// SPDX-License-Identifier: GPL-2.0-or-later /* * MPC83xx/85xx/86xx PCI/PCIE support routing. * * Copyright 2007-2012 Freescale Semiconductor, Inc. * Copyright 2008-2009 MontaVista Software, Inc. * * Initial author: Xianghua Xiao <x.xiao@freescale.com> * Recode: ZHANG WEI <wei.zhang@freescale.com> * Rewrite the routing for Frescale PCI and PCI Express * Roy Zang <tie-fei.zang@freescale.com> * MPC83xx PCI-Express support: * Tony Li <tony.li@freescale.com> * Anton Vorontsov <avorontsov@ru.mvista.com> */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/delay.h> #include <linux/string.h> #include <linux/fsl/edac.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/memblock.h> #include <linux/log2.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/suspend.h> #include <linux/syscore_ops.h> #include <linux/uaccess.h> #include <asm/io.h> #include <asm/pci-bridge.h> #include <asm/ppc-pci.h> #include <asm/machdep.h> #include <asm/mpc85xx.h> #include <asm/disassemble.h> #include <asm/ppc-opcode.h> #include <asm/swiotlb.h> #include <asm/setup.h> #include <sysdev/fsl_soc.h> #include <sysdev/fsl_pci.h> static int fsl_pcie_bus_fixup, is_mpc83xx_pci; static void quirk_fsl_pcie_early(struct pci_dev *dev) { u8 hdr_type; /* if we aren't a PCIe don't bother */ if (!pci_is_pcie(dev)) return; /* if we aren't in host mode don't bother */ pci_read_config_byte(dev, PCI_HEADER_TYPE, &hdr_type); if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) return; dev->class = PCI_CLASS_BRIDGE_PCI_NORMAL; fsl_pcie_bus_fixup = 1; return; } static int fsl_indirect_read_config(struct pci_bus *, unsigned int, int, int, u32 *); static int fsl_pcie_check_link(struct pci_controller *hose) { u32 val = 0; if (hose->indirect_type & PPC_INDIRECT_TYPE_FSL_CFG_REG_LINK) { if (hose->ops->read == fsl_indirect_read_config) __indirect_read_config(hose, hose->first_busno, 0, PCIE_LTSSM, 4, &val); else early_read_config_dword(hose, 0, 0, PCIE_LTSSM, &val); if (val < PCIE_LTSSM_L0) return 1; } else { struct ccsr_pci __iomem *pci = hose->private_data; /* for PCIe IP rev 3.0 or greater use CSR0 for link state */ val = (in_be32(&pci->pex_csr0) & PEX_CSR0_LTSSM_MASK) >> PEX_CSR0_LTSSM_SHIFT; if (val != PEX_CSR0_LTSSM_L0) return 1; } return 0; } static int fsl_indirect_read_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 *val) { struct pci_controller *hose = pci_bus_to_host(bus); if (fsl_pcie_check_link(hose)) hose->indirect_type |= PPC_INDIRECT_TYPE_NO_PCIE_LINK; else hose->indirect_type &= ~PPC_INDIRECT_TYPE_NO_PCIE_LINK; return indirect_read_config(bus, devfn, offset, len, val); } #if defined(CONFIG_FSL_SOC_BOOKE) || defined(CONFIG_PPC_86xx) static struct pci_ops fsl_indirect_pcie_ops = { .read = fsl_indirect_read_config, .write = indirect_write_config, }; static u64 pci64_dma_offset; #ifdef CONFIG_SWIOTLB static void pci_dma_dev_setup_swiotlb(struct pci_dev *pdev) { struct pci_controller *hose = pci_bus_to_host(pdev->bus); pdev->dev.bus_dma_limit = hose->dma_window_base_cur + hose->dma_window_size - 1; } static void setup_swiotlb_ops(struct pci_controller *hose) { if (ppc_swiotlb_enable) hose->controller_ops.dma_dev_setup = pci_dma_dev_setup_swiotlb; } #else static inline void setup_swiotlb_ops(struct pci_controller *hose) {} #endif static void fsl_pci_dma_set_mask(struct device *dev, u64 dma_mask) { /* * Fix up PCI devices that are able to DMA to the large inbound * mapping that allows addressing any RAM address from across PCI. */ if (dev_is_pci(dev) && dma_mask >= pci64_dma_offset * 2 - 1) { dev->bus_dma_limit = 0; dev->archdata.dma_offset = pci64_dma_offset; } } static int setup_one_atmu(struct ccsr_pci __iomem *pci, unsigned int index, const struct resource *res, resource_size_t offset) { resource_size_t pci_addr = res->start - offset; resource_size_t phys_addr = res->start; resource_size_t size = resource_size(res); u32 flags = 0x80044000; /* enable & mem R/W */ unsigned int i; pr_debug("PCI MEM resource start 0x%016llx, size 0x%016llx.