MPIC);
				kvmppc_mpic_set_epr(vcpu);
			}
		}

		new_msr &= msr_mask;
#if defined(CONFIG_64BIT)
		if (vcpu->arch.epcr & SPRN_EPCR_ICM)
			new_msr |= MSR_CM;
#endif
		kvmppc_set_msr(vcpu, new_msr);

		if (!keep_irq)
			clear_bit(priority, &vcpu->arch.pending_exceptions);
	}

#ifdef CONFIG_KVM_BOOKE_HV
	/*
	 * If an interrupt is pending but masked, raise a guest doorbell
	 * so that we are notified when the guest enables the relevant
	 * MSR bit.
	 */
	if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_EE)
		kvmppc_set_pending_interrupt(vcpu, INT_CLASS_NONCRIT);
	if (vcpu->arch.pending_exceptions & BOOKE_IRQMASK_CE)
		kvmppc_set_pending_interrupt(vcpu, INT_CLASS_CRIT);
	if (vcpu->arch.pending_exceptions & BOOKE_IRQPRIO_MACHINE_CHECK)
		kvmppc_set_pending_interrupt(vcpu, INT_CLASS_MC);
#endif

	return allowed;
}

/*
 * Return the number of jiffies until the next timeout.  If the timeout is
 * longer than the NEXT_TIMER_MAX_DELTA, then return NEXT_TIMER_MAX_DELTA
 * because the larger value can break the timer APIs.
 */
static unsigned long watchdog_next_timeout(struct kvm_vcpu *vcpu)
{
	u64 tb, wdt_tb, wdt_ticks = 0;
	u64 nr_jiffies = 0;
	u32 period = TCR_GET_WP(vcpu->arch.tcr);

	wdt_tb = 1ULL << (63 - period);
	tb = get_tb();
	/*
	 * The watchdog timeout will hapeen when TB bit corresponding
	 * to watchdog will toggle from 0 to 1.
	 */
	if (tb & wdt_tb)
		wdt_ticks = wdt_tb;

	wdt_ticks += wdt_tb - (tb & (wdt_tb - 1));

	/* Convert timebase ticks to jiffies */
	nr_jiffies = wdt_ticks;

	if (do_div(nr_jiffies, tb_ticks_per_jiffy))
		nr_jiffies++;

	return min_t(unsigned long long, nr_jiffies, NEXT_TIMER_MAX_DELTA);
}

static void arm_next_watchdog(struct kvm_vcpu *vcpu)
{
	unsigned long nr_jiffies;
	unsigned long flags;

	/*
	 * If TSR_ENW and TSR_WIS are not set then no need to exit to
	 * userspace, so clear the KVM_REQ_WATCHDOG request.
	 */
	if ((vcpu->arch.tsr & (TSR_ENW | TSR_WIS)) != (TSR_ENW | TSR_WIS))
		kvm_clear_request(KVM_REQ_WATCHDOG, vcpu);

	spin_lock_irqsave(&vcpu->arch.wdt_lock, flags);
	nr_jiffies = watchdog_next_timeout(vcpu);
	/*
	 * If the number of jiffies of watchdog timer >= NEXT_TIMER_MAX_DELTA
	 * then do not run the watchdog timer as this can break timer APIs.
	 */
	if (nr_jiffies < NEXT_TIMER_MAX_DELTA)
		mod_timer(&vcpu->arch.wdt_timer, jiffies + nr_jiffies);
	else
		del_timer(&vcpu->arch.wdt_timer);
	spin_unlock_irqrestore(&vcpu->arch.wdt_lock, flags);
}

static void kvmppc_watchdog_func(struct timer_list *t)
{
	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.wdt_timer);
	u32 tsr, new_tsr;
	int final;

	do {
		new_tsr = tsr = vcpu->arch.tsr;
		final = 0;

		/* Time out event */
		if (tsr & TSR_ENW) {
			if (tsr & TSR_WIS)
				final = 1;
			else
				new_tsr = tsr | TSR_WIS;
		} else {
			new_tsr = tsr | TSR_ENW;
		}
	} while (cmpxchg(&vcpu->arch.tsr, tsr, new_tsr) != tsr);

	if (new_tsr & TSR_WIS) {
		smp_wmb();
		kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
		kvm_vcpu_kick(vcpu);
	}

	/*
	 * If this is final watchdog expiry and some action is required
	 * then exit to userspace.
	 */
	if (final && (vcpu->arch.tcr & TCR_WRC_MASK) &&
	    vcpu->arch.watchdog_enabled) {
		smp_wmb();
		kvm_make_request(KVM_REQ_WATCHDOG, vcpu);
		kvm_vcpu_kick(vcpu);
	}

	/*
	 * Stop running the watchdog timer after final expiration to
	 * prevent the host from being flooded with timers if the
	 * guest sets a short period.
	 * Timers will resume when TSR/TCR is updated next time.
	 */
	if (!final)
		arm_next_watchdog(vcpu);
}

static void update_timer_ints(struct kvm_vcpu *vcpu)
{
	if ((vcpu->arch.tcr & TCR_DIE) && (vcpu->arch.tsr & TSR_DIS))
		kvmppc_core_queue_dec(vcpu);
	else
		kvmppc_core_dequeue_dec(vcpu);

	if ((vcpu->arch.tcr & TCR_WIE) && (vcpu->arch.tsr & TSR_WIS))
		kvmppc_core_queue_watchdog(vcpu);
	else
		kvmppc_core_dequeue_watchdog(vcpu);
}

static void kvmppc_core_check_exceptions(struct kvm_vcpu *vcpu)
{
	unsigned long *pending = &vcpu->arch.pending_exceptions;
	unsigned int priority;

	priority = __ffs(*pending);
	while (priority < BOOKE_IRQPRIO_MAX) {
		if (kvmppc_booke_irqprio_deliver(vcpu, priority))
			break;

		priority = find_next_bit(pending,
		                         BITS_PER_BYTE * sizeof(*pending),
		                         priority + 1);
	}

	/* Tell the guest about our interrupt status */
	vcpu->arch.shared->int_pending = !!*pending;
}

/* Check pending exceptions and deliver one, if possible. */
int kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
	int r = 0;
	WARN_ON_ONCE(!irqs_disabled());

	kvmppc_core_check_exceptions(vcpu);

	if (kvm_request_pending(vcpu)) {
		/* Exception delivery raised request; start over */
		return 1;
	}

	if (vcpu->arch.shared->msr & MSR_WE) {
		local_irq_enable();
		kvm_vcpu_halt(vcpu);
		hard_irq_disable();

		kvmppc_set_exit_type(vcpu, EMULATED_MTMSRWE_EXITS);
		r = 1;
	}

	return r;
}

int kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
{
	int r = 1; /* Indicate we want to get back into the guest */

	if (kvm_check_request(KVM_REQ_PENDING_TIMER, vcpu))
		update_timer_ints(vcpu);
#if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
		kvmppc_core_flush_tlb(vcpu);
#endif

	if (kvm_check_request(KVM_REQ_WATCHDOG, vcpu)) {
		vcpu->run->exit_reason = KVM_EXIT_WATCHDOG;
		r = 0;
	}

	if (kvm_check_request(KVM_REQ_EPR_EXIT, vcpu)) {
		vcpu->run->epr.epr = 0;
		vcpu->arch.epr_needed = true;
		vcpu->run->exit_reason = KVM_EXIT_EPR;
		r = 0;
	}

	return r;
}

int kvmppc_vcpu_run(struct kvm_vcpu *vcpu)
{
	int ret, s;
	struct debug_reg debug;

	if (!vcpu->arch.sane) {
		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
		return -EINVAL;
	}

	s = kvmppc_prepare_to_enter(vcpu);
	if (s <= 0) {
		ret = s;
		goto out;
	}
	/* interrupts now hard-disabled */

