// SPDX-License-Identifier: GPL-2.0-only /* * cmt_speech.c - HSI CMT speech driver * * Copyright (C) 2008,2009,2010 Nokia Corporation. All rights reserved. * * Contact: Kai Vehmanen <kai.vehmanen@nokia.com> * Original author: Peter Ujfalusi <peter.ujfalusi@nokia.com> */ #include <linux/errno.h> #include <linux/module.h> #include <linux/types.h> #include <linux/init.h> #include <linux/device.h> #include <linux/miscdevice.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/poll.h> #include <linux/sched/signal.h> #include <linux/ioctl.h> #include <linux/uaccess.h> #include <linux/pm_qos.h> #include <linux/hsi/hsi.h> #include <linux/hsi/ssi_protocol.h> #include <linux/hsi/cs-protocol.h> #define CS_MMAP_SIZE PAGE_SIZE struct char_queue { struct list_head list; u32 msg; }; struct cs_char { unsigned int opened; struct hsi_client *cl; struct cs_hsi_iface *hi; struct list_head chardev_queue; struct list_head dataind_queue; int dataind_pending; /* mmap things */ unsigned long mmap_base; unsigned long mmap_size; spinlock_t lock; struct fasync_struct *async_queue; wait_queue_head_t wait; /* hsi channel ids */ int channel_id_cmd; int channel_id_data; }; #define SSI_CHANNEL_STATE_READING 1 #define SSI_CHANNEL_STATE_WRITING (1 << 1) #define SSI_CHANNEL_STATE_POLL (1 << 2) #define SSI_CHANNEL_STATE_ERROR (1 << 3) #define TARGET_MASK 0xf000000 #define TARGET_REMOTE (1 << CS_DOMAIN_SHIFT) #define TARGET_LOCAL 0 /* Number of pre-allocated commands buffers */ #define CS_MAX_CMDS 4 /* * During data transfers, transactions must be handled * within 20ms (fixed value in cmtspeech HSI protocol) */ #define CS_QOS_LATENCY_FOR_DATA_USEC 20000 /* Timeout to wait for pending HSI transfers to complete */ #define CS_HSI_TRANSFER_TIMEOUT_MS 500 #define RX_PTR_BOUNDARY_SHIFT 8 #define RX_PTR_MAX_SHIFT (RX_PTR_BOUNDARY_SHIFT + \ CS_MAX_BUFFERS_SHIFT) struct cs_hsi_iface { struct hsi_client *cl; struct hsi_client *master; unsigned int iface_state; unsigned int wakeline_state; unsigned int control_state; unsigned int data_state; /* state exposed to application */ struct cs_mmap_config_block *mmap_cfg; unsigned long mmap_base; unsigned long mmap_size; unsigned int rx_slot; unsigned int tx_slot; /* note: for security reasons, we do not trust the contents of * mmap_cfg, but instead duplicate the variables here */ unsigned int buf_size; unsigned int rx_bufs; unsigned int tx_bufs; unsigned int rx_ptr_boundary; unsigned int rx_offsets[CS_MAX_BUFFERS]; unsigned int tx_offsets[CS_MAX_BUFFERS]; /* size of aligned memory blocks */ unsigned int slot_size; unsigned int flags; struct list_head cmdqueue; struct hsi_msg *data_rx_msg; struct hsi_msg *data_tx_msg; wait_queue_head_t datawait; struct pm_qos_request pm_qos_req; spinlock_t lock; }; static struct cs_char cs_char_data; static void cs_hsi_read_on_control(struct cs_hsi_iface *hi); static void cs_hsi_read_on_data(struct cs_hsi_iface *hi); static inline void rx_ptr_shift_too_big(void) { BUILD_BUG_ON((1LLU << RX_PTR_MAX_SHIFT) > UINT_MAX); } static void cs_notify(u32 message, struct list_head *head) { struct char_queue *entry; spin_lock(&cs_char_data.lock); if (!cs_char_data.opened) { spin_unlock(&cs_char_data.lock); goto out; } entry = kmalloc(sizeof(*entry), GFP_ATOMIC); if (!entry) { dev_err(&cs_char_data.cl->device, "Can't allocate new entry for the queue.\n"); spin_unlock(&cs_char_data.lock); goto out; } entry->msg = message; list_add_tail(&entry->list, head); spin_unlock(&cs_char_data.lock); wake_up_interruptible(&cs_char_data.wait); kill_fasync(&cs_char_data.async_queue, SIGIO, POLL_IN); out: return; } static u32 cs_pop_entry(struct list_head *head) { struct char_queue *entry; u32 data; entry = list_entry(head->next, struct char_queue, list); data = entry->msg; list_del(&entry->list); kfree(entry); return data; } static void cs_notify_control(u32 message) { cs_notify(message, &cs_char_data.chardev_queue); } static void cs_notify_data(u32 message, int maxlength) { cs_notify(message, &cs_char_data.dataind_queue); spin_lock(&cs_char_data.lock); cs_char_data.dataind_pending++; while (cs_char_data.dataind_pending > maxlength && !list_empty(&cs_char_data.dataind_queue)) { dev_dbg(&cs_char_data.cl->device, "data notification " "queue overrun (%u entries)\n", cs_char_data.dataind_pending); cs_pop_entry(&cs_char_data.dataind_queue); cs_char_data.dataind_pending--; } spin_unlock(&cs_char_data.lock); } static inline void cs_set_cmd(struct hsi_msg *msg, u32 cmd) { u32 *data = sg_virt(msg->sgt.sgl); *data = cmd; } static inline u32 cs_get_cmd(struct hsi_msg *msg) { u32 *data = sg_virt(msg->sgt.sgl); return *data; } static void cs_release_cmd(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; list_add_tail(&msg->link, &hi->cmdqueue); } static void cs_cmd_destructor(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; spin_lock(&hi->lock); dev_dbg(&cs_char_data.cl->device, "control cmd destructor\n"); if (hi->iface_state != CS_STATE_CLOSED) dev_err(&hi->cl->device, "Cmd flushed while driver active\n"); if (msg->ttype == HSI_MSG_READ) hi->control_state &= ~(SSI_CHANNEL_STATE_POLL | SSI_CHANNEL_STATE_READING); else if (msg->ttype == HSI_MSG_WRITE && hi->control_state & SSI_CHANNEL_STATE_WRITING) hi->control_state &= ~SSI_CHANNEL_STATE_WRITING; cs_release_cmd(msg); spin_unlock(&hi->lock); } static struct hsi_msg *cs_claim_cmd(struct cs_hsi_iface* ssi) { struct hsi_msg *msg; BUG_ON(list_empty(&ssi->cmdqueue)); msg = list_first_entry(&ssi->cmdqueue, struct hsi_msg, link); list_del(&msg->link); msg->destructor = cs_cmd_destructor; return msg; } static void cs_free_cmds(struct cs_hsi_iface *ssi) { struct hsi_msg *msg, *tmp; list_for_each_entry_safe(msg, tmp, &ssi->cmdqueue, link) { list_del(&msg->link); msg->destructor = NULL; kfree(sg_virt(msg->sgt.sgl)); hsi_free_msg(msg); } } static int cs_alloc_cmds(struct cs_hsi_iface *hi) { struct hsi_msg *msg; u32 *buf; unsigned int i; INIT_LIST_HEAD(&hi->cmdqueue); for (i = 0; i < CS_MAX_CMDS; i++) { msg = hsi_alloc_msg(1, GFP_KERNEL); if (!msg) goto out; buf = kmalloc(sizeof(*buf), GFP_KERNEL); if (!buf) { hsi_free_msg(msg); goto out; } sg_init_one(msg->sgt.sgl, buf, sizeof(*buf)); msg->channel = cs_char_data.channel_id_cmd; msg->context = hi; list_add_tail(&msg->link, &hi->cmdqueue); } return 0; out: cs_free_cmds(hi); return -ENOMEM; } static void cs_hsi_data_destructor(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; const char *dir = (msg->ttype == HSI_MSG_READ) ? "TX" : "RX"; dev_dbg(&cs_char_data.cl->device, "Freeing data %s message\n", dir); spin_lock(&hi->lock); if (hi->iface_state != CS_STATE_CLOSED) dev_err(&cs_char_data.cl->device, "Data %s flush while device active\n", dir); if (msg->ttype == HSI_MSG_READ) hi->data_state &= ~(SSI_CHANNEL_STATE_POLL | SSI_CHANNEL_STATE_READING); else hi->data_state &= ~SSI_CHANNEL_STATE_WRITING; msg->status = HSI_STATUS_COMPLETED; if (unlikely(waitqueue_active(&hi->datawait))) wake_up_interruptible(&hi->datawait); spin_unlock(&hi->lock); } static int cs_hsi_alloc_data(struct cs_hsi_iface *hi) { struct hsi_msg *txmsg, *rxmsg; int res = 0; rxmsg = hsi_alloc_msg(1, GFP_KERNEL); if (!rxmsg) { res = -ENOMEM; goto out1; } rxmsg->channel = cs_char_data.channel_id_data; rxmsg->destructor = cs_hsi_data_destructor; rxmsg->context = hi; txmsg = hsi_alloc_msg(1, GFP_KERNEL); if (!txmsg) { res = -ENOMEM; goto out2; } txmsg->channel = cs_char_data.channel_id_data; txmsg->destructor = cs_hsi_data_destructor; txmsg->context = hi; hi->data_rx_msg = rxmsg; hi->data_tx_msg = txmsg; return 0; out2: hsi_free_msg(rxmsg); out1: return res; } static void cs_hsi_free_data_msg(struct hsi_msg *msg) { WARN_ON(msg->status != HSI_STATUS_COMPLETED && msg->status != HSI_STATUS_ERROR); hsi_free_msg(msg); } static void cs_hsi_free_data(struct cs_hsi_iface *hi) { cs_hsi_free_data_msg(hi->data_rx_msg); cs_hsi_free_data_msg(hi->data_tx_msg); } static inline void __cs_hsi_error_pre(struct cs_hsi_iface *hi, struct hsi_msg *msg, const char *info, unsigned int *state) { spin_lock(&hi->lock); dev_err(&hi->cl->device, "HSI %s error, msg %d, state %u\n", info, msg->status, *state); } static