// SPDX-License-Identifier: GPL-2.0 /* * ip30-irq.c: Highlevel interrupt handling for IP30 architecture. */ #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/percpu.h> #include <linux/spinlock.h> #include <linux/tick.h> #include <linux/types.h> #include <asm/irq_cpu.h> #include <asm/sgi/heart.h> #include "ip30-common.h" struct heart_irq_data { u64 *irq_mask; int cpu; }; static DECLARE_BITMAP(heart_irq_map, HEART_NUM_IRQS); static DEFINE_PER_CPU(unsigned long, irq_enable_mask); static inline int heart_alloc_int(void) { int bit; again: bit = find_first_zero_bit(heart_irq_map, HEART_NUM_IRQS); if (bit >= HEART_NUM_IRQS) return -ENOSPC; if (test_and_set_bit(bit, heart_irq_map)) goto again; return bit; } static void ip30_error_irq(struct irq_desc *desc) { u64 pending, mask, cause, error_irqs, err_reg; int cpu = smp_processor_id(); int i; pending = heart_read(&heart_regs->isr); mask = heart_read(&heart_regs->imr[cpu]); cause = heart_read(&heart_regs->cause); error_irqs = (pending & HEART_L4_INT_MASK & mask); /* Bail if there's nothing to process (how did we get here, then?) */ if (unlikely(!error_irqs)) return; /* Prevent any of the error IRQs from firing again. */ heart_write(mask & ~(pending), &heart_regs->imr[cpu]); /* Ack all error IRQs. */ heart_write(HEART_L4_INT_MASK, &heart_regs->clear_isr); /* * If we also have a cause value, then something happened, so loop * through the error IRQs and report a "heart attack" for each one * and print the value of the HEART cause register. This is really * primitive right now, but it should hopefully work until a more * robust error handling routine can be put together. * * Refer to heart.h for the HC_* macros to work out the cause * that got us here. */ if (cause) { pr_alert("IP30: CPU%d: HEART ATTACK! ISR = 0x%.16llx, IMR = 0x%.16llx, CAUSE = 0x%.16llx\n", cpu, pending, mask, cause); if (cause & HC_COR_MEM_ERR) { err_reg = heart_read(&heart_regs->mem_err_addr); pr_alert(" HEART_MEMERR_ADDR = 0x%.16llx\n", err_reg); } /* i = 63; i >= 51; i-- */ for (i = HEART_ERR_MASK_END; i >= HEART_ERR_MASK_START; i--) if ((pending >> i) & 1) pr_alert(" HEART Error IRQ #%d\n", i); /* XXX: Seems possible to loop forever here, so panic(). */ panic("IP30: Fatal Error !\n"); } /* Unmask the error IRQs. */ heart_write(mask, &heart_regs->imr[cpu]); } static void ip30_normal_irq(struct irq_desc *desc) { int cpu = smp_processor_id(); struct irq_domain *domain; u64 pend, mask; int ret; pend = heart_read(&heart_regs->isr); mask = (heart_read(&heart_regs->imr[cpu]) & (HEART_L0_INT_MASK | HEART_L1_INT_MASK | HEART_L2_INT_MASK)); pend &= mask; if (unlikely(!pend)) return; #ifdef CONFIG_SMP if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_0)) { heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0), &heart_regs->clear_isr); scheduler_ipi(); } else if (pend & BIT_ULL(HEART_L2_INT_RESCHED_CPU_1)) { heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_1), &heart_regs->clear_isr); scheduler_ipi(); } else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_0)) { heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0), &heart_regs->clear_isr); generic_smp_call_function_interrupt(); } else if (pend & BIT_ULL(HEART_L2_INT_CALL_CPU_1)) { heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_1), &heart_regs->clear_isr); generic_smp_call_function_interrupt(); } else #endif { domain = irq_desc_get_handler_data(desc); ret = generic_handle_domain_irq(domain, __ffs(pend)); if (ret) spurious_interrupt(); } } static void ip30_ack_heart_irq(struct irq_data *d) { heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr); } static void ip30_mask_heart_irq(struct irq_data *d) { struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); clear_bit(d->hwirq, mask); heart_write(*mask, &heart_regs->imr[hd->cpu]); } static void ip30_mask_and_ack_heart_irq(struct irq_data *d) { struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); clear_bit(d->hwirq, mask); heart_write(*mask, &heart_regs->imr[hd->cpu]); heart_write(BIT_ULL(d->hwirq), &heart_regs->clear_isr); } static void ip30_unmask_heart_irq(struct irq_data *d) { struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); unsigned