#ifdef CONFIG_PPC_FPU
	/* Save userspace FPU state in stack */
	enable_kernel_fp();

	/*
	 * Since we can't trap on MSR_FP in GS-mode, we consider the guest
	 * as always using the FPU.
	 */
	kvmppc_load_guest_fp(vcpu);
#endif

#ifdef CONFIG_ALTIVEC
	/* Save userspace AltiVec state in stack */
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		enable_kernel_altivec();
	/*
	 * Since we can't trap on MSR_VEC in GS-mode, we consider the guest
	 * as always using the AltiVec.
	 */
	kvmppc_load_guest_altivec(vcpu);
#endif

	/* Switch to guest debug context */
	debug = vcpu->arch.dbg_reg;
	switch_booke_debug_regs(&debug);
	debug = current->thread.debug;
	current->thread.debug = vcpu->arch.dbg_reg;

	vcpu->arch.pgdir = vcpu->kvm->mm->pgd;
	kvmppc_fix_ee_before_entry();

	ret = __kvmppc_vcpu_run(vcpu);

	/* No need for guest_exit. It's done in handle_exit.
	   We also get here with interrupts enabled. */

	/* Switch back to user space debug context */
	switch_booke_debug_regs(&debug);
	current->thread.debug = debug;

#ifdef CONFIG_PPC_FPU
	kvmppc_save_guest_fp(vcpu);
#endif

#ifdef CONFIG_ALTIVEC
	kvmppc_save_guest_altivec(vcpu);
#endif

out:
	vcpu->mode = OUTSIDE_GUEST_MODE;
	return ret;
}

static int emulation_exit(struct kvm_vcpu *vcpu)
{
	enum emulation_result er;

	er = kvmppc_emulate_instruction(vcpu);
	switch (er) {
	case EMULATE_DONE:
		/* don't overwrite subtypes, just account kvm_stats */
		kvmppc_account_exit_stat(vcpu, EMULATED_INST_EXITS);
		/* Future optimization: only reload non-volatiles if
		 * they were actually modified by emulation. */
		return RESUME_GUEST_NV;

	case EMULATE_AGAIN:
		return RESUME_GUEST;

	case EMULATE_FAIL:
		printk(KERN_CRIT "%s: emulation at %lx failed (%08lx)\n",
		       __func__, vcpu->arch.regs.nip, vcpu->arch.last_inst);
		/* For debugging, encode the failing instruction and
		 * report it to userspace. */
		vcpu->run->hw.hardware_exit_reason = ~0ULL << 32;
		vcpu->run->hw.hardware_exit_reason |= vcpu->arch.last_inst;
		kvmppc_core_queue_program(vcpu, ESR_PIL);
		return RESUME_HOST;

	case EMULATE_EXIT_USER:
		return RESUME_HOST;

	default:
		BUG();
	}
}

static int kvmppc_handle_debug(struct kvm_vcpu *vcpu)
{
	struct kvm_run *run = vcpu->run;
	struct debug_reg *dbg_reg = &(vcpu->arch.dbg_reg);
	u32 dbsr = vcpu->arch.dbsr;

	if (vcpu->guest_debug == 0) {
		/*
		 * Debug resources belong to Guest.
		 * Imprecise debug event is not injected
		 */
		if (dbsr & DBSR_IDE) {
			dbsr &= ~DBSR_IDE;
			if (!dbsr)
				return RESUME_GUEST;
		}

		if (dbsr && (vcpu->arch.shared->msr & MSR_DE) &&
			    (vcpu->arch.dbg_reg.dbcr0 & DBCR0_IDM))
			kvmppc_core_queue_debug(vcpu);

		/* Inject a program interrupt if trap debug is not allowed */
		if ((dbsr & DBSR_TIE) && !(vcpu->arch.shared->msr & MSR_DE))
			kvmppc_core_queue_program(vcpu, ESR_PTR);

		return RESUME_GUEST;
	}

	/*
	 * Debug resource owned by userspace.
	 * Clear guest dbsr (vcpu->arch.dbsr)
	 */
	vcpu->arch.dbsr = 0;
	run->debug.arch.status = 0;
	run->debug.arch.address = vcpu->arch.regs.nip;

	if (dbsr & (DBSR_IAC1 | DBSR_IAC2 | DBSR_IAC3 | DBSR_IAC4)) {
		run->debug.arch.status |= KVMPPC_DEBUG_BREAKPOINT;
	} else {
		if (dbsr & (DBSR_DAC1W | DBSR_DAC2W))
			run->debug.arch.status |= KVMPPC_DEBUG_WATCH_WRITE;
		else if (dbsr & (DBSR_DAC1R | DBSR_DAC2R))
			run->debug.arch.status |= KVMPPC_DEBUG_WATCH_READ;
		if (dbsr & (DBSR_DAC1R | DBSR_DAC1W))
			run->debug.arch.address = dbg_reg->dac1;
		else if (dbsr & (DBSR_DAC2R | DBSR_DAC2W))
			run->debug.arch.address = dbg_reg->dac2;
	}

	return RESUME_HOST;
}

static void kvmppc_fill_pt_regs(struct pt_regs *regs)
{
	ulong r1, msr, lr;

	asm("mr %0, 1" : "=r"(r1));
	asm("mflr %0" : "=r"(lr));
	asm("mfmsr %0" : "=r"(msr));

	memset(regs, 0, sizeof(*regs));
	regs->gpr[1] = r1;
	regs->nip = _THIS_IP_;
	regs->msr = msr;
	regs->link = lr;
}

/*
 * For interrupts needed to be handled by host interrupt handlers,
 * corresponding host handler are called from here in similar way
 * (but not exact) as they are called from low level handler
 * (such as from arch/powerpc/kernel/head_fsl_booke.S).
 */
static void kvmppc_restart_interrupt(struct kvm_vcpu *vcpu,
				     unsigned int exit_nr)
{
	struct pt_regs regs;

	switch (exit_nr) {
	case BOOKE_INTERRUPT_EXTERNAL:
		kvmppc_fill_pt_regs(&regs);
		do_IRQ(&regs);
		break;
	case BOOKE_INTERRUPT_DECREMENTER:
		kvmppc_fill_pt_regs(&regs);
		timer_interrupt(&regs);
		break;
#if defined(CONFIG_PPC_DOORBELL)
	case BOOKE_INTERRUPT_DOORBELL:
		kvmppc_fill_pt_regs(&regs);
		doorbell_exception(&regs);
		break;
#endif
	case BOOKE_INTERRUPT_MACHINE_CHECK:
		/* FIXME */
		break;
	case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
		kvmppc_fill_pt_regs(&regs);
		performance_monitor_exception(&regs);
		break;
	case BOOKE_INTERRUPT_WATCHDOG:
		kvmppc_fill_pt_regs(&regs);
#ifdef CONFIG_BOOKE_WDT
		WatchdogException(&regs);
#else
		unknown_exception(&regs);
#endif
		break;
	case BOOKE_INTERRUPT_CRITICAL:
		kvmppc_fill_pt_regs(&regs);
		unknown_exception(&regs);
		break;
	case BOOKE_INTERRUPT_DEBUG:
		/* Save DBSR before preemption is enabled */
		vcpu->arch.dbsr = mfspr(SPRN_DBSR);
		kvmppc_clear_dbsr();
		break;
	}
}

