// SPDX-License-Identifier: GPL-2.0 /* * Based upon linux/arch/m68k/mm/sun3mmu.c * Based upon linux/arch/ppc/mm/mmu_context.c * * Implementations of mm routines specific to the Coldfire MMU. * * Copyright (c) 2008 Freescale Semiconductor, Inc. */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/string.h> #include <linux/memblock.h> #include <asm/setup.h> #include <asm/page.h> #include <asm/mmu_context.h> #include <asm/mcf_pgalloc.h> #include <asm/tlbflush.h> #include <asm/pgalloc.h> #define KMAPAREA(x) ((x >= VMALLOC_START) && (x < KMAP_END)) mm_context_t next_mmu_context; unsigned long context_map[LAST_CONTEXT / BITS_PER_LONG + 1]; atomic_t nr_free_contexts; struct mm_struct *context_mm[LAST_CONTEXT+1]; unsigned long num_pages; /* * ColdFire paging_init derived from sun3. */ void __init paging_init(void) { pgd_t *pg_dir; pte_t *pg_table; unsigned long address, size; unsigned long next_pgtable, bootmem_end; unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 }; int i; empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE); if (!empty_zero_page) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, PAGE_SIZE, PAGE_SIZE); pg_dir = swapper_pg_dir; memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir)); size = num_pages * sizeof(pte_t); size = (size + PAGE_SIZE) & ~(PAGE_SIZE-1); next_pgtable = (unsigned long) memblock_alloc(size, PAGE_SIZE); if (!next_pgtable) panic("%s: Failed to allocate %lu bytes align=0x%lx\n", __func__, size, PAGE_SIZE); bootmem_end = (next_pgtable + size + PAGE_SIZE) & PAGE_MASK; pg_dir += PAGE_OFFSET >> PGDIR_SHIFT; address = PAGE_OFFSET; while (address < (unsigned long)high_memory) { pg_table = (pte_t *) next_pgtable; next_pgtable += PTRS_PER_PTE * sizeof(pte_t); pgd_val(*pg_dir) = (unsigned long) pg_table; pg_dir++; /* now change pg_table to kernel virtual addresses */ for (i = 0; i < PTRS_PER_PTE; ++i, ++pg_table) { pte_t pte = pfn_pte(virt_to_pfn((void *)address), PAGE_INIT); if (address >= (unsigned long) high_memory) pte_val(pte) = 0; set_pte(pg_table, pte); address += PAGE_SIZE; } } current->mm = NULL; max_zone_pfn[ZONE_DMA] = PFN_DOWN(_ramend); free_area_init(max_zone_pfn); } int cf_tlb_miss(struct pt_regs *regs, int write, int dtlb, int extension_word) { unsigned long flags, mmuar, mmutr; struct mm_struct *mm; pgd_t *pgd; p4d_t *p4d; pud_t *pud; pmd_t *pmd; pte_t *pte = NULL; int ret = -1; int asid; local_irq_save(flags); mmuar = (dtlb) ? mmu_read(MMUAR) : regs->pc + (extension_word * sizeof(long)); mm = (!user_mode(regs) && KMAPAREA(mmuar)) ? &init_mm : current->mm; if (!mm) goto out; pgd = pgd_offset(mm, mmuar); if (pgd_none(*pgd)) goto out; p4d = p4d_offset(pgd, mmuar); if (p4d_none(*p4d)) goto out; pud = pud_offset(p4d, mmuar); if (pud_none(*pud)) goto out; pmd = pmd_offset(pud, mmuar); if (pmd_none(*pmd)) goto out; pte = (KMAPAREA(mmuar)) ? pte_offset_kernel(pmd, mmuar) : pte_offset_map(pmd, mmuar); if (!pte || pte_none(*pte) || !pte_present(*pte)) goto out; if (write) { if (!pte_write(*pte)) goto out; set_pte(pte, pte_mkdirty(*pte)); } set_pte(pte, pte_mkyoung(*pte)); asid = mm->context & 0xff; if (!pte_dirty(*pte) && !KMAPAREA(mmuar)) set_pte(pte, pte_wrprotect(*pte)); mmutr = (mmuar & PAGE_MASK) | (asid << MMUTR_IDN) | MMUTR_V; if ((mmuar < TASK_UNMAPPED_BASE) || (mmuar >= TASK_SIZE)) mmutr |= (pte->pte & CF_PAGE_MMUTR_MASK) >> CF_PAGE_MMUTR_SHIFT; mmu_write(MMUTR, mmutr); mmu_write(MMUDR, (pte_val(*pte) & PAGE_MASK) | ((pte->pte) & CF_PAGE_MMUDR_MASK) | MMUDR_SZ_8KB | MMUDR_X); if (dtlb) mmu_write(MMUOR, MMUOR_ACC | MMUOR_UAA); else mmu_write(MMUOR, MMUOR_ITLB | MMUOR_ACC | MMUOR_UAA); ret = 0; out: if (pte && !KMAPAREA(mmuar)) pte_unmap(pte); local_irq_restore(flags); return ret; } void __init cf_bootmem_alloc(void) { unsigned long memstart; /* _rambase and _ramend will be naturally page aligned */ m68k_memory[0].addr = _rambase; m68k_memory[0].size = _ramend - _rambase; memblock_add_node(m68k_memory[0].addr, m68k_memory[0].size, 0, MEMBLOCK_NONE); /* compute total pages in system */ num_pages = PFN_DOWN(_ramend - _rambase); /* page numbers */ memstart = PAGE_ALIGN(_ramstart); min_low_pfn = PFN_DOWN(_rambase); max_pfn = max_low_pfn = PFN_DOWN(_ramend); high_memory = (void *)_ramend; /* Reserve kernel text/data/bss */ memblock_reserve(_rambase, memstart - _rambase); m68k_virt_to_node_shift = fls(_ramend - 1) - 6; module_fixup(NULL, __start_fixup, __stop_fixup); /* setup node data */ m68k_setup_node(0); } /* * Initialize the context management stuff. * The following was taken from arch/ppc/mmu_context.c */ void __init cf_mmu_context_init(void) { /* * Some processors have too few contexts to reserve one for * init_mm, and require using context 0 for a normal task. * Other processors reserve the use of context zero for the kernel. * This code assumes FIRST_CONTEXT < 32. */ context_map[0] = (1 << FIRST_CONTEXT) - 1; next_mmu_context = FIRST_CONTEXT; atomic_set(&nr_free_contexts, LAST_CONTEXT - FIRST_CONTEXT + 1); } /* * Steal a context from a task that has one at the moment. * This isn't an LRU system, it just frees up each context in * turn (sort-of pseudo-random replacement :). This would be the * place to implement an LRU scheme if anyone was motivated to do it. * -- paulus */ void steal_context(void) { struct mm_struct *mm; /* * free up context `next_mmu_context' * if we shouldn't free context 0, don't... */ if (next_mmu_context < FIRST_CONTEXT) next_mmu_context = FIRST_CONTEXT; mm = context_mm[next_mmu_context]; flush_tlb_mm(mm); destroy_context(mm); } static const pgprot_t protection_map[16] = { [VM_NONE] = PAGE_NONE, [VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE), [VM_WRITE] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_WRITABLE), [VM_WRITE | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_WRITABLE), [VM_EXEC] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_EXEC), [VM_EXEC | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_EXEC), [VM_EXEC | VM_WRITE] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_WRITABLE | CF_PAGE_EXEC), [VM_EXEC | VM_WRITE | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_WRITABLE | CF_PAGE_EXEC), [VM_SHARED] = PAGE_NONE, [VM_SHARED | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE), [VM_SHARED | VM_WRITE] = PAGE_SHARED, [VM_SHARED | VM_WRITE | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_SHARED), [VM_SHARED | VM_EXEC] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_EXEC), [VM_SHARED | VM_EXEC | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_EXEC), [VM_SHARED | VM_EXEC | VM_WRITE] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_SHARED | CF_PAGE_EXEC), [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __pgprot(CF_PAGE_VALID | CF_PAGE_ACCESSED | CF_PAGE_READABLE | CF_PAGE_SHARED | CF_PAGE_EXEC) }; DECLARE_VM_GET_PAGE_PROT