// SPDX-License-Identifier: GPL-2.0+ // // Security related flags and so on. // // Copyright 2018, Michael Ellerman, IBM Corporation. #include <linux/cpu.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/memblock.h> #include <linux/nospec.h> #include <linux/prctl.h> #include <linux/seq_buf.h> #include <linux/debugfs.h> #include <asm/asm-prototypes.h> #include <asm/code-patching.h> #include <asm/security_features.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/inst.h> #include "setup.h" u64 powerpc_security_features __read_mostly = SEC_FTR_DEFAULT; enum branch_cache_flush_type { BRANCH_CACHE_FLUSH_NONE = 0x1, BRANCH_CACHE_FLUSH_SW = 0x2, BRANCH_CACHE_FLUSH_HW = 0x4, }; static enum branch_cache_flush_type count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE; static enum branch_cache_flush_type link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE; bool barrier_nospec_enabled; static bool no_nospec; static bool btb_flush_enabled; #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64) static bool no_spectrev2; #endif static void enable_barrier_nospec(bool enable) { barrier_nospec_enabled = enable; do_barrier_nospec_fixups(enable); } void __init setup_barrier_nospec(void) { bool enable; /* * It would make sense to check SEC_FTR_SPEC_BAR_ORI31 below as well. * But there's a good reason not to. The two flags we check below are * both are enabled by default in the kernel, so if the hcall is not * functional they will be enabled. * On a system where the host firmware has been updated (so the ori * functions as a barrier), but on which the hypervisor (KVM/Qemu) has * not been updated, we would like to enable the barrier. Dropping the * check for SEC_FTR_SPEC_BAR_ORI31 achieves that. The only downside is * we potentially enable the barrier on systems where the host firmware * is not updated, but that's harmless as it's a no-op. */ enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR); if (!no_nospec && !cpu_mitigations_off()) enable_barrier_nospec(enable); } static int __init handle_nospectre_v1(char *p) { no_nospec = true; return 0; } early_param("nospectre_v1", handle_nospectre_v1); #ifdef CONFIG_DEBUG_FS static int barrier_nospec_set(void *data, u64 val) { switch (val) { case 0: case 1: break; default: return -EINVAL; } if (!!val == !!barrier_nospec_enabled) return 0; enable_barrier_nospec(!!val); return 0; } static int barrier_nospec_get(void *data, u64 *val) { *val = barrier_nospec_enabled ? 1 : 0; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_barrier_nospec, barrier_nospec_get, barrier_nospec_set, "%llu\n"); static __init int barrier_nospec_debugfs_init(void) { debugfs_create_file_unsafe("barrier_nospec", 0600, arch_debugfs_dir, NULL, &fops_barrier_nospec); return 0; } device_initcall(barrier_nospec_debugfs_init); static __init int security_feature_debugfs_init(void) { debugfs_create_x64("security_features", 0400, arch_debugfs_dir, &powerpc_security_features); return 0; } device_initcall(security_feature_debugfs_init); #endif /* CONFIG_DEBUG_FS */ #if defined(CONFIG_PPC_E500) || defined(CONFIG_PPC_BOOK3S_64) static int __init handle_nospectre_v2(char *p) { no_spectrev2 = true; return 0; } early_param("nospectre_v2", handle_nospectre_v2); #endif /* CONFIG_PPC_E500 || CONFIG_PPC_BOOK3S_64 */ #ifdef CONFIG_PPC_E500 void __init setup_spectre_v2(void) { if (no_spectrev2 || cpu_mitigations_off()) do_btb_flush_fixups(); else btb_flush_enabled = true; } #endif /* CONFIG_PPC_E500 */ #ifdef CONFIG_PPC_BOOK3S_64 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf) { bool thread_priv; thread_priv = security_ftr_enabled(SEC_FTR_L1D_THREAD_PRIV); if (rfi_flush) { struct seq_buf s; seq_buf_init(&s, buf, PAGE_SIZE - 1); seq_buf_printf(&s, "Mitigation: RFI Flush"); if (thread_priv) seq_buf_printf(&s, ", L1D private per thread"); seq_buf_printf(&s, "\n"); return s.len; } if (thread_priv) return sprintf(buf, "Vulnerable: L1D private per thread\n"); if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) && !