static int kvmppc_resume_inst_load(struct kvm_vcpu *vcpu,
				  enum emulation_result emulated, u32 last_inst)
{
	switch (emulated) {
	case EMULATE_AGAIN:
		return RESUME_GUEST;

	case EMULATE_FAIL:
		pr_debug("%s: load instruction from guest address %lx failed\n",
		       __func__, vcpu->arch.regs.nip);
		/* For debugging, encode the failing instruction and
		 * report it to userspace. */
		vcpu->run->hw.hardware_exit_reason = ~0ULL << 32;
		vcpu->run->hw.hardware_exit_reason |= last_inst;
		kvmppc_core_queue_program(vcpu, ESR_PIL);
		return RESUME_HOST;

	default:
		BUG();
	}
}

/*
 * kvmppc_handle_exit
 *
 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
 */
int kvmppc_handle_exit(struct kvm_vcpu *vcpu, unsigned int exit_nr)
{
	struct kvm_run *run = vcpu->run;
	int r = RESUME_HOST;
	int s;
	int idx;
	u32 last_inst = KVM_INST_FETCH_FAILED;
	ppc_inst_t pinst;
	enum emulation_result emulated = EMULATE_DONE;

	/* Fix irq state (pairs with kvmppc_fix_ee_before_entry()) */
	kvmppc_fix_ee_after_exit();

	/* update before a new last_exit_type is rewritten */
	kvmppc_update_timing_stats(vcpu);

	/* restart interrupts if they were meant for the host */
	kvmppc_restart_interrupt(vcpu, exit_nr);

	/*
	 * get last instruction before being preempted
	 * TODO: for e6500 check also BOOKE_INTERRUPT_LRAT_ERROR & ESR_DATA
	 */
	switch (exit_nr) {
	case BOOKE_INTERRUPT_DATA_STORAGE:
	case BOOKE_INTERRUPT_DTLB_MISS:
	case BOOKE_INTERRUPT_HV_PRIV:
		emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
		last_inst = ppc_inst_val(pinst);
		break;
	case BOOKE_INTERRUPT_PROGRAM:
		/* SW breakpoints arrive as illegal instructions on HV */
		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
			emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
			last_inst = ppc_inst_val(pinst);
		}
		break;
	default:
		break;
	}

	trace_kvm_exit(exit_nr, vcpu);

	context_tracking_guest_exit();
	if (!vtime_accounting_enabled_this_cpu()) {
		local_irq_enable();
		/*
		 * Service IRQs here before vtime_account_guest_exit() so any
		 * ticks that occurred while running the guest are accounted to
		 * the guest. If vtime accounting is enabled, accounting uses
		 * TB rather than ticks, so it can be done without enabling
		 * interrupts here, which has the problem that it accounts
		 * interrupt processing overhead to the host.
		 */
		local_irq_disable();
	}
	vtime_account_guest_exit();

	local_irq_enable();

	run->exit_reason = KVM_EXIT_UNKNOWN;
	run->ready_for_interrupt_injection = 1;

	if (emulated != EMULATE_DONE) {
		r = kvmppc_resume_inst_load(vcpu, emulated, last_inst);
		goto out;
	}

	switch (exit_nr) {
	case BOOKE_INTERRUPT_MACHINE_CHECK:
		printk("MACHINE CHECK: %lx\n", mfspr(SPRN_MCSR));
		kvmppc_dump_vcpu(vcpu);
		/* For debugging, send invalid exit reason to user space */
		run->hw.hardware_exit_reason = ~1ULL << 32;
		run->hw.hardware_exit_reason |= mfspr(SPRN_MCSR);
		r = RESUME_HOST;
		break;

	case BOOKE_INTERRUPT_EXTERNAL:
		kvmppc_account_exit(vcpu, EXT_INTR_EXITS);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_DECREMENTER:
		kvmppc_account_exit(vcpu, DEC_EXITS);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_WATCHDOG:
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_DOORBELL:
		kvmppc_account_exit(vcpu, DBELL_EXITS);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_GUEST_DBELL_CRIT:
		kvmppc_account_exit(vcpu, GDBELL_EXITS);

		/*
		 * We are here because there is a pending guest interrupt
		 * which could not be delivered as MSR_CE or MSR_ME was not
		 * set.  Once we break from here we will retry delivery.
		 */
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_GUEST_DBELL:
		kvmppc_account_exit(vcpu, GDBELL_EXITS);

		/*
		 * We are here because there is a pending guest interrupt
		 * which could not be delivered as MSR_EE was not set.  Once
		 * we break from here we will retry delivery.
		 */
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_PERFORMANCE_MONITOR:
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_HV_PRIV:
		r = emulation_exit(vcpu);
		break;

	case BOOKE_INTERRUPT_PROGRAM:
		if ((vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) &&
			(last_inst == KVMPPC_INST_SW_BREAKPOINT)) {
			/*
			 * We are here because of an SW breakpoint instr,
			 * so lets return to host to handle.
			 */
			r = kvmppc_handle_debug(vcpu);
			run->exit_reason = KVM_EXIT_DEBUG;
			kvmppc_account_exit(vcpu, DEBUG_EXITS);
			break;
		}

		if (vcpu->arch.shared->msr & (MSR_PR | MSR_GS)) {
			/*
			 * Program traps generated by user-level software must
			 * be handled by the guest kernel.
			 *
			 * In GS mode, hypervisor privileged instructions trap
			 * on BOOKE_INTERRUPT_HV_PRIV, not here, so these are
			 * actual program interrupts, handled by the guest.
			 */
			kvmppc_core_queue_program(vcpu, vcpu->arch.fault_esr);
			r = RESUME_GUEST;
			kvmppc_account_exit(vcpu, USR_PR_INST);
			break;
		}

		r = emulation_exit(vcpu);
		break;

	case BOOKE_INTERRUPT_FP_UNAVAIL:
		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_FP_UNAVAIL);
		kvmppc_account_exit(vcpu, FP_UNAVAIL);
		r = RESUME_GUEST;
		break;

#ifdef CONFIG_SPE
	case BOOKE_INTERRUPT_SPE_UNAVAIL: {
		if (vcpu->arch.shared->msr & MSR_SPE)
			kvmppc_vcpu_enable_spe(vcpu);
		else
			kvmppc_booke_queue_irqprio(vcpu,
						   BOOKE_IRQPRIO_SPE_UNAVAIL);
		r = RESUME_GUEST;
		break;
	}

	case BOOKE_INTERRUPT_SPE_FP_DATA:
		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_DATA);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_SPE_FP_ROUND:
		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SPE_FP_ROUND);
		r = RESUME_GUEST;
		break;
#elif defined(CONFIG_SPE_POSSIBLE)
	case BOOKE_INTERRUPT_SPE_UNAVAIL:
		/*
		 * Guest wants SPE, but host kernel doesn't support it.  Send
		 * an "unimplemented operation" program check to the guest.
		 */
		kvmppc_core_queue_program(vcpu, ESR_PUO | ESR_SPV);
		r = RESUME_GUEST;
		break;