inline void __cs_hsi_error_post(struct cs_hsi_iface *hi) { spin_unlock(&hi->lock); } static inline void __cs_hsi_error_read_bits(unsigned int *state) { *state |= SSI_CHANNEL_STATE_ERROR; *state &= ~(SSI_CHANNEL_STATE_READING | SSI_CHANNEL_STATE_POLL); } static inline void __cs_hsi_error_write_bits(unsigned int *state) { *state |= SSI_CHANNEL_STATE_ERROR; *state &= ~SSI_CHANNEL_STATE_WRITING; } static void cs_hsi_control_read_error(struct cs_hsi_iface *hi, struct hsi_msg *msg) { __cs_hsi_error_pre(hi, msg, "control read", &hi->control_state); cs_release_cmd(msg); __cs_hsi_error_read_bits(&hi->control_state); __cs_hsi_error_post(hi); } static void cs_hsi_control_write_error(struct cs_hsi_iface *hi, struct hsi_msg *msg) { __cs_hsi_error_pre(hi, msg, "control write", &hi->control_state); cs_release_cmd(msg); __cs_hsi_error_write_bits(&hi->control_state); __cs_hsi_error_post(hi); } static void cs_hsi_data_read_error(struct cs_hsi_iface *hi, struct hsi_msg *msg) { __cs_hsi_error_pre(hi, msg, "data read", &hi->data_state); __cs_hsi_error_read_bits(&hi->data_state); __cs_hsi_error_post(hi); } static void cs_hsi_data_write_error(struct cs_hsi_iface *hi, struct hsi_msg *msg) { __cs_hsi_error_pre(hi, msg, "data write", &hi->data_state); __cs_hsi_error_write_bits(&hi->data_state); __cs_hsi_error_post(hi); } static void cs_hsi_read_on_control_complete(struct hsi_msg *msg) { u32 cmd = cs_get_cmd(msg); struct cs_hsi_iface *hi = msg->context; spin_lock(&hi->lock); hi->control_state &= ~SSI_CHANNEL_STATE_READING; if (msg->status == HSI_STATUS_ERROR) { dev_err(&hi->cl->device, "Control RX error detected\n"); spin_unlock(&hi->lock); cs_hsi_control_read_error(hi, msg); goto out; } dev_dbg(&hi->cl->device, "Read on control: %08X\n", cmd); cs_release_cmd(msg); if (hi->flags & CS_FEAT_TSTAMP_RX_CTRL) { struct timespec64 tspec; struct cs_timestamp *tstamp = &hi->mmap_cfg->tstamp_rx_ctrl; ktime_get_ts64(&tspec); tstamp->tv_sec = (__u32) tspec.tv_sec; tstamp->tv_nsec = (__u32) tspec.tv_nsec; } spin_unlock(&hi->lock); cs_notify_control(cmd); out: cs_hsi_read_on_control(hi); } static void cs_hsi_peek_on_control_complete(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; int ret; if (msg->status == HSI_STATUS_ERROR) { dev_err(&hi->cl->device, "Control peek RX error detected\n"); cs_hsi_control_read_error(hi, msg); return; } WARN_ON(!(hi->control_state & SSI_CHANNEL_STATE_READING)); dev_dbg(&hi->cl->device, "Peek on control complete, reading\n"); msg->sgt.nents = 1; msg->complete = cs_hsi_read_on_control_complete; ret = hsi_async_read(hi->cl, msg); if (ret) cs_hsi_control_read_error(hi, msg); } static void cs_hsi_read_on_control(struct cs_hsi_iface *hi) { struct hsi_msg *msg; int ret; spin_lock(&hi->lock); if (hi->control_state & SSI_CHANNEL_STATE_READING) { dev_err(&hi->cl->device, "Control read already pending (%d)\n", hi->control_state); spin_unlock(&hi->lock); return; } if (hi->control_state & SSI_CHANNEL_STATE_ERROR) { dev_err(&hi->cl->device, "Control read error (%d)\n", hi->control_state); spin_unlock(&hi->lock); return; } hi->control_state |= SSI_CHANNEL_STATE_READING; dev_dbg(&hi->cl->device, "Issuing RX on control\n"); msg = cs_claim_cmd(hi); spin_unlock(&hi->lock); msg->sgt.nents = 0; msg->complete = cs_hsi_peek_on_control_complete; ret = hsi_async_read(hi->cl, msg); if (ret) cs_hsi_control_read_error(hi, msg); } static void cs_hsi_write_on_control_complete(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; if (msg->status == HSI_STATUS_COMPLETED) { spin_lock(&hi->lock); hi->control_state &= ~SSI_CHANNEL_STATE_WRITING; cs_release_cmd(msg); spin_unlock(&hi->lock); } else if (msg->status == HSI_STATUS_ERROR) { cs_hsi_control_write_error(hi, msg); } else { dev_err(&hi->cl->device, "unexpected status in control write callback %d\n", msg->status); } } static int cs_hsi_write_on_control(struct cs_hsi_iface *hi, u32 message) { struct hsi_msg *msg; int ret; spin_lock(&hi->lock); if (hi->control_state & SSI_CHANNEL_STATE_ERROR) { spin_unlock(&hi->lock); return -EIO; } if (hi->control_state & SSI_CHANNEL_STATE_WRITING) { dev_err(&hi->cl->device, "Write still pending on control channel.