\n", (u64)res->start, (u64)size); if (res->flags & IORESOURCE_PREFETCH) flags |= 0x10000000; /* enable relaxed ordering */ for (i = 0; size > 0; i++) { unsigned int bits = min_t(u32, ilog2(size), __ffs(pci_addr | phys_addr)); if (index + i >= 5) return -1; out_be32(&pci->pow[index + i].potar, pci_addr >> 12); out_be32(&pci->pow[index + i].potear, (u64)pci_addr >> 44); out_be32(&pci->pow[index + i].powbar, phys_addr >> 12); out_be32(&pci->pow[index + i].powar, flags | (bits - 1)); pci_addr += (resource_size_t)1U << bits; phys_addr += (resource_size_t)1U << bits; size -= (resource_size_t)1U << bits; } return i; } static bool is_kdump(void) { struct device_node *node; bool ret; node = of_find_node_by_type(NULL, "memory"); if (!node) { WARN_ON_ONCE(1); return false; } ret = of_property_read_bool(node, "linux,usable-memory"); of_node_put(node); return ret; } /* atmu setup for fsl pci/pcie controller */ static void setup_pci_atmu(struct pci_controller *hose) { struct ccsr_pci __iomem *pci = hose->private_data; int i, j, n, mem_log, win_idx = 3, start_idx = 1, end_idx = 4; u64 mem, sz, paddr_hi = 0; u64 offset = 0, paddr_lo = ULLONG_MAX; u32 pcicsrbar = 0, pcicsrbar_sz; u32 piwar = PIWAR_EN | PIWAR_PF | PIWAR_TGI_LOCAL | PIWAR_READ_SNOOP | PIWAR_WRITE_SNOOP; const u64 *reg; int len; bool setup_inbound; /* * If this is kdump, we don't want to trigger a bunch of PCI * errors by closing the window on in-flight DMA. * * We still run most of the function's logic so that things like * hose->dma_window_size still get set. */ setup_inbound = !is_kdump(); if (of_device_is_compatible(hose->dn, "fsl,bsc9132-pcie")) { /* * BSC9132 Rev1.0 has an issue where all the PEX inbound * windows have implemented the default target value as 0xf * for CCSR space.In all Freescale legacy devices the target * of 0xf is reserved for local memory space. 9132 Rev1.0 * now has local memory space mapped to target 0x0 instead of * 0xf. Hence adding a workaround to remove the target 0xf * defined for memory space from Inbound window attributes. */ piwar &= ~PIWAR_TGI_LOCAL; } if (early_find_capability(hose, 0, 0, PCI_CAP_ID_EXP)) { if (in_be32(&pci->block_rev1) >= PCIE_IP_REV_2_2) { win_idx = 2; start_idx = 0; end_idx = 3; } } /* Disable all windows (except powar0 since it's ignored) */ for(i = 1; i < 5; i++) out_be32(&pci->pow[i].powar, 0); if (setup_inbound) { for (i = start_idx; i < end_idx; i++) out_be32(&pci->piw[i].piwar, 0); } /* Setup outbound MEM window */ for(i = 0, j = 1; i < 3; i++) { if (!(hose->mem_resources[i].flags & IORESOURCE_MEM)) continue; paddr_lo = min(paddr_lo, (u64)hose->mem_resources[i].start); paddr_hi = max(paddr_hi, (u64)hose->mem_resources[i].end); /* We assume all memory resources have the same offset */ offset = hose->mem_offset[i]; n = setup_one_atmu(pci, j, &hose->mem_resources[i], offset); if (n < 0 || j >= 5) { pr_err("Ran out of outbound PCI ATMUs for resource %d!\n", i); hose->mem_resources[i].flags |= IORESOURCE_DISABLED; } else j += n; } /* Setup outbound IO window */ if (hose->io_resource.flags & IORESOURCE_IO) { if (j >= 5) { pr_err("Ran out of outbound PCI ATMUs for IO resource\n"); } else { pr_debug("PCI IO resource start 0x%016llx, size 0x%016llx, " "phy base 0x%016llx.\n", (u64)hose->io_resource.start, (u64)resource_size(&hose->io_resource), (u64)hose->io_base_phys); out_be32(&pci->pow[j].potar, (hose->io_resource.start >> 12)); out_be32(&pci->pow[j].potear, 0); out_be32(&pci->pow[j].powbar, (hose->io_base_phys >> 12)); /* Enable, IO R/W */ out_be32(&pci->pow[j].powar, 0x80088000 | (ilog2(hose->io_resource.end - hose->io_resource.start + 1) - 1)); } } /* convert to pci address space */ paddr_hi -= offset; paddr_lo -= offset; if (paddr_hi == paddr_lo) { pr_err("%pOF: No outbound window space\n", hose->dn); return; } if (paddr_lo == 0) { pr_err("%pOF: No space for inbound window\n", hose->dn); return; } /* setup PCSRBAR/PEXCSRBAR */ early_write_config_dword(hose, 0, 0, PCI_BASE_ADDRESS_0, 0xffffffff); early_read_config_dword(hose, 0, 0, PCI_BASE_ADDRESS_0, &pcicsrbar_sz); pcicsrbar_sz = ~pcicsrbar_sz + 1; if (paddr_hi < (0x100000000ull - pcicsrbar_sz) || (paddr_lo > 0x100000000ull)) pcicsrbar = 0x100000000ull - pcicsrbar_sz; else pcicsrbar = (paddr_lo - pcicsrbar_sz) & -pcicsrbar_sz; early_write_config_dword(hose, 0, 0, PCI_BASE_ADDRESS_0, pcicsrbar); paddr_lo = min(paddr_lo, (u64)pcicsrbar); pr_info("%pOF: PCICSRBAR @ 0x%x\n", hose->dn, pcicsrbar); /* Setup inbound mem window */ mem = memblock_end_of_DRAM(); pr_info("%s: end of DRAM %llx\n", __func__, mem); /* * The msi-address-64 property, if it exists, indicates the physical * address of the MSIIR register. Normally, this register is located * inside CCSR, so the ATMU that covers all of CCSR is used. But if * this property exists, then we normally need to create a new ATMU * for it. For now, however, we cheat. The only entity that creates * this property is the Freescale hypervisor, and the address is * specified in the partition configuration. Typically, the address * is located in the page immediately after the end of DDR. If so, we * can avoid allocating a new ATMU by extending the DDR ATMU by one * page. */ reg = of_get_property(hose->dn, "msi-address-64", &len); if (reg && (len == sizeof(u64))) { u64 address = be64_to_cpup(reg); if ((address >= mem) && (address < (mem + PAGE_SIZE))) { pr_info("%pOF: extending DDR ATMU to cover MSIIR", hose->dn); mem += PAGE_SIZE; } else { /* TODO: Create a new ATMU for MSIIR */ pr_warn("%pOF: msi-address-64 address of %llx is " "unsupported\n", hose->dn, address); } } sz = min(mem, paddr_lo); mem_log = ilog2(sz); /* PCIe can overmap inbound & outbound since RX & TX are separated */ if (early_find_capability(hose, 0, 0, PCI_CAP_ID_EXP)) { /* Size window to exact size if power-of-two or one size up */ if ((1ull << mem_log) != mem) { mem_log++; if ((1ull << mem_log) > mem) pr_info("%pOF: Setting PCI inbound window " "greater than memory size\n", hose->dn); } piwar |= ((mem_log - 1) & PIWAR_SZ_MASK); if (setup_inbound) { /* Setup inbound memory window */ out_be32(&pci->piw[win_idx].pitar, 0x00000000); out_be32(&pci->piw[win_idx].piwbar, 0x00000000); out_be32(&pci->piw[win_idx].piwar, piwar); } win_idx--; hose->dma_window_base_cur = 0x00000000; hose->dma_window_size = (resource_size_t)sz; /* * if we have >4G of memory setup second PCI inbound window to * let devices that are 64-bit address capable to work w/o * SWIOTLB and access the full range of memory */ if (sz != mem) { mem_log = ilog2(mem); /* Size window up if we dont fit in exact power-of-2 */ if ((1ull << mem_log) != mem) mem_log++; piwar = (piwar & ~PIWAR_SZ_MASK) | (mem_log - 1); pci64_dma_offset = 1ULL << mem_log; if (setup_inbound) { /* Setup inbound memory window */ out_be32(&pci->piw[win_idx].pitar, 0x00000000); out_be32(&pci->piw[win_idx].piwbear, pci64_dma_offset >> 44); out_be32(&pci->piw[win_idx].piwbar, pci64_dma_offset >> 12); out_be32(&pci->piw[win_idx].piwar, piwar); } /* * install our own dma_set_mask handler to fixup dma_ops * and dma_offset */ ppc_md.dma_set_mask = fsl_pci_dma_set_mask; pr_info("%pOF: Setup 64-bit PCI DMA window\n", hose->dn); } } else { u64 paddr = 0; if (setup_inbound) { /* Setup inbound memory window */ out_be32(&pci->piw[win_idx].pitar, paddr >> 12); out_be32(&pci->piw[win_idx].piwbar, paddr >> 12); out_be32(&pci->piw[win_idx].piwar, (piwar | (mem_log - 1))); } win_idx--; paddr += 1ull << mem_log; sz -= 1ull << mem_log; if (sz) { mem_log = ilog2(sz); piwar |= (mem_log - 1); if (setup_inbound) { out_be32(&pci->piw[win_idx].pitar, paddr >> 12); out_be32(&pci->piw[win_idx].piwbar, paddr >> 12); out_be32(&pci->piw[win_idx].piwar, piwar); } win_idx--; paddr += 1ull << mem_log; } hose->dma_window_base_cur = 0x00000000; hose->dma_window_size = (resource_size_t)paddr; } if (hose->dma_window_size < mem) { #ifdef CONFIG_SWIOTLB ppc_swiotlb_enable = 1; #else pr_err("%pOF: ERROR: Memory size exceeds PCI ATMU ability to " "map - enable CONFIG_SWIOTLB to avoid dma errors.\n", hose->dn); #endif /* adjusting outbound windows could reclaim space in mem map */ if (paddr_hi < 0xffffffffull) pr_warn("%pOF: WARNING: Outbound window cfg leaves " "gaps in memory map. Adjusting the memory map " "could reduce unnecessary bounce buffering.