	/*
	 * These really should never happen without CONFIG_SPE,
	 * as we should never enable the real MSR[SPE] in the guest.
	 */
	case BOOKE_INTERRUPT_SPE_FP_DATA:
	case BOOKE_INTERRUPT_SPE_FP_ROUND:
		printk(KERN_CRIT "%s: unexpected SPE interrupt %u at %08lx\n",
		       __func__, exit_nr, vcpu->arch.regs.nip);
		run->hw.hardware_exit_reason = exit_nr;
		r = RESUME_HOST;
		break;
#endif /* CONFIG_SPE_POSSIBLE */

/*
 * On cores with Vector category, KVM is loaded only if CONFIG_ALTIVEC,
 * see kvmppc_e500mc_check_processor_compat().
 */
#ifdef CONFIG_ALTIVEC
	case BOOKE_INTERRUPT_ALTIVEC_UNAVAIL:
		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_UNAVAIL);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_ALTIVEC_ASSIST:
		kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ALTIVEC_ASSIST);
		r = RESUME_GUEST;
		break;
#endif

	case BOOKE_INTERRUPT_DATA_STORAGE:
		kvmppc_core_queue_data_storage(vcpu, 0, vcpu->arch.fault_dear,
		                               vcpu->arch.fault_esr);
		kvmppc_account_exit(vcpu, DSI_EXITS);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_INST_STORAGE:
		kvmppc_core_queue_inst_storage(vcpu, vcpu->arch.fault_esr);
		kvmppc_account_exit(vcpu, ISI_EXITS);
		r = RESUME_GUEST;
		break;

	case BOOKE_INTERRUPT_ALIGNMENT:
		kvmppc_core_queue_alignment(vcpu, vcpu->arch.fault_dear,
		                            vcpu->arch.fault_esr);
		r = RESUME_GUEST;
		break;

#ifdef CONFIG_KVM_BOOKE_HV
	case BOOKE_INTERRUPT_HV_SYSCALL:
		if (!(vcpu->arch.shared->msr & MSR_PR)) {
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
		} else {
			/*
			 * hcall from guest userspace -- send privileged
			 * instruction program check.
			 */
			kvmppc_core_queue_program(vcpu, ESR_PPR);
		}

		r = RESUME_GUEST;
		break;
#else
	case BOOKE_INTERRUPT_SYSCALL:
		if (!(vcpu->arch.shared->msr & MSR_PR) &&
		    (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
			/* KVM PV hypercalls */
			kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
			r = RESUME_GUEST;
		} else {
			/* Guest syscalls */
			kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_SYSCALL);
		}
		kvmppc_account_exit(vcpu, SYSCALL_EXITS);
		r = RESUME_GUEST;
		break;
#endif

	case BOOKE_INTERRUPT_DTLB_MISS: {
		unsigned long eaddr = vcpu->arch.fault_dear;
		int gtlb_index;
		gpa_t gpaddr;
		gfn_t gfn;

#ifdef CONFIG_KVM_E500V2
		if (!(vcpu->arch.shared->msr & MSR_PR) &&
		    (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
			kvmppc_map_magic(vcpu);
			kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
			r = RESUME_GUEST;

			break;
		}
#endif

		/* Check the guest TLB. */
		gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
		if (gtlb_index < 0) {
			/* The guest didn't have a mapping for it. */
			kvmppc_core_queue_dtlb_miss(vcpu,
			                            vcpu->arch.fault_dear,
			                            vcpu->arch.fault_esr);
			kvmppc_mmu_dtlb_miss(vcpu);
			kvmppc_account_exit(vcpu, DTLB_REAL_MISS_EXITS);
			r = RESUME_GUEST;
			break;
		}

		idx = srcu_read_lock(&vcpu->kvm->srcu);

		gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
		gfn = gpaddr >> PAGE_SHIFT;

		if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
			/* The guest TLB had a mapping, but the shadow TLB
			 * didn't, and it is RAM. This could be because:
			 * a) the entry is mapping the host kernel, or
			 * b) the guest used a large mapping which we're faking
			 * Either way, we need to satisfy the fault without
			 * invoking the guest. */
			kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
			kvmppc_account_exit(vcpu, DTLB_VIRT_MISS_EXITS);
			r = RESUME_GUEST;
		} else {
			/* Guest has mapped and accessed a page which is not
			 * actually RAM. */
			vcpu->arch.paddr_accessed = gpaddr;
			vcpu->arch.vaddr_accessed = eaddr;
			r = kvmppc_emulate_mmio(vcpu);
			kvmppc_account_exit(vcpu, MMIO_EXITS);
		}

		srcu_read_unlock(&vcpu->kvm->srcu, idx);
		break;
	}

	case BOOKE_INTERRUPT_ITLB_MISS: {
		unsigned long eaddr = vcpu->arch.regs.nip;
		gpa_t gpaddr;
		gfn_t gfn;
		int gtlb_index;

		r = RESUME_GUEST;

		/* Check the guest TLB. */
		gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
		if (gtlb_index < 0) {
			/* The guest didn't have a mapping for it. */
			kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_ITLB_MISS);
			kvmppc_mmu_itlb_miss(vcpu);
			kvmppc_account_exit(vcpu, ITLB_REAL_MISS_EXITS);
			break;
		}

		kvmppc_account_exit(vcpu, ITLB_VIRT_MISS_EXITS);

		idx = srcu_read_lock(&vcpu->kvm->srcu);

		gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);
		gfn = gpaddr >> PAGE_SHIFT;

		if (kvm_is_visible_gfn(vcpu->kvm, gfn)) {
			/* The guest TLB had a mapping, but the shadow TLB
			 * didn't. This could be because:
			 * a) the entry is mapping the host kernel, or
			 * b) the guest used a large mapping which we're faking
			 * Either way, we need to satisfy the fault without
			 * invoking the guest. */
			kvmppc_mmu_map(vcpu, eaddr, gpaddr, gtlb_index);
		} else {
			/* Guest mapped and leaped at non-RAM! */
			kvmppc_booke_queue_irqprio(vcpu, BOOKE_IRQPRIO_MACHINE_CHECK);
		}

		srcu_read_unlock(&vcpu->kvm->srcu, idx);
		break;
	}

	case BOOKE_INTERRUPT_DEBUG: {
		r = kvmppc_handle_debug(vcpu);
		if (r == RESUME_HOST)
			run->exit_reason = KVM_EXIT_DEBUG;
		kvmppc_account_exit(vcpu, DEBUG_EXITS);
		break;
	}

	default:
		printk(KERN_EMERG "exit_nr %d\n", exit_nr);
		BUG();
	}

out:
	/*
	 * To avoid clobbering exit_reason, only check for signals if we
	 * aren't already exiting to userspace for some other reason.
	 */
	if (!(r & RESUME_HOST)) {
		s = kvmppc_prepare_to_enter(vcpu);
		if (s <= 0)
			r = (s << 2) | RESUME_HOST | (r & RESUME_FLAG_NV);
		else {
			/* interrupts now hard-disabled */
			kvmppc_fix_ee_before_entry();
			kvmppc_load_guest_fp(vcpu);
			kvmppc_load_guest_altivec(vcpu);
		}
	}

	return r;
}

static void kvmppc_set_tsr(struct kvm_vcpu *vcpu, u32 new_tsr)
{
	u32 old_tsr = vcpu->arch.tsr;

	vcpu->arch.tsr = new_tsr;

	if ((old_tsr ^ vcpu->arch.tsr) & (TSR_ENW | TSR_WIS))
		arm_next_watchdog(vcpu);

	update_timer_ints(vcpu);
}

int kvmppc_subarch_vcpu_init(struct kvm_vcpu *vcpu)
{
	/* setup watchdog timer once */
	spin_lock_init(&vcpu->arch.wdt_lock);
	timer_setup(&vcpu->arch.wdt_timer, kvmppc_watchdog_func, 0);