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR)) return sprintf(buf, "Not affected\n"); return sprintf(buf, "Vulnerable\n"); } ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf) { return cpu_show_meltdown(dev, attr, buf); } #endif ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf) { struct seq_buf s; seq_buf_init(&s, buf, PAGE_SIZE - 1); if (security_ftr_enabled(SEC_FTR_BNDS_CHK_SPEC_BAR)) { if (barrier_nospec_enabled) seq_buf_printf(&s, "Mitigation: __user pointer sanitization"); else seq_buf_printf(&s, "Vulnerable"); if (security_ftr_enabled(SEC_FTR_SPEC_BAR_ORI31)) seq_buf_printf(&s, ", ori31 speculation barrier enabled"); seq_buf_printf(&s, "\n"); } else seq_buf_printf(&s, "Not affected\n"); return s.len; } ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf) { struct seq_buf s; bool bcs, ccd; seq_buf_init(&s, buf, PAGE_SIZE - 1); bcs = security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED); ccd = security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED); if (bcs || ccd) { seq_buf_printf(&s, "Mitigation: "); if (bcs) seq_buf_printf(&s, "Indirect branch serialisation (kernel only)"); if (bcs && ccd) seq_buf_printf(&s, ", "); if (ccd) seq_buf_printf(&s, "Indirect branch cache disabled"); } else if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) { seq_buf_printf(&s, "Mitigation: Software count cache flush"); if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) seq_buf_printf(&s, " (hardware accelerated)"); } else if (btb_flush_enabled) { seq_buf_printf(&s, "Mitigation: Branch predictor state flush"); } else { seq_buf_printf(&s, "Vulnerable"); } if (bcs || ccd || count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) { if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE) seq_buf_printf(&s, ", Software link stack flush"); if (link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) seq_buf_printf(&s, " (hardware accelerated)"); } seq_buf_printf(&s, "\n"); return s.len; } #ifdef CONFIG_PPC_BOOK3S_64 /* * Store-forwarding barrier support. */ static enum stf_barrier_type stf_enabled_flush_types; static bool no_stf_barrier; static bool stf_barrier; static int __init handle_no_stf_barrier(char *p) { pr_info("stf-barrier: disabled on command line."); no_stf_barrier = true; return 0; } early_param("no_stf_barrier", handle_no_stf_barrier); enum stf_barrier_type stf_barrier_type_get(void) { return stf_enabled_flush_types; } /* This is the generic flag used by other architectures */ static int __init handle_ssbd(char *p) { if (!p || strncmp(p, "auto", 5) == 0 || strncmp(p, "on", 2) == 0 ) { /* Until firmware tells us, we have the barrier with auto */ return 0; } else if (strncmp(p, "off", 3) == 0) { handle_no_stf_barrier(NULL); return 0; } else return 1; return 0; } early_param("spec_store_bypass_disable", handle_ssbd); /* This is the generic flag used by other architectures */ static int __init handle_no_ssbd(char *p) { handle_no_stf_barrier(NULL); return 0; } early_param("nospec_store_bypass_disable", handle_no_ssbd); static void stf_barrier_enable(bool enable) { if (enable) do_stf_barrier_fixups(stf_enabled_flush_types); else do_stf_barrier_fixups(STF_BARRIER_NONE); stf_barrier = enable; } void setup_stf_barrier(void) { enum stf_barrier_type type; bool enable; /* Default to fallback in case fw-features are not available */ if (cpu_has_feature(CPU_FTR_ARCH_300)) type = STF_BARRIER_EIEIO; else if (cpu_has_feature(CPU_FTR_ARCH_207S)) type = STF_BARRIER_SYNC_ORI; else if (cpu_has_feature(CPU_FTR_ARCH_206)) type = STF_BARRIER_FALLBACK; else type = STF_BARRIER_NONE; enable = security_ftr_enabled(SEC_FTR_FAVOUR_SECURITY) && security_ftr_enabled(SEC_FTR_STF_BARRIER); if (type == STF_BARRIER_FALLBACK) { pr_info("stf-barrier: fallback barrier available\n"); } else if (type == STF_BARRIER_SYNC_ORI) { pr_info("stf-barrier: hwsync barrier available\n"); } else if (type == STF_BARRIER_EIEIO) { pr_info("stf-barrier: eieio barrier available\n"); } stf_enabled_flush_types = type; if (!no_stf_barrier && !cpu_mitigations_off()) stf_barrier_enable(enable); } ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf) { if (stf_barrier && stf_enabled_flush_types != STF_BARRIER_NONE) { const char *type; switch (stf_enabled_flush_types) { case STF_BARRIER_EIEIO: type = "eieio"; break; case STF_BARRIER_SYNC_ORI: type = "hwsync"; break; case STF_BARRIER_FALLBACK: type = "fallback"; break; default: type = "unknown"; } return sprintf(buf, "Mitigation: Kernel entry/exit barrier (%s)\n", type); } if (!security_ftr_enabled(SEC_FTR_L1D_FLUSH_HV) && !security_ftr_enabled(SEC_FTR_L1D_FLUSH_PR)) return sprintf(buf, "Not affected\n"); return sprintf(buf, "Vulnerable\n"); } static int ssb_prctl_get(struct task_struct *task) { /* * The STF_BARRIER feature is on by default, so if it's off that means * firmware has explicitly said the CPU is not vulnerable via either * the hypercall or device tree. */ if (!security_ftr_enabled(SEC_FTR_STF_BARRIER)) return PR_SPEC_NOT_AFFECTED; /* * If the system's CPU has no known barrier (see setup_stf_barrier()) * then assume that the CPU is not vulnerable. */ if (stf_enabled_flush_types == STF_BARRIER_NONE) return PR_SPEC_NOT_AFFECTED; /* * Otherwise the CPU is vulnerable. The barrier is not a global or * per-process mitigation, so the only value that can be reported here * is PR_SPEC_ENABLE, which appears as "vulnerable" in /proc. */ return PR_SPEC_ENABLE; } int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which) { switch (which) { case PR_SPEC_STORE_BYPASS: return ssb_prctl_get(task); default: return -ENODEV; } } #ifdef CONFIG_DEBUG_FS static int stf_barrier_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; /* Only do anything if we're changing state */ if (enable != stf_barrier) stf_barrier_enable(enable); return 0; } static int stf_barrier_get(void *data, u64 *val) { *val = stf_barrier ? 1 : 0; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_stf_barrier, stf_barrier_get, stf_barrier_set, "%llu\n"); static __init int stf_barrier_debugfs_init(void) { debugfs_create_file_unsafe("stf_barrier", 0600, arch_debugfs_dir, NULL, &fops_stf_barrier); return 0; } device_initcall(stf_barrier_debugfs_init); #endif /* CONFIG_DEBUG_FS */ static void update_branch_cache_flush(void) { u32 *site, __maybe_unused *site2; #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE site = &patch__call_kvm_flush_link_stack; site2 = &patch__call_kvm_flush_link_stack_p9; // This controls the branch from guest_exit_cont to kvm_flush_link_stack if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) { patch_instruction_site(site, ppc_inst(PPC_RAW_NOP())); patch_instruction_site(site2, ppc_inst(PPC_RAW_NOP())); } else { // Could use HW flush, but that could also flush count cache patch_branch_site(site, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK); patch_branch_site(site2, (u64)&kvm_flush_link_stack, BRANCH_SET_LINK); } #endif // Patch out the bcctr first, then nop the rest site = &patch__call_flush_branch_caches3; patch_instruction_site(site, ppc_inst(PPC_RAW_NOP())); site = &patch__call_flush_branch_caches2; patch_instruction_site(site, ppc_inst(PPC_RAW_NOP())); site = &patch__call_flush_branch_caches1; patch_instruction_site(site, ppc_inst(PPC_RAW_NOP())); // This controls the branch from _switch to flush_branch_caches if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE && link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) { // Nothing to be done } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW && link_stack_flush_type == BRANCH_CACHE_FLUSH_HW) { // Patch in the bcctr last site = &patch__call_flush_branch_caches1; patch_instruction_site(site, ppc_inst(0x39207fff)); // li r9,0x7fff site = &patch__call_flush_branch_caches2; patch_instruction_site(site, ppc_inst(0x7d2903a6)); // mtctr r9 site = &patch__call_flush_branch_caches3; patch_instruction_site(site, ppc_inst(PPC_INST_BCCTR_FLUSH)); } else { patch_branch_site(site, (u64)&flush_branch_caches, BRANCH_SET_LINK); // If we just need to flush the link stack, early return if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) { patch_instruction_site(&patch__flush_link_stack_return, ppc_inst(PPC_RAW_BLR())); // If we have flush instruction, early return } else if (count_cache_flush_type == BRANCH_CACHE_FLUSH_HW) { patch_instruction_site(&patch__flush_count_cache_return, ppc_inst(PPC_RAW_BLR())); } } } static void toggle_branch_cache_flush(bool enable) { if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) { if (count_cache_flush_type != BRANCH_CACHE_FLUSH_NONE) count_cache_flush_type = BRANCH_CACHE_FLUSH_NONE; pr_info("count-cache-flush: flush disabled.