// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 ARM Ltd. * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <linux/kvm_host.h> #include <linux/random.h> #include <linux/memblock.h> #include <asm/alternative.h> #include <asm/debug-monitors.h> #include <asm/insn.h> #include <asm/kvm_mmu.h> #include <asm/memory.h> /* * The LSB of the HYP VA tag */ static u8 tag_lsb; /* * The HYP VA tag value with the region bit */ static u64 tag_val; static u64 va_mask; /* * Compute HYP VA by using the same computation as kern_hyp_va(). */ static u64 __early_kern_hyp_va(u64 addr) { addr &= va_mask; addr |= tag_val << tag_lsb; return addr; } /* * Store a hyp VA <-> PA offset into a EL2-owned variable. */ static void init_hyp_physvirt_offset(void) { u64 kern_va, hyp_va; /* Compute the offset from the hyp VA and PA of a random symbol. */ kern_va = (u64)lm_alias(__hyp_text_start); hyp_va = __early_kern_hyp_va(kern_va); hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va; } /* * We want to generate a hyp VA with the following format (with V == * vabits_actual): * * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0 * --------------------------------------------------------- * | 0000000 | hyp_va_msb | random tag | kern linear VA | * |--------- tag_val -----------|----- va_mask ---| * * which does not conflict with the idmap regions. */ __init void kvm_compute_layout(void) { phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start); u64 hyp_va_msb; /* Where is my RAM region? */ hyp_va_msb = idmap_addr & BIT(vabits_actual - 1); hyp_va_msb ^= BIT(vabits_actual - 1); tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^ (u64)(high_memory - 1)); va_mask = GENMASK_ULL(tag_lsb - 1, 0); tag_val = hyp_va_msb; if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) { /* We have some free bits to insert a random tag. */ tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb); } tag_val >>= tag_lsb; init_hyp_physvirt_offset(); } /* * The .hyp.reloc ELF section contains a list of kimg positions that * contains kimg VAs but will be accessed only in hyp execution context. * Convert them to hyp VAs. See gen-hyprel.c for more details. */ __init void kvm_apply_hyp_relocations(void) { int32_t *rel; int32_t *begin = (int32_t *)__hyp_reloc_begin; int32_t *end = (int32_t *)__hyp_reloc_end; for (rel = begin; rel < end; ++rel) { uintptr_t *ptr, kimg_va; /* * Each entry contains a 32-bit relative offset from itself * to a kimg VA position. */ ptr = (uintptr_t *)lm_alias((char *)rel + *rel); /* Read the kimg VA value at the relocation address. */ kimg_va = *ptr; /* Convert to hyp VA and store back to the relocation address. */ *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va)); } } static u32 compute_instruction(int n, u32 rd, u32 rn) { u32 insn = AARCH64_BREAK_FAULT; switch (n) { case 0: insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND, AARCH64_INSN_VARIANT_64BIT, rn, rd, va_mask); break; case 1: /* ROR is a variant of EXTR with Rm = Rn */ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, rn, rn, rd, tag_lsb); break; case 2: insn = aarch64_insn_gen_add_sub_imm(rd, rn, tag_val & GENMASK(11, 0), AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_ADSB_ADD); break; case 3: insn = aarch64_insn_gen_add_sub_imm(rd, rn, tag_val & GENMASK(23, 12), AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_ADSB_ADD); break; case 4: /* ROR is a variant of EXTR with Rm = Rn */ insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT, rn, rn, rd, 64 - tag_lsb); break; } return insn; } void __init kvm_update_va_mask(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { int i; BUG_ON(nr_inst != 5); for (i = 0; i < nr_inst; i++) { u32 rd, rn, insn, oinsn; /* * VHE doesn't need any address translation, let's NOP * everything. * * Alternatively, if the tag is zero (because the layout * dictates it and we don't have any spare bits in the * address), NOP everything after masking the kernel VA. */ if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) { updptr[i] = cpu_to_le32(aarch64_insn_gen_nop()); continue; } oinsn = le32_to_cpu(origptr[i]); rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn); insn = compute_instruction(i, rd, rn); BUG_ON(insn == AARCH64_BREAK_FAULT); updptr[i] = cpu_to_le32(insn); } } void kvm_patch_vector_branch(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { u64 addr; u32 insn; BUG_ON(nr_inst != 4); if (!cpus_have_cap(ARM64_SPECTRE_V3A) || WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))) return; /* * Compute HYP VA by using the same computation as kern_hyp_va() */ addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector)); /* Use PC[10:7] to branch to the same vector in KVM */ addr |= ((u64)origptr & GENMASK_ULL(10, 7)); /* * Branch over the preamble in order to avoid the initial store on * the stack (which we already perform in the hardening vectors). */ addr += KVM_VECTOR_PREAMBLE; /* movz x0, #(addr & 0xffff) */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)addr, 0, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_ZERO); *updptr++ = cpu_to_le32(insn); /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)(addr >> 16), 16, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */ insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0, (u16)(addr >> 32), 32, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* br x0 */ insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0, AARCH64_INSN_BRANCH_NOLINK); *updptr++ = cpu_to_le32(insn); } static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst) { u32 insn, oinsn, rd; BUG_ON(nr_inst != 4); /* Compute target register */ oinsn = le32_to_cpu(*origptr); rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn); /* movz rd, #(val & 0xffff) */ insn = aarch64_insn_gen_movewide(rd, (u16)val, 0, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_ZERO); *updptr++ = cpu_to_le32(insn); /* movk rd, #((val >> 16) & 0xffff), lsl #16 */ insn = aarch64_insn_gen_movewide(rd, (u16)(val >> 16), 16, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* movk rd, #((val >> 32) & 0xffff), lsl #32 */ insn = aarch64_insn_gen_movewide(rd, (u16)(val >> 32), 32, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); /* movk rd, #((val >> 48) & 0xffff), lsl #48 */ insn = aarch64_insn_gen_movewide(rd, (u16)(val >> 48), 48, AARCH64_INSN_VARIANT_64BIT, AARCH64_INSN_MOVEWIDE_KEEP); *updptr++ = cpu_to_le32(insn); } void kvm_get_kimage_voffset(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { generate_mov_q(kimage_voffset, origptr, updptr, nr_inst); } void kvm_compute_final_ctr_el0(struct alt_instr *alt, __le32 *origptr, __le32 *updptr, int nr_inst) { generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0), origptr, updptr, nr_inst); }