\n"); spin_unlock(&hi->lock); return -EBUSY; } hi->control_state |= SSI_CHANNEL_STATE_WRITING; msg = cs_claim_cmd(hi); spin_unlock(&hi->lock); cs_set_cmd(msg, message); msg->sgt.nents = 1; msg->complete = cs_hsi_write_on_control_complete; dev_dbg(&hi->cl->device, "Sending control message %08X\n", message); ret = hsi_async_write(hi->cl, msg); if (ret) { dev_err(&hi->cl->device, "async_write failed with %d\n", ret); cs_hsi_control_write_error(hi, msg); } /* * Make sure control read is always pending when issuing * new control writes. This is needed as the controller * may flush our messages if e.g. the peer device reboots * unexpectedly (and we cannot directly resubmit a new read from * the message destructor; see cs_cmd_destructor()). */ if (!(hi->control_state & SSI_CHANNEL_STATE_READING)) { dev_err(&hi->cl->device, "Restarting control reads\n"); cs_hsi_read_on_control(hi); } return 0; } static void cs_hsi_read_on_data_complete(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; u32 payload; if (unlikely(msg->status == HSI_STATUS_ERROR)) { cs_hsi_data_read_error(hi, msg); return; } spin_lock(&hi->lock); WARN_ON(!(hi->data_state & SSI_CHANNEL_STATE_READING)); hi->data_state &= ~SSI_CHANNEL_STATE_READING; payload = CS_RX_DATA_RECEIVED; payload |= hi->rx_slot; hi->rx_slot++; hi->rx_slot %= hi->rx_ptr_boundary; /* expose current rx ptr in mmap area */ hi->mmap_cfg->rx_ptr = hi->rx_slot; if (unlikely(waitqueue_active(&hi->datawait))) wake_up_interruptible(&hi->datawait); spin_unlock(&hi->lock); cs_notify_data(payload, hi->rx_bufs); cs_hsi_read_on_data(hi); } static void cs_hsi_peek_on_data_complete(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; u32 *address; int ret; if (unlikely(msg->status == HSI_STATUS_ERROR)) { cs_hsi_data_read_error(hi, msg); return; } if (unlikely(hi->iface_state != CS_STATE_CONFIGURED)) { dev_err(&hi->cl->device, "Data received in invalid state\n"); cs_hsi_data_read_error(hi, msg); return; } spin_lock(&hi->lock); WARN_ON(!(hi->data_state & SSI_CHANNEL_STATE_POLL)); hi->data_state &= ~SSI_CHANNEL_STATE_POLL; hi->data_state |= SSI_CHANNEL_STATE_READING; spin_unlock(&hi->lock); address = (u32 *)(hi->mmap_base + hi->rx_offsets[hi->rx_slot % hi->rx_bufs]); sg_init_one(msg->sgt.sgl, address, hi->buf_size); msg->sgt.nents = 1; msg->complete = cs_hsi_read_on_data_complete; ret = hsi_async_read(hi->cl, msg); if (ret) cs_hsi_data_read_error(hi, msg); } /* * Read/write transaction is ongoing. Returns false if in * SSI_CHANNEL_STATE_POLL state. */ static inline int cs_state_xfer_active(unsigned int state) { return (state & SSI_CHANNEL_STATE_WRITING) || (state & SSI_CHANNEL_STATE_READING); } /* * No pending read/writes */ static inline int cs_state_idle(unsigned int state) { return !(state & ~SSI_CHANNEL_STATE_ERROR); } static void cs_hsi_read_on_data(struct cs_hsi_iface *hi) { struct hsi_msg *rxmsg; int ret; spin_lock(&hi->lock); if (hi->data_state & (SSI_CHANNEL_STATE_READING | SSI_CHANNEL_STATE_POLL)) { dev_dbg(&hi->cl->device, "Data read already pending (%u)\n", hi->data_state); spin_unlock(&hi->lock); return; } hi->data_state |= SSI_CHANNEL_STATE_POLL; spin_unlock(&hi->lock); rxmsg = hi->data_rx_msg; sg_init_one(rxmsg->sgt.sgl, (void *)hi->mmap_base, 0); rxmsg->sgt.nents = 0; rxmsg->complete = cs_hsi_peek_on_data_complete; ret = hsi_async_read(hi->cl, rxmsg); if (ret) cs_hsi_data_read_error(hi, rxmsg); } static void cs_hsi_write_on_data_complete(struct hsi_msg *msg) { struct cs_hsi_iface *hi = msg->context; if (msg->status == HSI_STATUS_COMPLETED) { spin_lock(&hi->lock); hi->data_state &= ~SSI_CHANNEL_STATE_WRITING; if (unlikely(waitqueue_active(&hi->datawait))) wake_up_interruptible(&hi->datawait); spin_unlock(&hi->lock); } else { cs_hsi_data_write_error(hi, msg); } } static int cs_hsi_write_on_data(struct cs_hsi_iface *hi, unsigned int slot) { u32 *address; struct hsi_msg *txmsg; int ret; spin_lock(&hi->lock); if (hi->iface_state != CS_STATE_CONFIGURED) { dev_err(&hi->cl->device, "Not configured, aborting\n"); ret = -EINVAL; goto error; } if (hi->data_state & SSI_CHANNEL_STATE_ERROR) { dev_err(&hi->cl->device, "HSI error, aborting\n"); ret = -EIO; goto error; } if (hi->data_state & SSI_CHANNEL_STATE_WRITING) { dev_err(&hi->cl->device, "Write pending on data channel.