/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2013 ARM Ltd. * Copyright (C) 2013 Linaro. * * This code is based on glibc cortex strings work originally authored by Linaro * be found @ * * http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/ * files/head:/src/aarch64/ */ #include <linux/linkage.h> #include <asm/assembler.h> /* * determine the length of a fixed-size string * * Parameters: * x0 - const string pointer * x1 - maximal string length * Returns: * x0 - the return length of specific string */ /* Arguments and results. */ srcin .req x0 len .req x0 limit .req x1 /* Locals and temporaries. */ src .req x2 data1 .req x3 data2 .req x4 data2a .req x5 has_nul1 .req x6 has_nul2 .req x7 tmp1 .req x8 tmp2 .req x9 tmp3 .req x10 tmp4 .req x11 zeroones .req x12 pos .req x13 limit_wd .req x14 #define REP8_01 0x0101010101010101 #define REP8_7f 0x7f7f7f7f7f7f7f7f #define REP8_80 0x8080808080808080 SYM_FUNC_START(__pi_strnlen) cbz limit, .Lhit_limit mov zeroones, #REP8_01 bic src, srcin, #15 ands tmp1, srcin, #15 b.ne .Lmisaligned /* Calculate the number of full and partial words -1. */ sub limit_wd, limit, #1 /* Limit != 0, so no underflow. */ lsr limit_wd, limit_wd, #4 /* Convert to Qwords. */ /* * NUL detection works on the principle that (X - 1) & (~X) & 0x80 * (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and * can be done in parallel across the entire word. */ /* * The inner loop deals with two Dwords at a time. This has a * slightly higher start-up cost, but we should win quite quickly, * especially on cores with a high number of issue slots per * cycle, as we get much better parallelism out of the operations. */ .Lloop: ldp data1, data2, [src], #16 .Lrealigned: sub tmp1, data1, zeroones orr tmp2, data1, #REP8_7f sub tmp3, data2, zeroones orr tmp4, data2, #REP8_7f bic has_nul1, tmp1, tmp2 bic has_nul2, tmp3, tmp4 subs limit_wd, limit_wd, #1 orr tmp1, has_nul1, has_nul2 ccmp tmp1, #0, #0, pl /* NZCV = 0000 */ b.eq .Lloop cbz tmp1, .Lhit_limit /* No null in final Qword. */ /* * We know there's a null in the final Qword. The easiest thing * to do now is work out the length of the string and return * MIN (len, limit). */ sub len, src, srcin cbz has_nul1, .Lnul_in_data2 CPU_BE( mov data2, data1 ) /*perpare data to re-calculate the syndrome*/ sub len, len, #8 mov has_nul2, has_nul1 .Lnul_in_data2: /* * For big-endian, carry propagation (if the final byte in the * string is 0x01) means we cannot use has_nul directly. The * easiest way to get the correct byte is to byte-swap the data * and calculate the syndrome a second time. */ CPU_BE( rev data2, data2 ) CPU_BE( sub tmp1, data2, zeroones ) CPU_BE( orr tmp2, data2, #REP8_7f ) CPU_BE( bic has_nul2, tmp1, tmp2 ) sub len, len, #8 rev has_nul2, has_nul2 clz pos, has_nul2 add len, len, pos, lsr #3 /* Bits to bytes. */ cmp len, limit csel len, len, limit, ls /* Return the lower value. */ ret .Lmisaligned: /* * Deal with a partial first word. * We're doing two things in parallel here; * 1) Calculate the number of words (but avoiding overflow if * limit is near ULONG_MAX) - to do this we need to work out * limit + tmp1 - 1 as a 65-bit value before shifting it; * 2) Load and mask the initial data words - we force the bytes * before the ones we are interested in to 0xff - this ensures * early bytes will not hit any zero detection. */ ldp data1, data2, [src], #16 sub limit_wd, limit, #1 and tmp3, limit_wd, #15 lsr limit_wd, limit_wd, #4 add tmp3, tmp3, tmp1 add limit_wd, limit_wd, tmp3, lsr #4 neg tmp4, tmp1 lsl tmp4, tmp4, #3 /* Bytes beyond alignment -> bits. */ mov tmp2, #~0 /* Big-endian. Early bytes are at MSB. */ CPU_BE( lsl tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */ /* Little-endian. Early bytes are at LSB. */ CPU_LE( lsr tmp2, tmp2, tmp4 ) /* Shift (tmp1 & 63). */ cmp tmp1, #8 orr data1, data1, tmp2 orr data2a, data2, tmp2 csinv data1, data1, xzr, le csel data2, data2, data2a, le b .Lrealigned .Lhit_limit: mov len, limit ret SYM_FUNC_END(__pi_strnlen) SYM_FUNC_ALIAS_WEAK(strnlen, __pi_strnlen) EXPORT_SYMBOL_NOKASAN(strnlen)