	/*
	 * Clear DBSR.MRR to avoid guest debug interrupt as
	 * this is of host interest
	 */
	mtspr(SPRN_DBSR, DBSR_MRR);
	return 0;
}

void kvmppc_subarch_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	del_timer_sync(&vcpu->arch.wdt_timer);
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	vcpu_load(vcpu);

	regs->pc = vcpu->arch.regs.nip;
	regs->cr = kvmppc_get_cr(vcpu);
	regs->ctr = vcpu->arch.regs.ctr;
	regs->lr = vcpu->arch.regs.link;
	regs->xer = kvmppc_get_xer(vcpu);
	regs->msr = vcpu->arch.shared->msr;
	regs->srr0 = kvmppc_get_srr0(vcpu);
	regs->srr1 = kvmppc_get_srr1(vcpu);
	regs->pid = vcpu->arch.pid;
	regs->sprg0 = kvmppc_get_sprg0(vcpu);
	regs->sprg1 = kvmppc_get_sprg1(vcpu);
	regs->sprg2 = kvmppc_get_sprg2(vcpu);
	regs->sprg3 = kvmppc_get_sprg3(vcpu);
	regs->sprg4 = kvmppc_get_sprg4(vcpu);
	regs->sprg5 = kvmppc_get_sprg5(vcpu);
	regs->sprg6 = kvmppc_get_sprg6(vcpu);
	regs->sprg7 = kvmppc_get_sprg7(vcpu);

	for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
		regs->gpr[i] = kvmppc_get_gpr(vcpu, i);

	vcpu_put(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
	int i;

	vcpu_load(vcpu);

	vcpu->arch.regs.nip = regs->pc;
	kvmppc_set_cr(vcpu, regs->cr);
	vcpu->arch.regs.ctr = regs->ctr;
	vcpu->arch.regs.link = regs->lr;
	kvmppc_set_xer(vcpu, regs->xer);
	kvmppc_set_msr(vcpu, regs->msr);
	kvmppc_set_srr0(vcpu, regs->srr0);
	kvmppc_set_srr1(vcpu, regs->srr1);
	kvmppc_set_pid(vcpu, regs->pid);
	kvmppc_set_sprg0(vcpu, regs->sprg0);
	kvmppc_set_sprg1(vcpu, regs->sprg1);
	kvmppc_set_sprg2(vcpu, regs->sprg2);
	kvmppc_set_sprg3(vcpu, regs->sprg3);
	kvmppc_set_sprg4(vcpu, regs->sprg4);
	kvmppc_set_sprg5(vcpu, regs->sprg5);
	kvmppc_set_sprg6(vcpu, regs->sprg6);
	kvmppc_set_sprg7(vcpu, regs->sprg7);

	for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
		kvmppc_set_gpr(vcpu, i, regs->gpr[i]);

	vcpu_put(vcpu);
	return 0;
}

static void get_sregs_base(struct kvm_vcpu *vcpu,
                           struct kvm_sregs *sregs)
{
	u64 tb = get_tb();

	sregs->u.e.features |= KVM_SREGS_E_BASE;

	sregs->u.e.csrr0 = vcpu->arch.csrr0;
	sregs->u.e.csrr1 = vcpu->arch.csrr1;
	sregs->u.e.mcsr = vcpu->arch.mcsr;
	sregs->u.e.esr = kvmppc_get_esr(vcpu);
	sregs->u.e.dear = kvmppc_get_dar(vcpu);
	sregs->u.e.tsr = vcpu->arch.tsr;
	sregs->u.e.tcr = vcpu->arch.tcr;
	sregs->u.e.dec = kvmppc_get_dec(vcpu, tb);
	sregs->u.e.tb = tb;
	sregs->u.e.vrsave = vcpu->arch.vrsave;
}

static int set_sregs_base(struct kvm_vcpu *vcpu,
                          struct kvm_sregs *sregs)
{
	if (!(sregs->u.e.features & KVM_SREGS_E_BASE))
		return 0;

	vcpu->arch.csrr0 = sregs->u.e.csrr0;
	vcpu->arch.csrr1 = sregs->u.e.csrr1;
	vcpu->arch.mcsr = sregs->u.e.mcsr;
	kvmppc_set_esr(vcpu, sregs->u.e.esr);
	kvmppc_set_dar(vcpu, sregs->u.e.dear);
	vcpu->arch.vrsave = sregs->u.e.vrsave;
	kvmppc_set_tcr(vcpu, sregs->u.e.tcr);

	if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_DEC) {
		vcpu->arch.dec = sregs->u.e.dec;
		kvmppc_emulate_dec(vcpu);
	}

	if (sregs->u.e.update_special & KVM_SREGS_E_UPDATE_TSR)
		kvmppc_set_tsr(vcpu, sregs->u.e.tsr);

	return 0;
}

static void get_sregs_arch206(struct kvm_vcpu *vcpu,
                              struct kvm_sregs *sregs)
{
	sregs->u.e.features |= KVM_SREGS_E_ARCH206;

	sregs->u.e.pir = vcpu->vcpu_id;
	sregs->u.e.mcsrr0 = vcpu->arch.mcsrr0;
	sregs->u.e.mcsrr1 = vcpu->arch.mcsrr1;
	sregs->u.e.decar = vcpu->arch.decar;
	sregs->u.e.ivpr = vcpu->arch.ivpr;
}

static int set_sregs_arch206(struct kvm_vcpu *vcpu,
                             struct kvm_sregs *sregs)
{
	if (!(sregs->u.e.features & KVM_SREGS_E_ARCH206))
		return 0;

	if (sregs->u.e.pir != vcpu->vcpu_id)
		return -EINVAL;

	vcpu->arch.mcsrr0 = sregs->u.e.mcsrr0;
	vcpu->arch.mcsrr1 = sregs->u.e.mcsrr1;
	vcpu->arch.decar = sregs->u.e.decar;
	vcpu->arch.ivpr = sregs->u.e.ivpr;

	return 0;
}

int kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
	sregs->u.e.features |= KVM_SREGS_E_IVOR;