\n", hose->dn); pr_info("%pOF: DMA window size is 0x%llx\n", hose->dn, (u64)hose->dma_window_size); } } static void setup_pci_cmd(struct pci_controller *hose) { u16 cmd; int cap_x; early_read_config_word(hose, 0, 0, PCI_COMMAND, &cmd); cmd |= PCI_COMMAND_SERR | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; early_write_config_word(hose, 0, 0, PCI_COMMAND, cmd); cap_x = early_find_capability(hose, 0, 0, PCI_CAP_ID_PCIX); if (cap_x) { int pci_x_cmd = cap_x + PCI_X_CMD; cmd = PCI_X_CMD_MAX_SPLIT | PCI_X_CMD_MAX_READ | PCI_X_CMD_ERO | PCI_X_CMD_DPERR_E; early_write_config_word(hose, 0, 0, pci_x_cmd, cmd); } else { early_write_config_byte(hose, 0, 0, PCI_LATENCY_TIMER, 0x80); } } void fsl_pcibios_fixup_bus(struct pci_bus *bus) { struct pci_controller *hose = pci_bus_to_host(bus); int i, is_pcie = 0, no_link; /* The root complex bridge comes up with bogus resources, * we copy the PHB ones in. * * With the current generic PCI code, the PHB bus no longer * has bus->resource[0..4] set, so things are a bit more * tricky. */ if (fsl_pcie_bus_fixup) is_pcie = early_find_capability(hose, 0, 0, PCI_CAP_ID_EXP); no_link = !!(hose->indirect_type & PPC_INDIRECT_TYPE_NO_PCIE_LINK); if (bus->parent == hose->bus && (is_pcie || no_link)) { for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; ++i) { struct resource *res = bus->resource[i]; struct resource *par; if (!res) continue; if (i == 0) par = &hose->io_resource; else if (i < 4) par = &hose->mem_resources[i-1]; else par = NULL; res->start = par ? par->start : 0; res->end = par ? par->end : 0; res->flags = par ? par->flags : 0; } } } static int fsl_add_bridge(struct platform_device *pdev, int is_primary) { int len; struct pci_controller *hose; struct resource rsrc; const int *bus_range; u8 hdr_type, progif; u32 class_code; struct device_node *dev; struct ccsr_pci __iomem *pci; u16 temp; u32 svr = mfspr(SPRN_SVR); dev = pdev->dev.of_node; if (!of_device_is_available(dev)) { pr_warn("%pOF: disabled\n", dev); return -ENODEV; } pr_debug("Adding PCI host bridge %pOF\n", dev); /* Fetch host bridge registers address */ if (of_address_to_resource(dev, 0, &rsrc)) { printk(KERN_WARNING "Can't get pci register base!"); return -ENOMEM; } /* Get bus range if any */ bus_range = of_get_property(dev, "bus-range", &len); if (bus_range == NULL || len < 2 * sizeof(int)) printk(KERN_WARNING "Can't get bus-range for %pOF, assume" " bus 0\n", dev); pci_add_flags(PCI_REASSIGN_ALL_BUS); hose = pcibios_alloc_controller(dev); if (!hose) return -ENOMEM; /* set platform device as the parent */ hose->parent = &pdev->dev; hose->first_busno = bus_range ? bus_range[0] : 0x0; hose->last_busno = bus_range ? bus_range[1] : 0xff; pr_debug("PCI memory map start 0x%016llx, size 0x%016llx\n", (u64)rsrc.start, (u64)resource_size(&rsrc)); pci = hose->private_data = ioremap(rsrc.start, resource_size(&rsrc)); if (!hose->private_data) goto no_bridge; setup_indirect_pci(hose, rsrc.start, rsrc.start + 0x4, PPC_INDIRECT_TYPE_BIG_ENDIAN); if (in_be32(&pci->block_rev1) < PCIE_IP_REV_3_0) hose->indirect_type |= PPC_INDIRECT_TYPE_FSL_CFG_REG_LINK; if (early_find_capability(hose, 0, 0, PCI_CAP_ID_EXP)) { /* use fsl_indirect_read_config for PCIe */ hose->ops = &fsl_indirect_pcie_ops; /* For PCIE read HEADER_TYPE to identify controller mode */ early_read_config_byte(hose, 0, 0, PCI_HEADER_TYPE, &hdr_type); if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) goto no_bridge; } else { /* For PCI read PROG to identify controller mode */ early_read_config_byte(hose, 0, 0, PCI_CLASS_PROG, &progif); if ((progif & 1) && !of_property_read_bool(dev, "fsl,pci-agent-force-enum")) goto no_bridge; } setup_pci_cmd(hose); /* check PCI express link status */ if (early_find_capability(hose, 0, 0, PCI_CAP_ID_EXP)) { hose->indirect_type |= PPC_INDIRECT_TYPE_EXT_REG | PPC_INDIRECT_TYPE_SURPRESS_PRIMARY_BUS; if (fsl_pcie_check_link(hose)) hose->indirect_type |= PPC_INDIRECT_TYPE_NO_PCIE_LINK; /* Fix Class Code to PCI_CLASS_BRIDGE_PCI_NORMAL for pre-3.0 controller */ if (in_be32(&pci->block_rev1) < PCIE_IP_REV_3_0) { early_read_config_dword(hose, 