\n"); } else { if (security_ftr_enabled(SEC_FTR_BCCTR_FLUSH_ASSIST)) { count_cache_flush_type = BRANCH_CACHE_FLUSH_HW; pr_info("count-cache-flush: hardware flush enabled.\n"); } else { count_cache_flush_type = BRANCH_CACHE_FLUSH_SW; pr_info("count-cache-flush: software flush enabled.\n"); } } if (!enable || !security_ftr_enabled(SEC_FTR_FLUSH_LINK_STACK)) { if (link_stack_flush_type != BRANCH_CACHE_FLUSH_NONE) link_stack_flush_type = BRANCH_CACHE_FLUSH_NONE; pr_info("link-stack-flush: flush disabled.\n"); } else { if (security_ftr_enabled(SEC_FTR_BCCTR_LINK_FLUSH_ASSIST)) { link_stack_flush_type = BRANCH_CACHE_FLUSH_HW; pr_info("link-stack-flush: hardware flush enabled.\n"); } else { link_stack_flush_type = BRANCH_CACHE_FLUSH_SW; pr_info("link-stack-flush: software flush enabled.\n"); } } update_branch_cache_flush(); } void setup_count_cache_flush(void) { bool enable = true; if (no_spectrev2 || cpu_mitigations_off()) { if (security_ftr_enabled(SEC_FTR_BCCTRL_SERIALISED) || security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED)) pr_warn("Spectre v2 mitigations not fully under software control, can't disable\n"); enable = false; } /* * There's no firmware feature flag/hypervisor bit to tell us we need to * flush the link stack on context switch. So we set it here if we see * either of the Spectre v2 mitigations that aim to protect userspace. */ if (security_ftr_enabled(SEC_FTR_COUNT_CACHE_DISABLED) || security_ftr_enabled(SEC_FTR_FLUSH_COUNT_CACHE)) security_ftr_set(SEC_FTR_FLUSH_LINK_STACK); toggle_branch_cache_flush(enable); } static enum l1d_flush_type enabled_flush_types; static void *l1d_flush_fallback_area; static bool no_rfi_flush; static bool no_entry_flush; static bool no_uaccess_flush; bool rfi_flush; static bool entry_flush; static bool uaccess_flush; DEFINE_STATIC_KEY_FALSE(uaccess_flush_key); EXPORT_SYMBOL(uaccess_flush_key); static int __init handle_no_rfi_flush(char *p) { pr_info("rfi-flush: disabled on command line."); no_rfi_flush = true; return 0; } early_param("no_rfi_flush", handle_no_rfi_flush); static int __init handle_no_entry_flush(char *p) { pr_info("entry-flush: disabled on command line."); no_entry_flush = true; return 0; } early_param("no_entry_flush", handle_no_entry_flush); static int __init handle_no_uaccess_flush(char *p) { pr_info("uaccess-flush: disabled on command line."); no_uaccess_flush = true; return 0; } early_param("no_uaccess_flush", handle_no_uaccess_flush); /* * The RFI flush is not KPTI, but because users will see doco that says to use * nopti we hijack that option here to also disable the RFI flush. */ static int __init handle_no_pti(char *p) { pr_info("rfi-flush: disabling due to 'nopti' on command line.\n"); handle_no_rfi_flush(NULL); return 0; } early_param("nopti", handle_no_pti); static void do_nothing(void *unused) { /* * We don't need to do the flush explicitly, just enter+exit kernel is * sufficient, the RFI exit handlers will do the right thing. */ } void rfi_flush_enable(bool enable) { if (enable) { do_rfi_flush_fixups(enabled_flush_types); on_each_cpu(do_nothing, NULL, 1); } else do_rfi_flush_fixups(L1D_FLUSH_NONE); rfi_flush = enable; } static void entry_flush_enable(bool enable) { if (enable) { do_entry_flush_fixups(enabled_flush_types); on_each_cpu(do_nothing, NULL, 1); } else { do_entry_flush_fixups(L1D_FLUSH_NONE); } entry_flush = enable; } static void uaccess_flush_enable(bool enable) { if (enable) { do_uaccess_flush_fixups(enabled_flush_types); static_branch_enable(&uaccess_flush_key); on_each_cpu(do_nothing, NULL, 1); } else { static_branch_disable(&uaccess_flush_key); do_uaccess_flush_fixups(L1D_FLUSH_NONE); } uaccess_flush = enable; } static void __ref init_fallback_flush(void) { u64 l1d_size, limit; int cpu; /* Only allocate the fallback flush area once (at boot time). */ if (l1d_flush_fallback_area) return; l1d_size = ppc64_caches.l1d.size; /* * If there is no