	sregs->u.e.ivor_low[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL];
	sregs->u.e.ivor_low[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK];
	sregs->u.e.ivor_low[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE];
	sregs->u.e.ivor_low[3] = vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE];
	sregs->u.e.ivor_low[4] = vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL];
	sregs->u.e.ivor_low[5] = vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT];
	sregs->u.e.ivor_low[6] = vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM];
	sregs->u.e.ivor_low[7] = vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL];
	sregs->u.e.ivor_low[8] = vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL];
	sregs->u.e.ivor_low[9] = vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL];
	sregs->u.e.ivor_low[10] = vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER];
	sregs->u.e.ivor_low[11] = vcpu->arch.ivor[BOOKE_IRQPRIO_FIT];
	sregs->u.e.ivor_low[12] = vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG];
	sregs->u.e.ivor_low[13] = vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS];
	sregs->u.e.ivor_low[14] = vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS];
	sregs->u.e.ivor_low[15] = vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG];
	return 0;
}

int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
{
	if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
		return 0;

	vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL] = sregs->u.e.ivor_low[0];
	vcpu->arch.ivor[BOOKE_IRQPRIO_MACHINE_CHECK] = sregs->u.e.ivor_low[1];
	vcpu->arch.ivor[BOOKE_IRQPRIO_DATA_STORAGE] = sregs->u.e.ivor_low[2];
	vcpu->arch.ivor[BOOKE_IRQPRIO_INST_STORAGE] = sregs->u.e.ivor_low[3];
	vcpu->arch.ivor[BOOKE_IRQPRIO_EXTERNAL] = sregs->u.e.ivor_low[4];
	vcpu->arch.ivor[BOOKE_IRQPRIO_ALIGNMENT] = sregs->u.e.ivor_low[5];
	vcpu->arch.ivor[BOOKE_IRQPRIO_PROGRAM] = sregs->u.e.ivor_low[6];
	vcpu->arch.ivor[BOOKE_IRQPRIO_FP_UNAVAIL] = sregs->u.e.ivor_low[7];
	vcpu->arch.ivor[BOOKE_IRQPRIO_SYSCALL] = sregs->u.e.ivor_low[8];
	vcpu->arch.ivor[BOOKE_IRQPRIO_AP_UNAVAIL] = sregs->u.e.ivor_low[9];
	vcpu->arch.ivor[BOOKE_IRQPRIO_DECREMENTER] = sregs->u.e.ivor_low[10];
	vcpu->arch.ivor[BOOKE_IRQPRIO_FIT] = sregs->u.e.ivor_low[11];
	vcpu->arch.ivor[BOOKE_IRQPRIO_WATCHDOG] = sregs->u.e.ivor_low[12];
	vcpu->arch.ivor[BOOKE_IRQPRIO_DTLB_MISS] = sregs->u.e.ivor_low[13];
	vcpu->arch.ivor[BOOKE_IRQPRIO_ITLB_MISS] = sregs->u.e.ivor_low[14];
	vcpu->arch.ivor[BOOKE_IRQPRIO_DEBUG] = sregs->u.e.ivor_low[15];

	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int ret;

	vcpu_load(vcpu);

	sregs->pvr = vcpu->arch.pvr;

	get_sregs_base(vcpu, sregs);
	get_sregs_arch206(vcpu, sregs);
	ret = vcpu->kvm->arch.kvm_ops->get_sregs(vcpu, sregs);

	vcpu_put(vcpu);
	return ret;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
                                  struct kvm_sregs *sregs)
{
	int ret = -EINVAL;

	vcpu_load(vcpu);
	if (vcpu->arch.pvr != sregs->pvr)
		goto out;

	ret = set_sregs_base(vcpu, sregs);
	if (ret < 0)
		goto out;

	ret = set_sregs_arch206(vcpu, sregs);
	if (ret < 0)
		goto out;

	ret = vcpu->kvm->arch.kvm_ops->set_sregs(vcpu, sregs);

out:
	vcpu_put(vcpu);
	return ret;
}

int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id,
			union kvmppc_one_reg *val)
{
	int r = 0;

	switch (id) {
	case KVM_REG_PPC_IAC1:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.iac1);
		break;
	case KVM_REG_PPC_IAC2:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.iac2);
		break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	case KVM_REG_PPC_IAC3:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.iac3);
		break;
	case KVM_REG_PPC_IAC4:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.iac4);
		break;
#endif
	case KVM_REG_PPC_DAC1:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.dac1);
		break;
	case KVM_REG_PPC_DAC2:
		*val = get_reg_val(id, vcpu->arch.dbg_reg.dac2);
		break;
	case KVM_REG_PPC_EPR: {
		u32 epr = kvmppc_get_epr(vcpu);
		*val = get_reg_val(id, epr);
		break;
	}
#if defined(CONFIG_64BIT)
	case KVM_REG_PPC_EPCR:
		*val = get_reg_val(id, vcpu->arch.epcr);
		break;
#endif
	case KVM_REG_PPC_TCR:
		*val = get_reg_val(id, vcpu->arch.tcr);
		break;
	case KVM_REG_PPC_TSR:
		*val = get_reg_val(id, vcpu->arch.tsr);
		break;
	case KVM_REG_PPC_DEBUG_INST:
		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
		break;
	case KVM_REG_PPC_VRSAVE:
		*val = get_reg_val(id, vcpu->arch.vrsave);
		break;
	default:
		r = vcpu->kvm->arch.kvm_ops->get_one_reg(vcpu, id, val);
		break;
	}

	return r;
}

int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id,
			union kvmppc_one_reg *val)
{
	int r = 0;

	switch (id) {
	case KVM_REG_PPC_IAC1:
		vcpu->arch.dbg_reg.iac1 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_IAC2:
		vcpu->arch.dbg_reg.iac2 = set_reg_val(id, *val);
		break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	case KVM_REG_PPC_IAC3:
		vcpu->arch.dbg_reg.iac3 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_IAC4:
		vcpu->arch.dbg_reg.iac4 = set_reg_val(id, *val);
		break;
#endif
	case KVM_REG_PPC_DAC1:
		vcpu->arch.dbg_reg.dac1 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_DAC2:
		vcpu->arch.dbg_reg.dac2 = set_reg_val(id, *val);
		break;
	case KVM_REG_PPC_EPR: {
		u32 new_epr = set_reg_val(id, *val);
		kvmppc_set_epr(vcpu, new_epr);
		break;
	}
#if defined(CONFIG_64BIT)
	case KVM_REG_PPC_EPCR: {
		u32 new_epcr = set_reg_val(id, *val);
		kvmppc_set_epcr(vcpu, new_epcr);
		break;
	}
#endif
	case KVM_REG_PPC_OR_TSR: {
		u32 tsr_bits = set_reg_val(id, *val);
		kvmppc_set_tsr_bits(vcpu, tsr_bits);
		break;
	}
	case KVM_REG_PPC_CLEAR_TSR: {
		u32 tsr_bits = set_reg_val(id, *val);
		kvmppc_clr_tsr_bits(vcpu, tsr_bits);
		break;
	}
	case KVM_REG_PPC_TSR: {
		u32 tsr = set_reg_val(id, *val);
		kvmppc_set_tsr(vcpu, tsr);
		break;
	}
	case KVM_REG_PPC_TCR: {
		u32 tcr = set_reg_val(id, *val);
		kvmppc_set_tcr(vcpu, tcr);
		break;
	}
	case KVM_REG_PPC_VRSAVE:
		vcpu->arch.vrsave = set_reg_val(id, *val);
		break;
	default:
		r = vcpu->kvm->arch.kvm_ops->set_one_reg(vcpu, id, val);
		break;
	}