long *mask = &per_cpu(irq_enable_mask, hd->cpu); set_bit(d->hwirq, mask); heart_write(*mask, &heart_regs->imr[hd->cpu]); } static int ip30_set_heart_irq_affinity(struct irq_data *d, const struct cpumask *mask, bool force) { struct heart_irq_data *hd = irq_data_get_irq_chip_data(d); if (!hd) return -EINVAL; if (irqd_is_started(d)) ip30_mask_and_ack_heart_irq(d); hd->cpu = cpumask_first_and(mask, cpu_online_mask); if (irqd_is_started(d)) ip30_unmask_heart_irq(d); irq_data_update_effective_affinity(d, cpumask_of(hd->cpu)); return 0; } static struct irq_chip heart_irq_chip = { .name = "HEART", .irq_ack = ip30_ack_heart_irq, .irq_mask = ip30_mask_heart_irq, .irq_mask_ack = ip30_mask_and_ack_heart_irq, .irq_unmask = ip30_unmask_heart_irq, .irq_set_affinity = ip30_set_heart_irq_affinity, }; static int heart_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_alloc_info *info = arg; struct heart_irq_data *hd; int hwirq; if (nr_irqs > 1 || !info) return -EINVAL; hd = kzalloc(sizeof(*hd), GFP_KERNEL); if (!hd) return -ENOMEM; hwirq = heart_alloc_int(); if (hwirq < 0) { kfree(hd); return -EAGAIN; } irq_domain_set_info(domain, virq, hwirq, &heart_irq_chip, hd, handle_level_irq, NULL, NULL); return 0; } static void heart_domain_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *irqd; if (nr_irqs > 1) return; irqd = irq_domain_get_irq_data(domain, virq); if (irqd) { clear_bit(irqd->hwirq, heart_irq_map); kfree(irqd->chip_data); } } static const struct irq_domain_ops heart_domain_ops = { .alloc = heart_domain_alloc, .free = heart_domain_free, }; void __init ip30_install_ipi(void) { int cpu = smp_processor_id(); unsigned long *mask = &per_cpu(irq_enable_mask, cpu); set_bit(HEART_L2_INT_RESCHED_CPU_0 + cpu, mask); heart_write(BIT_ULL(HEART_L2_INT_RESCHED_CPU_0 + cpu), &heart_regs->clear_isr); set_bit(HEART_L2_INT_CALL_CPU_0 + cpu, mask); heart_write(BIT_ULL(HEART_L2_INT_CALL_CPU_0 + cpu), &heart_regs->clear_isr); heart_write(*mask, &heart_regs->imr[cpu]); } void __init arch_init_irq(void) { struct irq_domain *domain; struct fwnode_handle *fn; unsigned long *mask; int i; mips_cpu_irq_init(); /* Mask all IRQs. */ heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[0]); heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[1]); heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[2]); heart_write(HEART_CLR_ALL_MASK, &heart_regs->imr[3]); /* Ack everything. */ heart_write(HEART_ACK_ALL_MASK, &heart_regs->clear_isr); /* Enable specific HEART error IRQs for each CPU. */ mask = &per_cpu(irq_enable_mask, 0); *mask |= HEART_CPU0_ERR_MASK; heart_write(*mask, &heart_regs->imr[0]); mask = &per_cpu(irq_enable_mask, 1); *mask |= HEART_CPU1_ERR_MASK; heart_write(*mask, &heart_regs->imr[1]); /* * Some HEART bits are reserved by hardware or by software convention. * Mark these as reserved right away so they won't be accidentally * used later. */ set_bit(HEART_L0_INT_GENERIC, heart_irq_map); set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_0, heart_irq_map); set_bit(HEART_L0_INT_FLOW_CTRL_HWTR_1, heart_irq_map); set_bit(HEART_L2_INT_RESCHED_CPU_0, heart_irq_map); set_bit(HEART_L2_INT_RESCHED_CPU_1, heart_irq_map); set_bit(HEART_L2_INT_CALL_CPU_0, heart_irq_map); set_bit(HEART_L2_INT_CALL_CPU_1, heart_irq_map); set_bit(HEART_L3_INT_TIMER, heart_irq_map); /* Reserve the error interrupts (#51 to #63). */ for (i = HEART_L4_INT_XWID_ERR_9; i <= HEART_L4_INT_HEART_EXCP; i++) set_bit(i, heart_irq_map); fn = irq_domain_alloc_named_fwnode("HEART"); WARN_ON(fn == NULL); if (!fn) return; domain = irq_domain_create_linear(fn, HEART_NUM_IRQS, &heart_domain_ops, NULL); WARN_ON(domain == NULL); if (!domain) return; irq_set_default_host(domain); irq_set_percpu_devid(IP30_HEART_L0_IRQ); irq_set_chained_handler_and_data(IP30_HEART_L0_IRQ, ip30_normal_irq, domain); irq_set_percpu_devid(IP30_HEART_L1_IRQ); irq_set_chained_handler_and_data(IP30_HEART_L1_IRQ, ip30_normal_irq, domain); irq_set_percpu_devid(IP30_HEART_L2_IRQ); irq_set_chained_handler_and_data(IP30_HEART_L2_IRQ, ip30_normal_irq, domain); irq_set_percpu_devid(IP30_HEART_ERR_IRQ); irq_set_chained_handler_and_data(IP30_HEART_ERR_IRQ, ip30_error_irq, domain); }