\n"); ret = -EBUSY; goto error; } hi->data_state |= SSI_CHANNEL_STATE_WRITING; spin_unlock(&hi->lock); hi->tx_slot = slot; address = (u32 *)(hi->mmap_base + hi->tx_offsets[hi->tx_slot]); txmsg = hi->data_tx_msg; sg_init_one(txmsg->sgt.sgl, address, hi->buf_size); txmsg->complete = cs_hsi_write_on_data_complete; ret = hsi_async_write(hi->cl, txmsg); if (ret) cs_hsi_data_write_error(hi, txmsg); return ret; error: spin_unlock(&hi->lock); if (ret == -EIO) cs_hsi_data_write_error(hi, hi->data_tx_msg); return ret; } static unsigned int cs_hsi_get_state(struct cs_hsi_iface *hi) { return hi->iface_state; } static int cs_hsi_command(struct cs_hsi_iface *hi, u32 cmd) { int ret = 0; local_bh_disable(); switch (cmd & TARGET_MASK) { case TARGET_REMOTE: ret = cs_hsi_write_on_control(hi, cmd); break; case TARGET_LOCAL: if ((cmd & CS_CMD_MASK) == CS_TX_DATA_READY) ret = cs_hsi_write_on_data(hi, cmd & CS_PARAM_MASK); else ret = -EINVAL; break; default: ret = -EINVAL; break; } local_bh_enable(); return ret; } static void cs_hsi_set_wakeline(struct cs_hsi_iface *hi, bool new_state) { int change = 0; spin_lock_bh(&hi->lock); if (hi->wakeline_state != new_state) { hi->wakeline_state = new_state; change = 1; dev_dbg(&hi->cl->device, "setting wake line to %d (%p)\n", new_state, hi->cl); } spin_unlock_bh(&hi->lock); if (change) { if (new_state) ssip_slave_start_tx(hi->master); else ssip_slave_stop_tx(hi->master); } dev_dbg(&hi->cl->device, "wake line set to %d (%p)\n", new_state, hi->cl); } static void set_buffer_sizes(struct cs_hsi_iface *hi, int rx_bufs, int tx_bufs) { hi->rx_bufs = rx_bufs; hi->tx_bufs = tx_bufs; hi->mmap_cfg->rx_bufs = rx_bufs; hi->mmap_cfg->tx_bufs = tx_bufs; if (hi->flags & CS_FEAT_ROLLING_RX_COUNTER) { /* * For more robust overrun detection, let the rx * pointer run in range 0..'boundary-1'. Boundary * is a multiple of rx_bufs, and limited in max size * by RX_PTR_MAX_SHIFT to allow for fast ptr-diff * calculation. */ hi->rx_ptr_boundary = (rx_bufs << RX_PTR_BOUNDARY_SHIFT); hi->mmap_cfg->rx_ptr_boundary = hi->rx_ptr_boundary; } else { hi->rx_ptr_boundary = hi->rx_bufs; } } static int check_buf_params(struct cs_hsi_iface *hi, const struct cs_buffer_config *buf_cfg) { size_t buf_size_aligned = L1_CACHE_ALIGN(buf_cfg->buf_size) * (buf_cfg->rx_bufs + buf_cfg->tx_bufs); size_t ctrl_size_aligned = L1_CACHE_ALIGN(sizeof(*hi->mmap_cfg)); int r = 0; if (buf_cfg->rx_bufs > CS_MAX_BUFFERS || buf_cfg->tx_bufs > CS_MAX_BUFFERS) { r = -EINVAL; } else if ((buf_size_aligned + ctrl_size_aligned) >= hi->mmap_size) { dev_err(&hi->cl->device, "No space for the requested buffer " "configuration\n"); r = -ENOBUFS; } return r; } /* * Block until pending data transfers have completed. */ static int cs_hsi_data_sync(struct cs_hsi_iface *hi) { int r = 0; spin_lock_bh(&hi->lock); if (!cs_state_xfer_active(hi->data_state)) { dev_dbg(&hi->cl->device, "hsi_data_sync break, idle\n"); goto out; } for (;;) { int s; DEFINE_WAIT(wait); if (!cs_state_xfer_active(hi->data_state)) goto out; if (signal_pending(current)) { r = -ERESTARTSYS; goto out; } /* * prepare_to_wait must be called with hi->lock held * so that callbacks can check for waitqueue_active() */ prepare_to_wait(&hi->datawait, &wait, TASK_INTERRUPTIBLE); spin_unlock_bh(&hi->lock); s = schedule_timeout( msecs_to_jiffies(CS_HSI_TRANSFER_TIMEOUT_MS)); spin_lock_bh(&hi->lock); finish_wait(&hi->datawait, &wait); if (!s) { dev_dbg(&hi->cl->device, "hsi_data_sync timeout after %d ms\n", CS_HSI_TRANSFER_TIMEOUT_MS); r = -EIO; goto out; } } out: spin_unlock_bh(&hi->lock); dev_dbg(&hi->cl->device, "hsi_data_sync done with res %d\n", r); return r; } static void cs_hsi_data_enable(struct cs_hsi_iface *hi, struct cs_buffer_config *buf_cfg) { unsigned int data_start, i; BUG_ON(hi->buf_size == 0); set_buffer_sizes(hi, buf_cfg->rx_bufs, buf_cfg->tx_bufs); hi->slot_size = L1_CACHE_ALIGN(hi->buf_size); dev_dbg(&hi->cl->device, "setting slot size to %u, buf size %u, align %u\n", hi->slot_size, hi->buf_size, L1_CACHE_BYTES); data_start = L1_CACHE_ALIGN(sizeof(*hi->mmap_cfg)); dev_dbg(&hi->cl->device, "setting data start at %u, cfg block %u, align %u\n", data_start, sizeof(*hi->mmap_cfg), L1_CACHE_BYTES); for (i = 0; i < hi->mmap_cfg->rx_bufs; i++) { hi->rx_offsets[i] = data_start + i * hi->slot_size; hi->mmap_cfg->rx_offsets[i] = hi->rx_offsets[i]; dev_dbg(&hi->cl->device, "DL buf #%u at %u\n", i, hi->rx_offsets[i]); } for (i = 0; i < hi->mmap_cfg->tx_bufs; i++) { hi->tx_offsets[i] = data_start + (i + hi->mmap_cfg->rx_bufs) * hi->slot_size; hi->mmap_cfg->tx_offsets[i] = hi->tx_offsets[i]; dev_dbg(&hi->cl->device, "UL buf #%u at %u\n", i, hi->rx_offsets[i]); } hi->iface_state = CS_STATE_CONFIGURED; } static void cs_hsi_data_disable(struct cs_hsi_iface *hi, int old_state) { if (old_state == CS_STATE_CONFIGURED) { dev_dbg(&hi->cl->device, "closing data channel with slot size 0\n"); hi->iface_state = CS_STATE_OPENED; } } static int cs_hsi_buf_config(struct cs_hsi_iface *hi, struct cs_buffer_config *buf_cfg) { int r = 0; unsigned int old_state = hi->iface_state; spin_lock_bh(&hi->lock); /* Prevent new transactions during buffer reconfig */ if (old_state == CS_STATE_CONFIGURED) hi->iface_state = CS_STATE_OPENED; spin_unlock_bh(&hi->lock); /* * make sure that no non-zero data reads are ongoing before * proceeding to change the buffer layout */ r = cs_hsi_data_sync(hi); if (r < 0) return r; WARN_ON(cs_state_xfer_active(hi->data_state)); spin_lock_bh(&hi->lock); r = check_buf_params(hi, buf_cfg); if (r < 0) goto error; hi->buf_size = buf_cfg->buf_size; hi->mmap_cfg->buf_size = hi->buf_size; hi->flags = buf_cfg->flags; hi->rx_slot = 0; hi->tx_slot = 0; hi->slot_size = 0; if (hi->buf_size) cs_hsi_data_enable(hi, buf_cfg); else cs_hsi_data_disable(hi, old_state); spin_unlock_bh(&hi->lock); if (old_state != hi->iface_state) { if (hi->iface_state == CS_STATE_CONFIGURED) { cpu_latency_qos_add_request(&hi->pm_qos_req, CS_QOS_LATENCY_FOR_DATA_USEC); local_bh_disable(); cs_hsi_read_on_data(hi); local_bh_enable(); } else if (old_state == CS_STATE_CONFIGURED) { cpu_latency_qos_remove_request(&hi->pm_qos_req); } } return r; error: spin_unlock_bh(&hi->lock); return r; } static int cs_hsi_start(struct cs_hsi_iface **hi, struct hsi_client *cl, unsigned long mmap_base, unsigned long mmap_size) { int err = 0; struct cs_hsi_iface *hsi_if = kzalloc(sizeof(*hsi_if), GFP_KERNEL); dev_dbg(&cl->device, "cs_hsi_start\n"); if (!hsi_if) { err = -ENOMEM; goto leave0; } spin_lock_init(&hsi_if->lock); hsi_if->cl = cl; hsi_if->iface_state = CS_STATE_CLOSED; hsi_if->mmap_cfg = (struct cs_mmap_config_block *)mmap_base; hsi_if->mmap_base = mmap_base; hsi_if->mmap_size = mmap_size; memset(hsi_if->mmap_cfg, 0, sizeof(*hsi_if->mmap_cfg)); init_waitqueue_head(&hsi_if->datawait); err = cs_alloc_cmds(hsi_if); if (err < 0) { dev_err(&cl->device, "Unable to alloc HSI messages\n"); goto leave1; } err = cs_hsi_alloc_data(hsi_if); if (err < 0) { dev_err(&cl->device, "Unable to alloc HSI messages for data\n"); goto leave2; } err = hsi_claim_port(cl, 1); if (err < 0) { dev_err(&cl->device, "Could not open, HSI port already claimed\n"); goto leave3; } hsi_if->master = ssip_slave_get_master(cl); if (IS_ERR(hsi_if->master)) { err = PTR_ERR(hsi_if->master); dev_err(&cl->device, "Could not get HSI master client\n"); goto leave4; } if (!ssip_slave_running(hsi_if->master)) { err = -ENODEV; dev_err(&cl->device, "HSI port not initialized\n"); goto leave4; } hsi_if->iface_state = CS_STATE_OPENED; local_bh_disable(); cs_hsi_read_on_control(hsi_if); local_bh_enable(); dev_dbg(&cl->device, "cs_hsi_start...done\n"); BUG_ON(!hi); *hi = hsi_if; return 0; leave4: hsi_release_port(cl); leave3: cs_hsi_free_data(hsi_if); leave2: cs_free_cmds(hsi_if); leave1: kfree(hsi_if); leave0: dev_dbg(&cl->device, "cs_hsi_start...done/error\n\n"); return err; } static void cs_hsi_stop(struct cs_hsi_iface *hi) { dev_dbg(&hi->cl->device, "cs_hsi_stop\n"); cs_hsi_set_wakeline(hi, 0); ssip_slave_put_master(hi->master); /* hsi_release_port() needs to be called with CS_STATE_CLOSED */ hi->iface_state = CS_STATE_CLOSED; hsi_release_port(hi->cl); /* * hsi_release_port() should flush out all the pending * messages, so cs_state_idle() should be true for both * control and data channels. */ WARN_ON(!cs_state_idle(hi->control_state)); WARN_ON(!cs_state_idle(hi->data_state)); if (cpu_latency_qos_request_active(&hi->pm_qos_req)) cpu_latency_qos_remove_request(&hi->pm_qos_req); spin_lock_bh(&hi->lock); cs_hsi_free_data(hi); cs_free_cmds(hi); spin_unlock_bh(&hi->lock); kfree(hi); } static vm_fault_t cs_char_vma_fault(struct vm_fault *vmf) { struct cs_char *csdata = vmf->vma->vm_private_data; struct page *page; page = virt_to_page((void *)csdata->mmap_base); get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct cs_char_vm_ops = { .fault = cs_char_vma_fault, }; static int cs_char_fasync(int fd, struct file *file, int on) { struct cs_char *csdata = file->private_data; if (fasync_helper(fd, file, on, &csdata->async_queue) < 0) return -EIO; return 0; } static __poll_t cs_char_poll(struct file *file, poll_table *wait) { struct cs_char *csdata = file->private_data; __poll_t ret = 0; poll_wait(file, &cs_char_data.wait, wait); spin_lock_bh(&csdata->lock); if (!list_empty(&csdata->chardev_queue)) ret = EPOLLIN | EPOLLRDNORM; else if (!list_empty(&csdata->dataind_queue)) ret = EPOLLIN | EPOLLRDNORM; spin_unlock_bh(&csdata->lock); return ret; } static ssize_t cs_char_read(struct file *file, char __user *buf, size_t count, loff_t *unused) { struct cs_char *csdata = file->private_data; u32 data; ssize_t retval; if (count < sizeof(data)) return -EINVAL; for (;;) { DEFINE_WAIT(wait); spin_lock_bh(&csdata->lock); if (!list_empty(&csdata->chardev_queue)) { data = cs_pop_entry(&csdata->chardev_queue); } else if (!list_empty(&csdata->dataind_queue)) { data = cs_pop_entry(&csdata->dataind_queue); csdata->dataind_pending--; } else { data = 0; } spin_unlock_bh(&csdata->lock); if (data) break; if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto out; } else if (signal_pending(current)) { retval = -ERESTARTSYS; goto out; } prepare_to_wait_exclusive(&csdata->wait, &wait, TASK_INTERRUPTIBLE); schedule(); finish_wait(&csdata->wait, &wait); } retval = put_user(data, (u32 __user *)buf); if (!retval) retval = sizeof(data); out: return retval; } static ssize_t cs_char_write(struct file *file, const char __user *buf, size_t count, loff_t *unused) { struct cs_char *csdata = file->private_data; u32 data; int err; ssize_t retval; if (count < sizeof(data)) return -EINVAL; if (get_user(data, (u32 __user *)buf)) retval = -EFAULT; else retval = count; err = cs_hsi_command(csdata->hi, data); if (err < 0) retval = err; return retval; } static long cs_char_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct cs_char *csdata = file->private_data; int r = 0; switch (cmd) { case CS_GET_STATE: { unsigned int state; state = cs_hsi_get_state(csdata->hi); if (copy_to_user((void __user *)arg, &state, sizeof(state))) r = -EFAULT; break; } case CS_SET_WAKELINE: { unsigned int state; if (copy_from_user(&state, (void __user *)arg, sizeof(state))) { r = -EFAULT; break; } if (state > 1) { r = -EINVAL; break; } cs_hsi_set_wakeline(csdata->hi, !!state); break; } case CS_GET_IF_VERSION: { unsigned int ifver = CS_IF_VERSION; if (copy_to_user((void __user *)arg, &ifver, sizeof(ifver))) r = -EFAULT; break; } case CS_CONFIG_BUFS: { struct cs_buffer_config buf_cfg; if (copy_from_user(&buf_cfg, (void __user *)arg, sizeof(buf_cfg))) r = -EFAULT; else r = cs_hsi_buf_config(csdata->hi, &buf_cfg); break; } default: r = -ENOTTY; break; } return r; } static int cs_char_mmap(struct file *file, struct vm_area_struct *vma) { if (vma->vm_end < vma->vm_start) return -EINVAL; if (vma_pages(vma) != 1) return -EINVAL; vm_flags_set(vma, VM_IO | VM_DONTDUMP | VM_DONTEXPAND); vma->vm_ops = &cs_char_vm_ops; vma->vm_private_data = file->private_data; return 0; } static int cs_char_open(struct inode *unused, struct file *file) { int ret = 0; unsigned long p; spin_lock_bh(&cs_char_data.lock); if (cs_char_data.opened) { ret = -EBUSY; spin_unlock_bh(&cs_char_data.lock); goto out1; } cs_char_data.opened = 1; cs_char_data.dataind_pending = 0; spin_unlock_bh(&cs_char_data.lock); p = get_zeroed_page(GFP_KERNEL); if (!p) { ret = -ENOMEM; goto out2; } ret = cs_hsi_start(&cs_char_data.hi, cs_char_data.cl, p, CS_MMAP_SIZE); if (ret) { dev_err(&cs_char_data.cl->device, "Unable to initialize HSI\n"); goto out3; } /* these are only used in release so lock not needed */ cs_char_data.mmap_base = p; cs_char_data.mmap_size = CS_MMAP_SIZE; file->private_data = &cs_char_data; return 0; out3: free_page(p); out2: spin_lock_bh(&cs_char_data.lock); cs_char_data.opened = 0; spin_unlock_bh(&cs_char_data.lock); out1: return ret; } static void cs_free_char_queue(struct list_head *head) { struct char_queue *entry; struct list_head *cursor, *next; if (!list_empty(head)) { list_for_each_safe(cursor, next, head) { entry = list_entry(cursor, struct char_queue, list); list_del(&entry->list); kfree(entry); } } } static int cs_char_release(struct inode *unused, struct file *file) { struct cs_char *csdata = file->private_data; cs_hsi_stop(csdata->hi); spin_lock_bh(&csdata->lock); csdata->hi = NULL; free_page(csdata->mmap_base); cs_free_char_queue(&csdata->chardev_queue); cs_free_char_queue(&csdata->dataind_queue); csdata->opened = 0; spin_unlock_bh(&csdata->lock); return 0; } static const struct file_operations cs_char_fops = { .owner = THIS_MODULE, .read = cs_char_read, .write = cs_char_write, .poll = cs_char_poll, .unlocked_ioctl = cs_char_ioctl, .mmap = cs_char_mmap, .open = cs_char_open, .release = cs_char_release, .fasync = cs_char_fasync, }; static struct miscdevice cs_char_miscdev = { .minor = MISC_DYNAMIC_MINOR, .name = "cmt_speech", .fops = &cs_char_fops }; static int cs_hsi_client_probe(struct device *dev) { int err = 0; struct hsi_client *cl = to_hsi_client(dev); dev_dbg(dev, "hsi_client_probe\n"); init_waitqueue_head(&cs_char_data.wait); spin_lock_init(&cs_char_data.lock); cs_char_data.opened = 0; cs_char_data.cl = cl; cs_char_data.hi = NULL; INIT_LIST_HEAD(&cs_char_data.chardev_queue); INIT_LIST_HEAD(&cs_char_data.dataind_queue); cs_char_data.channel_id_cmd = hsi_get_channel_id_by_name(cl, "speech-control"); if (cs_char_data.channel_id_cmd < 0) { err = cs_char_data.channel_id_cmd; dev_err(dev, "Could not get cmd channel (%d)\n", err); return err; } cs_char_data.channel_id_data = hsi_get_channel_id_by_name(cl, "speech-data"); if (cs_char_data.channel_id_data < 0) { err = cs_char_data.channel_id_data; dev_err(dev, "Could not get data channel (%d)\n", err); return err; } err = misc_register(&cs_char_miscdev); if (err) dev_err(dev, "Failed to register: %d\n", err); return err; } static int cs_hsi_client_remove(struct device *dev) { struct cs_hsi_iface *hi; dev_dbg(dev, "hsi_client_remove\n"); misc_deregister(&cs_char_miscdev); spin_lock_bh(&cs_char_data.lock); hi = cs_char_data.hi; cs_char_data.hi = NULL; spin_unlock_bh(&cs_char_data.lock); if (hi) cs_hsi_stop(hi); return 0; } static struct hsi_client_driver cs_hsi_driver = { .driver = { .name = "cmt-speech", .owner = THIS_MODULE, .probe = cs_hsi_client_probe, .remove = cs_hsi_client_remove, }, }; static int __init cs_char_init(void) { pr_info("CMT speech driver added\n"); return hsi_register_client_driver(&cs_hsi_driver); } module_init(cs_char_init); static void __exit cs_char_exit(void) { hsi_unregister_client_driver(&cs_hsi_driver); pr_info("CMT speech driver removed\n"); } module_exit(cs_char_exit); MODULE_ALIAS("hsi:cmt-speech"); MODULE_AUTHOR("Kai Vehmanen <kai.vehmanen@nokia.com>"); MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@nokia.com>"); MODULE_DESCRIPTION("CMT speech driver"); MODULE_LICENSE("GPL v2");