	return r;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EOPNOTSUPP;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	return -EOPNOTSUPP;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
                                  struct kvm_translation *tr)
{
	int r;

	vcpu_load(vcpu);
	r = kvmppc_core_vcpu_translate(vcpu, tr);
	vcpu_put(vcpu);
	return r;
}

void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
{

}

int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
	return -EOPNOTSUPP;
}

void kvmppc_core_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
{
}

int kvmppc_core_prepare_memory_region(struct kvm *kvm,
				      const struct kvm_memory_slot *old,
				      struct kvm_memory_slot *new,
				      enum kvm_mr_change change)
{
	return 0;
}

void kvmppc_core_commit_memory_region(struct kvm *kvm,
				struct kvm_memory_slot *old,
				const struct kvm_memory_slot *new,
				enum kvm_mr_change change)
{
}

void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
{
}

void kvmppc_set_epcr(struct kvm_vcpu *vcpu, u32 new_epcr)
{
#if defined(CONFIG_64BIT)
	vcpu->arch.epcr = new_epcr;
#ifdef CONFIG_KVM_BOOKE_HV
	vcpu->arch.shadow_epcr &= ~SPRN_EPCR_GICM;
	if (vcpu->arch.epcr  & SPRN_EPCR_ICM)
		vcpu->arch.shadow_epcr |= SPRN_EPCR_GICM;
#endif
#endif
}

void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr)
{
	vcpu->arch.tcr = new_tcr;
	arm_next_watchdog(vcpu);
	update_timer_ints(vcpu);
}

void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
	set_bits(tsr_bits, &vcpu->arch.tsr);
	smp_wmb();
	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
	kvm_vcpu_kick(vcpu);
}

void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits)
{
	clear_bits(tsr_bits, &vcpu->arch.tsr);

	/*
	 * We may have stopped the watchdog due to
	 * being stuck on final expiration.
	 */
	if (tsr_bits & (TSR_ENW | TSR_WIS))
		arm_next_watchdog(vcpu);

	update_timer_ints(vcpu);
}

void kvmppc_decrementer_func(struct kvm_vcpu *vcpu)
{
	if (vcpu->arch.tcr & TCR_ARE) {
		vcpu->arch.dec = vcpu->arch.decar;
		kvmppc_emulate_dec(vcpu);
	}

	kvmppc_set_tsr_bits(vcpu, TSR_DIS);
}

static int kvmppc_booke_add_breakpoint(struct debug_reg *dbg_reg,
				       uint64_t addr, int index)
{
	switch (index) {
	case 0:
		dbg_reg->dbcr0 |= DBCR0_IAC1;
		dbg_reg->iac1 = addr;
		break;
	case 1:
		dbg_reg->dbcr0 |= DBCR0_IAC2;
		dbg_reg->iac2 = addr;
		break;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	case 2:
		dbg_reg->dbcr0 |= DBCR0_IAC3;
		dbg_reg->iac3 = addr;
		break;
	case 3:
		dbg_reg->dbcr0 |= DBCR0_IAC4;
		dbg_reg->iac4 = addr;
		break;
#endif
	default:
		return -EINVAL;
	}

	dbg_reg->dbcr0 |= DBCR0_IDM;
	return 0;
}

static int kvmppc_booke_add_watchpoint(struct debug_reg *dbg_reg, uint64_t addr,
				       int type, int index)
{
	switch (index) {
	case 0:
		if (type & KVMPPC_DEBUG_WATCH_READ)
			dbg_reg->dbcr0 |= DBCR0_DAC1R;
		if (type & KVMPPC_DEBUG_WATCH_WRITE)
			dbg_reg->dbcr0 |= DBCR0_DAC1W;
		dbg_reg->dac1 = addr;
		break;
	case 1:
		if (type & KVMPPC_DEBUG_WATCH_READ)
			dbg_reg->dbcr0 |= DBCR0_DAC2R;
		if (type & KVMPPC_DEBUG_WATCH_WRITE)
			dbg_reg->dbcr0 |= DBCR0_DAC2W;
		dbg_reg->dac2 = addr;
		break;
	default:
		return -EINVAL;
	}

	dbg_reg->dbcr0 |= DBCR0_IDM;
	return 0;
}
static void kvm_guest_protect_msr(struct kvm_vcpu *vcpu, ulong prot_bitmap,
				  bool set)
{
	/* XXX: Add similar MSR protection for BookE-PR */
#ifdef CONFIG_KVM_BOOKE_HV
	BUG_ON(prot_bitmap & ~(MSRP_UCLEP | MSRP_DEP | MSRP_PMMP));
	if (set) {
		if (prot_bitmap & MSR_UCLE)
			vcpu->arch.shadow_msrp |= MSRP_UCLEP;
		if (prot_bitmap & MSR_DE)
			vcpu->arch.shadow_msrp |= MSRP_DEP;
		if (prot_bitmap & MSR_PMM)
			vcpu->arch.shadow_msrp |= MSRP_PMMP;
	} else {
		if (prot_bitmap & MSR_UCLE)
			vcpu->arch.shadow_msrp &= ~MSRP_UCLEP;
		if (prot_bitmap & MSR_DE)
			vcpu->arch.shadow_msrp &= ~MSRP_DEP;
		if (prot_bitmap & MSR_PMM)
			vcpu->arch.shadow_msrp &= ~MSRP_PMMP;
	}
#endif
}

int kvmppc_xlate(struct kvm_vcpu *vcpu, ulong eaddr, enum xlate_instdata xlid,
		 enum xlate_readwrite xlrw, struct kvmppc_pte *pte)
{
	int gtlb_index;
	gpa_t gpaddr;

#ifdef CONFIG_KVM_E500V2
	if (!(vcpu->arch.shared->msr & MSR_PR) &&
	    (eaddr & PAGE_MASK) == vcpu->arch.magic_page_ea) {
		pte->eaddr = eaddr;
		pte->raddr = (vcpu->arch.magic_page_pa & PAGE_MASK) |
			     (eaddr & ~PAGE_MASK);
		pte->vpage = eaddr >> PAGE_SHIFT;
		pte->may_read = true;
		pte->may_write = true;
		pte->may_execute = true;

		return 0;
	}
#endif

	/* Check the guest TLB. */
	switch (xlid) {
	case XLATE_INST:
		gtlb_index = kvmppc_mmu_itlb_index(vcpu, eaddr);
		break;
	case XLATE_DATA:
		gtlb_index = kvmppc_mmu_dtlb_index(vcpu, eaddr);
		break;
	default:
		BUG();
	}

	/* Do we have a TLB entry at all? */
	if (gtlb_index < 0)
		return -ENOENT;

	gpaddr = kvmppc_mmu_xlate(vcpu, gtlb_index, eaddr);

	pte->eaddr = eaddr;
	pte->raddr = (gpaddr & PAGE_MASK) | (eaddr & ~PAGE_MASK);
	pte->vpage = eaddr >> PAGE_SHIFT;