0, 0, PCIE_FSL_CSR_CLASSCODE, &class_code); class_code &= 0xff; class_code |= PCI_CLASS_BRIDGE_PCI_NORMAL << 8; early_write_config_dword(hose, 0, 0, PCIE_FSL_CSR_CLASSCODE, class_code); } } else { /* * Set PBFR(PCI Bus Function Register)[10] = 1 to * disable the combining of crossing cacheline * boundary requests into one burst transaction. * PCI-X operation is not affected. * Fix erratum PCI 5 on MPC8548 */ #define PCI_BUS_FUNCTION 0x44 #define PCI_BUS_FUNCTION_MDS 0x400 /* Master disable streaming */ if (((SVR_SOC_VER(svr) == SVR_8543) || (SVR_SOC_VER(svr) == SVR_8545) || (SVR_SOC_VER(svr) == SVR_8547) || (SVR_SOC_VER(svr) == SVR_8548)) && !early_find_capability(hose, 0, 0, PCI_CAP_ID_PCIX)) { early_read_config_word(hose, 0, 0, PCI_BUS_FUNCTION, &temp); temp |= PCI_BUS_FUNCTION_MDS; early_write_config_word(hose, 0, 0, PCI_BUS_FUNCTION, temp); } } printk(KERN_INFO "Found FSL PCI host bridge at 0x%016llx. " "Firmware bus number: %d->%d\n", (unsigned long long)rsrc.start, hose->first_busno, hose->last_busno); pr_debug(" ->Hose at 0x%p, cfg_addr=0x%p,cfg_data=0x%p\n", hose, hose->cfg_addr, hose->cfg_data); /* Interpret the "ranges" property */ /* This also maps the I/O region and sets isa_io/mem_base */ pci_process_bridge_OF_ranges(hose, dev, is_primary); /* Setup PEX window registers */ setup_pci_atmu(hose); /* Set up controller operations */ setup_swiotlb_ops(hose); return 0; no_bridge: iounmap(hose->private_data); /* unmap cfg_data & cfg_addr separately if not on same page */ if (((unsigned long)hose->cfg_data & PAGE_MASK) != ((unsigned long)hose->cfg_addr & PAGE_MASK)) iounmap(hose->cfg_data); iounmap(hose->cfg_addr); pcibios_free_controller(hose); return -ENODEV; } #endif /* CONFIG_FSL_SOC_BOOKE || CONFIG_PPC_86xx */ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, quirk_fsl_pcie_early); #if defined(CONFIG_PPC_83xx) || defined(CONFIG_PPC_MPC512x) struct mpc83xx_pcie_priv { void __iomem *cfg_type0; void __iomem *cfg_type1; u32 dev_base; }; struct pex_inbound_window { u32 ar; u32 tar; u32 barl; u32 barh; }; /* * With the convention of u-boot, the PCIE outbound window 0 serves * as configuration transactions outbound. */ #define PEX_OUTWIN0_BAR 0xCA4 #define PEX_OUTWIN0_TAL 0xCA8 #define PEX_OUTWIN0_TAH 0xCAC #define PEX_RC_INWIN_BASE 0xE60 #define PEX_RCIWARn_EN 0x1 static int mpc83xx_pcie_exclude_device(struct pci_bus *bus, unsigned int devfn) { struct pci_controller *hose = pci_bus_to_host(bus); if (hose->indirect_type & PPC_INDIRECT_TYPE_NO_PCIE_LINK) return PCIBIOS_DEVICE_NOT_FOUND; /* * Workaround for the HW bug: for Type 0 configure transactions the * PCI-E controller does not check the device number bits and just * assumes that the device number bits are 0. */ if (bus->number == hose->first_busno || bus->primary == hose->first_busno) { if (devfn & 0xf8) return PCIBIOS_DEVICE_NOT_FOUND; } if (ppc_md.pci_exclude_device) { if (ppc_md.pci_exclude_device(hose, bus->number, devfn)) return PCIBIOS_DEVICE_NOT_FOUND; } return PCIBIOS_SUCCESSFUL; } static void __iomem *mpc83xx_pcie_remap_cfg(struct pci_bus *bus, unsigned int devfn, int offset) { struct pci_controller *hose = pci_bus_to_host(bus); struct mpc83xx_pcie_priv *pcie = hose->dn->data; u32 dev_base = bus->number << 24 | devfn << 16; int ret; ret = mpc83xx_pcie_exclude_device(bus, devfn); if (ret) return NULL; offset &= 0xfff; /* Type 0 */ if (bus->number == hose->first_busno) return pcie->cfg_type0 + offset; if (pcie->dev_base == dev_base) goto mapped; out_le32(pcie->cfg_type0 + PEX_OUTWIN0_TAL, dev_base); pcie->dev_base = dev_base; mapped: return pcie->cfg_type1 + offset; } static int mpc83xx_pcie_write_config(struct pci_bus *bus, unsigned int devfn, int offset, int len, u32 val) { struct pci_controller *hose = pci_bus_to_host(bus); /* PPC_INDIRECT_TYPE_SURPRESS_PRIMARY_BUS */ if (offset == PCI_PRIMARY_BUS && bus->number == hose->first_busno) val &= 0xffffff00; return pci_generic_config_write(bus, devfn, offset, len, val); } static struct pci_ops mpc83xx_pcie_ops = { .map_bus = mpc83xx_pcie_remap_cfg, .read = pci_generic_config_read, .write = mpc83xx_pcie_write_config, }; static int __init mpc83xx_pcie_setup(struct pci_controller *hose, struct resource *reg) { struct mpc83xx_pcie_priv *pcie; u32 cfg_bar; int ret = -ENOMEM; pcie = kzalloc(sizeof(*pcie), GFP_KERNEL); if (!pcie) return ret; pcie->cfg_type0 = ioremap(reg->start, resource_size(reg)); if (!pcie->cfg_type0) goto err0; cfg_bar = in_le32(pcie->cfg_type0 + PEX_OUTWIN0_BAR); if (!cfg_bar) { /* PCI-E isn't configured. */ ret = -ENODEV; goto err1; } pcie->cfg_type1 = ioremap(cfg_bar, 0x1000); if (!pcie->cfg_type1) goto err1; WARN_ON(hose->dn->data); hose->dn->data = pcie; hose->ops = &mpc83xx_pcie_ops; hose->indirect_type |= PPC_INDIRECT_TYPE_FSL_CFG_REG_LINK; out_le32(pcie->cfg_type0 + PEX_OUTWIN0_TAH, 0); out_le32(pcie->cfg_type0 + PEX_OUTWIN0_TAL, 0); if (fsl_pcie_check_link(hose)) hose->indirect_type |= PPC_INDIRECT_TYPE_NO_PCIE_LINK; return 0; err1: iounmap(pcie->cfg_type0); err0: kfree(pcie); return ret; } int __init mpc83xx_add_bridge(struct device_node *dev) { int ret; int len; struct pci_controller *hose; struct resource rsrc_reg; struct resource rsrc_cfg; const int *bus_range; int primary; is_mpc83xx_pci = 1; if (!of_device_is_available(dev)) { pr_warn("%pOF: disabled by the firmware.\n", dev); return -ENODEV; } pr_debug("Adding PCI host bridge %pOF\n", dev); /* Fetch host bridge registers address */ if (of_address_to_resource(dev, 0, &rsrc_reg)) { printk(KERN_WARNING "Can't get pci register base!\n"); return -ENOMEM; } memset(&rsrc_cfg, 0, sizeof(rsrc_cfg)); if (of_address_to_resource(dev, 1, &rsrc_cfg)) { printk(KERN_WARNING "No pci config register base in dev tree, " "using default\n"); /* * MPC83xx supports up to two host controllers * one at 0x8500 has config space registers at 0x8300 * one at 0x8600 has config space registers at 0x8380 */ if ((rsrc_reg.start & 0xfffff) == 0x8500) rsrc_cfg.start = (rsrc_reg.start & 0xfff00000) + 0x8300; else if ((rsrc_reg.start & 0xfffff) == 0x8600) rsrc_cfg.start = (rsrc_reg.start & 0xfff00000) + 0x8380; } /* * Controller at offset 0x8500 is primary */ if ((rsrc_reg.start & 0xfffff) == 0x8500) primary = 1; else primary = 0; /* Get bus range if any */ bus_range = of_get_property(dev, "bus-range", &len); if (bus_range == NULL || len < 2 * sizeof(int)) { printk(KERN_WARNING "Can't get bus-range for %pOF, assume" " bus 0\n", dev); } pci_add_flags(PCI_REASSIGN_ALL_BUS); hose = pcibios_alloc_controller(dev); if (!hose) return -ENOMEM; hose->first_busno = bus_range ? bus_range[0] : 0; hose->last_busno = bus_range ? bus_range[1] : 0xff; if (of_device_is_compatible(dev, "fsl,mpc8314-pcie")) { ret = mpc83xx_pcie_setup(hose, &rsrc_reg); if (ret) goto err0; } else { setup_indirect_pci(hose, rsrc_cfg.start, rsrc_cfg.start + 4, 0); } printk(KERN_INFO "Found FSL PCI host bridge at 0x%016llx. " "Firmware bus number: %d->%d\n", (unsigned long long)rsrc_reg.start, hose->first_busno, hose->last_busno); pr_debug(" ->Hose at 0x%p, cfg_addr=0x%p,cfg_data=0x%p\n", hose, hose->cfg_addr, hose->cfg_data); /* Interpret the "ranges" property */ /* This also maps the I/O region and sets isa_io/mem_base */ pci_process_bridge_OF_ranges(hose, dev, primary); return 0; err0: pcibios_free_controller(hose); return ret; } #endif /* CONFIG_PPC_83xx */ u64 fsl_pci_immrbar_base(struct pci_controller *hose) { #ifdef CONFIG_PPC_83xx if (is_mpc83xx_pci) { struct mpc83xx_pcie_priv *pcie = hose->dn->data; struct pex_inbound_window *in; int i; /* Walk the Root Complex Inbound windows to match IMMR base */ in = pcie->cfg_type0 + PEX_RC_INWIN_BASE; for (i = 0; i < 4; i++) { /* not enabled, skip */ if (!