d-cache-size property in the device tree, l1d_size * could be zero. That leads to the loop in the asm wrapping around to * 2^64-1, and then walking off the end of the fallback area and * eventually causing a page fault which is fatal. Just default to * something vaguely sane. */ if (!l1d_size) l1d_size = (64 * 1024); limit = min(ppc64_bolted_size(), ppc64_rma_size); /* * Align to L1d size, and size it at 2x L1d size, to catch possible * hardware prefetch runoff. We don't have a recipe for load patterns to * reliably avoid the prefetcher. */ l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2, l1d_size, MEMBLOCK_LOW_LIMIT, limit, NUMA_NO_NODE); if (!l1d_flush_fallback_area) panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n", __func__, l1d_size * 2, l1d_size, &limit); for_each_possible_cpu(cpu) { struct paca_struct *paca = paca_ptrs[cpu]; paca->rfi_flush_fallback_area = l1d_flush_fallback_area; paca->l1d_flush_size = l1d_size; } } void setup_rfi_flush(enum l1d_flush_type types, bool enable) { if (types & L1D_FLUSH_FALLBACK) { pr_info("rfi-flush: fallback displacement flush available\n"); init_fallback_flush(); } if (types & L1D_FLUSH_ORI) pr_info("rfi-flush: ori type flush available\n"); if (types & L1D_FLUSH_MTTRIG) pr_info("rfi-flush: mttrig type flush available\n"); enabled_flush_types = types; if (!cpu_mitigations_off() && !no_rfi_flush) rfi_flush_enable(enable); } void setup_entry_flush(bool enable) { if (cpu_mitigations_off()) return; if (!no_entry_flush) entry_flush_enable(enable); } void setup_uaccess_flush(bool enable) { if (cpu_mitigations_off()) return; if (!no_uaccess_flush) uaccess_flush_enable(enable); } #ifdef CONFIG_DEBUG_FS static int count_cache_flush_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; toggle_branch_cache_flush(enable); return 0; } static int count_cache_flush_get(void *data, u64 *val) { if (count_cache_flush_type == BRANCH_CACHE_FLUSH_NONE) *val = 0; else *val = 1; return 0; } static int link_stack_flush_get(void *data, u64 *val) { if (link_stack_flush_type == BRANCH_CACHE_FLUSH_NONE) *val = 0; else *val = 1; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(fops_count_cache_flush, count_cache_flush_get, count_cache_flush_set, "%llu\n"); DEFINE_DEBUGFS_ATTRIBUTE(fops_link_stack_flush, link_stack_flush_get, count_cache_flush_set, "%llu\n"); static __init int count_cache_flush_debugfs_init(void) { debugfs_create_file_unsafe("count_cache_flush", 0600, arch_debugfs_dir, NULL, &fops_count_cache_flush); debugfs_create_file_unsafe("link_stack_flush", 0600, arch_debugfs_dir, NULL, &fops_link_stack_flush); return 0; } device_initcall(count_cache_flush_debugfs_init); static int rfi_flush_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; /* Only do anything if we're changing state */ if (enable != rfi_flush) rfi_flush_enable(enable); return 0; } static int rfi_flush_get(void *data, u64 *val) { *val = rfi_flush ? 1 : 0; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n"); static int entry_flush_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; /* Only do anything if we're changing state */ if (enable != entry_flush) entry_flush_enable(enable); return 0; } static int entry_flush_get(void *data, u64 *val) { *val = entry_flush ? 1 : 0; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n"); static int uaccess_flush_set(void *data, u64 val) { bool enable; if (val == 1) enable = true; else if (val == 0) enable = false; else return -EINVAL; /* Only do anything if we're changing state */ if (enable != uaccess_flush) uaccess_flush_enable(enable); return 0; } static int uaccess_flush_get(void *data, u64 *val) { *val = uaccess_flush ? 1 : 0; return 0; } DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n"); static __init int rfi_flush_debugfs_init(void) { debugfs_create_file("rfi_flush", 0600, arch_debugfs_dir, NULL, &fops_rfi_flush); debugfs_create_file("entry_flush", 0600, arch_debugfs_dir, NULL, &fops_entry_flush); debugfs_create_file("uaccess_flush", 0600, arch_debugfs_dir, NULL, &fops_uaccess_flush); return 0; } device_initcall(rfi_flush_debugfs_init); #endif /* CONFIG_DEBUG_FS */ #endif /* CONFIG_PPC_BOOK3S_64 */