	/* XXX read permissions from the guest TLB */
	pte->may_read = true;
	pte->may_write = true;
	pte->may_execute = true;

	return 0;
}

int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					 struct kvm_guest_debug *dbg)
{
	struct debug_reg *dbg_reg;
	int n, b = 0, w = 0;
	int ret = 0;

	vcpu_load(vcpu);

	if (!(dbg->control & KVM_GUESTDBG_ENABLE)) {
		vcpu->arch.dbg_reg.dbcr0 = 0;
		vcpu->guest_debug = 0;
		kvm_guest_protect_msr(vcpu, MSR_DE, false);
		goto out;
	}

	kvm_guest_protect_msr(vcpu, MSR_DE, true);
	vcpu->guest_debug = dbg->control;
	vcpu->arch.dbg_reg.dbcr0 = 0;

	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
		vcpu->arch.dbg_reg.dbcr0 |= DBCR0_IDM | DBCR0_IC;

	/* Code below handles only HW breakpoints */
	dbg_reg = &(vcpu->arch.dbg_reg);

#ifdef CONFIG_KVM_BOOKE_HV
	/*
	 * On BookE-HV (e500mc) the guest is always executed with MSR.GS=1
	 * DBCR1 and DBCR2 are set to trigger debug events when MSR.PR is 0
	 */
	dbg_reg->dbcr1 = 0;
	dbg_reg->dbcr2 = 0;
#else
	/*
	 * On BookE-PR (e500v2) the guest is always executed with MSR.PR=1
	 * We set DBCR1 and DBCR2 to only trigger debug events when MSR.PR
	 * is set.
	 */
	dbg_reg->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | DBCR1_IAC3US |
			  DBCR1_IAC4US;
	dbg_reg->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#endif

	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
		goto out;

	ret = -EINVAL;
	for (n = 0; n < (KVMPPC_BOOKE_IAC_NUM + KVMPPC_BOOKE_DAC_NUM); n++) {
		uint64_t addr = dbg->arch.bp[n].addr;
		uint32_t type = dbg->arch.bp[n].type;

		if (type == KVMPPC_DEBUG_NONE)
			continue;

		if (type & ~(KVMPPC_DEBUG_WATCH_READ |
			     KVMPPC_DEBUG_WATCH_WRITE |
			     KVMPPC_DEBUG_BREAKPOINT))
			goto out;

		if (type & KVMPPC_DEBUG_BREAKPOINT) {
			/* Setting H/W breakpoint */
			if (kvmppc_booke_add_breakpoint(dbg_reg, addr, b++))
				goto out;
		} else {
			/* Setting H/W watchpoint */
			if (kvmppc_booke_add_watchpoint(dbg_reg, addr,
							type, w++))
				goto out;
		}
	}

	ret = 0;
out:
	vcpu_put(vcpu);
	return ret;
}

void kvmppc_booke_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	vcpu->cpu = smp_processor_id();
	current->thread.kvm_vcpu = vcpu;
}

void kvmppc_booke_vcpu_put(struct kvm_vcpu *vcpu)
{
	current->thread.kvm_vcpu = NULL;
	vcpu->cpu = -1;

	/* Clear pending debug event in DBSR */
	kvmppc_clear_dbsr();
}

int kvmppc_core_init_vm(struct kvm *kvm)
{
	return kvm->arch.kvm_ops->init_vm(kvm);
}

int kvmppc_core_vcpu_create(struct kvm_vcpu *vcpu)
{
	int i;
	int r;

	r = vcpu->kvm->arch.kvm_ops->vcpu_create(vcpu);
	if (r)
		return r;

	/* Initial guest state: 16MB mapping 0 -> 0, PC = 0, MSR = 0, R1 = 16MB */
	vcpu->arch.regs.nip = 0;
	vcpu->arch.shared->pir = vcpu->vcpu_id;
	kvmppc_set_gpr(vcpu, 1, (16<<20) - 8); /* -8 for the callee-save LR slot */
	kvmppc_set_msr(vcpu, 0);

#ifndef CONFIG_KVM_BOOKE_HV
	vcpu->arch.shadow_msr = MSR_USER | MSR_IS | MSR_DS;
	vcpu->arch.shadow_pid = 1;
	vcpu->arch.shared->msr = 0;
#endif

	/* Eye-catching numbers so we know if the guest takes an interrupt
	 * before it's programmed its own IVPR/IVORs. */
	vcpu->arch.ivpr = 0x55550000;
	for (i = 0; i < BOOKE_IRQPRIO_MAX; i++)
		vcpu->arch.ivor[i] = 0x7700 | i * 4;

	kvmppc_init_timing_stats(vcpu);

	r = kvmppc_core_vcpu_setup(vcpu);
	if (r)
		vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
	kvmppc_sanity_check(vcpu);
	return r;
}

void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
{
	vcpu->kvm->arch.kvm_ops->vcpu_free(vcpu);
}

void kvmppc_core_destroy_vm(struct kvm *kvm)
{
	kvm->arch.kvm_ops->destroy_vm(kvm);
}

void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	vcpu->kvm->arch.kvm_ops->vcpu_load(vcpu, cpu);
}

void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
{
	vcpu->kvm->arch.kvm_ops->vcpu_put(vcpu);
}

int __init kvmppc_booke_init(void)
{
#ifndef CONFIG_KVM_BOOKE_HV
	unsigned long ivor[16];
	unsigned long *handler = kvmppc_booke_handler_addr;
	unsigned long max_ivor = 0;
	unsigned long handler_len;
	int i;

	/* We install our own exception handlers by hijacking IVPR. IVPR must
	 * be 16-bit aligned, so we need a 64KB allocation. */
	kvmppc_booke_handlers = __get_free_pages(GFP_KERNEL | __GFP_ZERO,
	                                         VCPU_SIZE_ORDER);
	if (!kvmppc_booke_handlers)
		return -ENOMEM;

	/* XXX make sure our handlers are smaller than Linux's */

	/* Copy our interrupt handlers to match host IVORs. That way we don't
	 * have to swap the IVORs on every guest/host transition. */
	ivor[0] = mfspr(SPRN_IVOR0);
	ivor[1] = mfspr(SPRN_IVOR1);
	ivor[2] = mfspr(SPRN_IVOR2);
	ivor[3] = mfspr(SPRN_IVOR3);
	ivor[4] = mfspr(SPRN_IVOR4);
	ivor[5] = mfspr(SPRN_IVOR5);
	ivor[6] = mfspr(SPRN_IVOR6);
	ivor[7] = mfspr(SPRN_IVOR7);
	ivor[8] = mfspr(SPRN_IVOR8);
	ivor[9] = mfspr(SPRN_IVOR9);
	ivor[10] = mfspr(SPRN_IVOR10);
	ivor[11] = mfspr(SPRN_IVOR11);
	ivor[12] = mfspr(SPRN_IVOR12);
	ivor[13] = mfspr(SPRN_IVOR13);
	ivor[14] = mfspr(SPRN_IVOR14);
	ivor[15] = mfspr(SPRN_IVOR15);

	for (i = 0; i < 16; i++) {
		if (ivor[i] > max_ivor)
			max_ivor = i;

		handler_len = handler[i + 1] - handler[i];
		memcpy((void *)kvmppc_booke_handlers + ivor[i],
		       (void *)handler[i], handler_len);
	}

	handler_len = handler[max_ivor + 1] - handler[max_ivor];
	flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
			   ivor[max_ivor] + handler_len);
#endif /* !BOOKE_HV */
	return 0;
}

void __exit kvmppc_booke_exit(void)
{
	free_pages(kvmppc_booke_handlers, VCPU_SIZE_ORDER);
	kvm_exit();
}