(in_le32(&in[i].ar) & PEX_RCIWARn_EN)) continue; if (get_immrbase() == in_le32(&in[i].tar)) return (u64)in_le32(&in[i].barh) << 32 | in_le32(&in[i].barl); } printk(KERN_WARNING "could not find PCI BAR matching IMMR\n"); } #endif #if defined(CONFIG_FSL_SOC_BOOKE) || defined(CONFIG_PPC_86xx) if (!is_mpc83xx_pci) { u32 base; pci_bus_read_config_dword(hose->bus, PCI_DEVFN(0, 0), PCI_BASE_ADDRESS_0, &base); /* * For PEXCSRBAR, bit 3-0 indicate prefetchable and * address type. So when getting base address, these * bits should be masked */ base &= PCI_BASE_ADDRESS_MEM_MASK; return base; } #endif return 0; } #ifdef CONFIG_PPC_E500 static int mcheck_handle_load(struct pt_regs *regs, u32 inst) { unsigned int rd, ra, rb, d; rd = get_rt(inst); ra = get_ra(inst); rb = get_rb(inst); d = get_d(inst); switch (get_op(inst)) { case 31: switch (get_xop(inst)) { case OP_31_XOP_LWZX: case OP_31_XOP_LWBRX: regs->gpr[rd] = 0xffffffff; break; case OP_31_XOP_LWZUX: regs->gpr[rd] = 0xffffffff; regs->gpr[ra] += regs->gpr[rb]; break; case OP_31_XOP_LBZX: regs->gpr[rd] = 0xff; break; case OP_31_XOP_LBZUX: regs->gpr[rd] = 0xff; regs->gpr[ra] += regs->gpr[rb]; break; case OP_31_XOP_LHZX: case OP_31_XOP_LHBRX: regs->gpr[rd] = 0xffff; break; case OP_31_XOP_LHZUX: regs->gpr[rd] = 0xffff; regs->gpr[ra] += regs->gpr[rb]; break; case OP_31_XOP_LHAX: regs->gpr[rd] = ~0UL; break; case OP_31_XOP_LHAUX: regs->gpr[rd] = ~0UL; regs->gpr[ra] += regs->gpr[rb]; break; default: return 0; } break; case OP_LWZ: regs->gpr[rd] = 0xffffffff; break; case OP_LWZU: regs->gpr[rd] = 0xffffffff; regs->gpr[ra] += (s16)d; break; case OP_LBZ: regs->gpr[rd] = 0xff; break; case OP_LBZU: regs->gpr[rd] = 0xff; regs->gpr[ra] += (s16)d; break; case OP_LHZ: regs->gpr[rd] = 0xffff; break; case OP_LHZU: regs->gpr[rd] = 0xffff; regs->gpr[ra] += (s16)d; break; case OP_LHA: regs->gpr[rd] = ~0UL; break; case OP_LHAU: regs->gpr[rd] = ~0UL; regs->gpr[ra] += (s16)d; break; default: return 0; } return 1; } static int is_in_pci_mem_space(phys_addr_t addr) { struct pci_controller *hose; struct resource *res; int i; list_for_each_entry(hose, &hose_list, list_node) { if (!(hose->indirect_type & PPC_INDIRECT_TYPE_EXT_REG)) continue; for (i = 0; i < 3; i++) { res = &hose->mem_resources[i]; if ((res->flags & IORESOURCE_MEM) && addr >= res->start && addr <= res->end) return 1; } } return 0; } int fsl_pci_mcheck_exception(struct pt_regs *regs) { u32 inst; int ret; phys_addr_t addr = 0; /* Let KVM/QEMU deal with the exception */ if (regs->msr & MSR_GS) return 0; #ifdef CONFIG_PHYS_64BIT addr = mfspr(SPRN_MCARU); addr <<= 32; #endif addr += mfspr(SPRN_MCAR); if (is_in_pci_mem_space(addr)) { if (user_mode(regs)) ret = copy_from_user_nofault(&inst, (void __user *)regs->nip, sizeof(inst)); else ret = get_kernel_nofault(inst, (void *)regs->nip); if (!ret && mcheck_handle_load(regs, inst)) { regs_add_return_ip(regs, 4); return 1; } } return 0; } #endif #if defined(CONFIG_FSL_SOC_BOOKE) || defined(CONFIG_PPC_86xx) static const struct of_device_id pci_ids[] = { { .compatible = "fsl,mpc8540-pci", }, { .compatible = "fsl,mpc8548-pcie", }, { .compatible = "fsl,mpc8610-pci", }, { .compatible = "fsl,mpc8641-pcie", }, { .compatible = "fsl,qoriq-pcie", }, { .compatible = "fsl,qoriq-pcie-v2.1", }, { .compatible = "fsl,qoriq-pcie-v2.2", }, { .compatible = "fsl,qoriq-pcie-v2.3", }, { .compatible = "fsl,qoriq-pcie-v2.4", }, { .compatible = "fsl,qoriq-pcie-v3.0", }, /* * The following entries are for compatibility with older device * trees. */ { .compatible = "fsl,p1022-pcie", }, { .compatible = "fsl,p4080-pcie", }, {}, }; struct device_node *fsl_pci_primary; void __init fsl_pci_assign_primary(void) { struct device_node *np; /* Callers can specify the primary bus using other means. */ if (fsl_pci_primary) return; /* If a PCI host bridge contains an ISA node, it's primary. */ np = of_find_node_by_type(NULL, "isa"); while ((fsl_pci_primary = of_get_parent(np))) { of_node_put(np); np = fsl_pci_primary; if (of_match_node(pci_ids, np) && of_device_is_available(np)) return; } /* * If there's no PCI host bridge with ISA then check for * PCI host bridge with alias "pci0" (first PCI host bridge). */ np = of_find_node_by_path("pci0"); if (np && of_match_node(pci_ids, np) && of_device_is_available(np)) { fsl_pci_primary = np; of_node_put(np); return; } if (np) of_node_put(np); /* * If there's no PCI host bridge with ISA, arbitrarily * designate one as primary. This can go away once * various bugs with primary-less systems are fixed. */ for_each_matching_node(np, pci_ids) { if (of_device_is_available(np)) { fsl_pci_primary = np; return; } } } #ifdef CONFIG_PM_SLEEP static irqreturn_t fsl_pci_pme_handle(int irq, void *dev_id) { struct pci_controller *hose = dev_id; struct ccsr_pci __iomem *pci = hose->private_data; u32 dr; dr = in_be32(&pci->pex_pme_mes_dr); if (!dr) return IRQ_NONE; out_be32(&pci->pex_pme_mes_dr, dr); return IRQ_HANDLED; } static int fsl_pci_pme_probe(struct pci_controller *hose) { struct ccsr_pci __iomem *pci; struct pci_dev *dev; int pme_irq; int res; u16 pms; /* Get hose's pci_dev */ dev = list_first_entry(&hose->bus->devices, typeof(*dev), bus_list); /* PME Disable */ pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pms); pms &= ~PCI_PM_CTRL_PME_ENABLE; pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pms); pme_irq = irq_of_parse_and_map(hose->dn, 0); if (!pme_irq) { dev_err(&dev->dev, "Failed to map PME interrupt.\n"); return -ENXIO; } res = devm_request_irq(hose->parent, pme_irq, fsl_pci_pme_handle, IRQF_SHARED, "[PCI] PME", hose); if (res < 0) { dev_err(&dev->dev, "Unable to request irq %d for PME\n", pme_irq); irq_dispose_mapping(pme_irq); return -ENODEV; } pci = hose->private_data; /* Enable PTOD, ENL23D & EXL23D */ clrbits32(&pci->pex_pme_mes_disr, PME_DISR_EN_PTOD | PME_DISR_EN_ENL23D | PME_DISR_EN_EXL23D); out_be32(&pci->pex_pme_mes_ier, 0); setbits32(&pci->pex_pme_mes_ier, PME_DISR_EN_PTOD | PME_DISR_EN_ENL23D | PME_DISR_EN_EXL23D); /* PME Enable */ pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pms); pms |= PCI_PM_CTRL_PME_ENABLE; pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pms); return 0; } static void send_pme_turnoff_message(struct pci_controller *hose) { struct ccsr_pci __iomem *pci = hose->private_data; u32 dr; int i; /* Send PME_Turn_Off Message Request */ setbits32(&pci->pex_pmcr, PEX_PMCR_PTOMR); /* Wait trun off done */ for (i = 0; i < 150; i++) { dr = in_be32(&pci->pex_pme_mes_dr); if (dr) { out_be32(&pci->pex_pme_mes_dr, dr); break; } udelay(1000); } } static void fsl_pci_syscore_do_suspend(struct pci_controller *hose) { send_pme_turnoff_message(hose); } static int fsl_pci_syscore_suspend(void) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) fsl_pci_syscore_do_suspend(hose); return 0; } static void fsl_pci_syscore_do_resume(struct pci_controller *hose) { struct ccsr_pci __iomem *pci = hose->private_data; u32 dr; int i; /* Send Exit L2 State Message */ setbits32(&pci->pex_pmcr, PEX_PMCR_EXL2S); /* Wait exit done */ for (i = 0; i < 150; i++) { dr = in_be32(&pci->pex_pme_mes_dr); if (dr) { out_be32(&pci->pex_pme_mes_dr, dr); break; } udelay(1000); } setup_pci_atmu(hose); } static void fsl_pci_syscore_resume(void) { struct pci_controller *hose, *tmp; list_for_each_entry_safe(hose, tmp, &hose_list, list_node) fsl_pci_syscore_do_resume(hose); } static struct syscore_ops pci_syscore_pm_ops = { .suspend = fsl_pci_syscore_suspend, .resume = fsl_pci_syscore_resume, }; #endif void fsl_pcibios_fixup_phb(struct pci_controller *phb) { #ifdef CONFIG_PM_SLEEP fsl_pci_pme_probe(phb); #endif } static int add_err_dev(struct platform_device *pdev) { struct platform_device *errdev; struct mpc85xx_edac_pci_plat_data pd = { .of_node = pdev->dev.of_node }; errdev = platform_device_register_resndata(&pdev->dev, "mpc85xx-pci-edac", PLATFORM_DEVID_AUTO, pdev->resource, pdev->num_resources, &pd, sizeof(pd)); return PTR_ERR_OR_ZERO(errdev); } static int fsl_pci_probe(struct platform_device *pdev) { struct device_node *node; int ret; node = pdev->dev.of_node; ret = fsl_add_bridge(pdev, fsl_pci_primary == node); if (ret) return ret; ret = add_err_dev(pdev); if (ret) dev_err(&pdev->dev, "couldn't register error device: %d\n", ret); return 0; } static struct platform_driver fsl_pci_driver = { .driver = { .name = "fsl-pci", .of_match_table = pci_ids, }, .probe = fsl_pci_probe, .driver_managed_dma = true, }; static int __init fsl_pci_init(void) { #ifdef CONFIG_PM_SLEEP register_syscore_ops(&pci_syscore_pm_ops); #endif return platform_driver_register(&fsl_pci_driver); } arch_initcall(fsl_pci_init); #endif