/* SPDX-License-Identifier: GPL-2.0-only */ /* * Based on arch/arm/include/asm/mmu_context.h * * Copyright (C) 1996 Russell King. * Copyright (C) 2012 ARM Ltd. */ #ifndef __ASM_MMU_CONTEXT_H #define __ASM_MMU_CONTEXT_H #ifndef __ASSEMBLY__ #include <linux/compiler.h> #include <linux/sched.h> #include <linux/sched/hotplug.h> #include <linux/mm_types.h> #include <linux/pgtable.h> #include <asm/cacheflush.h> #include <asm/cpufeature.h> #include <asm/daifflags.h> #include <asm/proc-fns.h> #include <asm-generic/mm_hooks.h> #include <asm/cputype.h> #include <asm/sysreg.h> #include <asm/tlbflush.h> extern bool rodata_full; static inline void contextidr_thread_switch(struct task_struct *next) { if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR)) return; write_sysreg(task_pid_nr(next), contextidr_el1); isb(); } /* * Set TTBR0 to reserved_pg_dir. No translations will be possible via TTBR0. */ static inline void cpu_set_reserved_ttbr0_nosync(void) { unsigned long ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); write_sysreg(ttbr, ttbr0_el1); } static inline void cpu_set_reserved_ttbr0(void) { cpu_set_reserved_ttbr0_nosync(); isb(); } void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm); static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm) { BUG_ON(pgd == swapper_pg_dir); cpu_do_switch_mm(virt_to_phys(pgd),mm); } /* * TCR.T0SZ value to use when the ID map is active. Usually equals * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in * physical memory, in which case it will be smaller. */ extern int idmap_t0sz; /* * Ensure TCR.T0SZ is set to the provided value. */ static inline void __cpu_set_tcr_t0sz(unsigned long t0sz) { unsigned long tcr = read_sysreg(tcr_el1); if ((tcr & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET == t0sz) return; tcr &= ~TCR_T0SZ_MASK; tcr |= t0sz << TCR_T0SZ_OFFSET; write_sysreg(tcr, tcr_el1); isb(); } #define cpu_set_default_tcr_t0sz() __cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual)) #define cpu_set_idmap_tcr_t0sz() __cpu_set_tcr_t0sz(idmap_t0sz) /* * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm. * * The idmap lives in the same VA range as userspace, but uses global entries * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from * speculative TLB fetches, we must temporarily install the reserved page * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ. * * If current is a not a user task, the mm covers the TTBR1_EL1 page tables, * which should not be installed in TTBR0_EL1. In this case we can leave the * reserved page tables in place. */ static inline void cpu_uninstall_idmap(void) { struct mm_struct *mm = current->active_mm; cpu_set_reserved_ttbr0(); local_flush_tlb_all(); cpu_set_default_tcr_t0sz(); if (mm != &init_mm && !system_uses_ttbr0_pan()) cpu_switch_mm(mm->pgd, mm); } static inline void __cpu_install_idmap(pgd_t *idmap) { cpu_set_reserved_ttbr0(); local_flush_tlb_all(); cpu_set_idmap_tcr_t0sz(); cpu_switch_mm(lm_alias(idmap), &init_mm); } static inline void cpu_install_idmap(void) { __cpu_install_idmap(idmap_pg_dir); } /* * Load our new page tables. A strict BBM approach requires that we ensure that * TLBs are free of any entries that may overlap with the global mappings we are * about to install. * * For a real hibernate/resume/kexec cycle TTBR0 currently points to a zero * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI runtime * services), while for a userspace-driven test_resume cycle it points to * userspace page tables (and we must point it at a zero page ourselves). * * We change T0SZ as part of installing the idmap. This is undone by * cpu_uninstall_idmap() in __cpu_suspend_exit(). */ static inline void cpu_install_ttbr0(phys_addr_t ttbr0, unsigned long t0sz) { cpu_set_reserved_ttbr0(); local_flush_tlb_all(); __cpu_set_tcr_t0sz(t0sz); /* avoid cpu_switch_mm() and its SW-PAN and CNP interactions */ write_sysreg(ttbr0, ttbr0_el1); isb(); } /* * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD, * avoiding the possibility of conflicting TLB entries being allocated. */ static inline void cpu_replace_ttbr1(pgd_t *pgdp, pgd_t *idmap) { typedef void (ttbr_replace_func)(phys_addr_t); extern ttbr_replace_func idmap_cpu_replace_ttbr1; ttbr_replace_func *replace_phys; unsigned long daif; /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */ phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp)); if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) { /* * cpu_replace_ttbr1() is used when there's a boot CPU * up (i.e. cpufeature framework is not up yet) and * latter only when we enable CNP via cpufeature's * enable() callback. * Also we rely on the system_cpucaps bit being set before * calling the enable() function. */ ttbr1 |= TTBR_CNP_BIT; } replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1); __cpu_install_idmap(idmap); /* * We really don't want to take *any* exceptions while TTBR1 is * in the process of being replaced so mask everything. */ daif = local_daif_save(); replace_phys(ttbr1); local_daif_restore(daif); cpu_uninstall_idmap(); } /* * It would be nice to return ASIDs back to the allocator, but unfortunately * that introduces a race with a generation rollover where we could erroneously * free an ASID allocated in a future generation. We could workaround this by * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap), * but we'd then need to make sure that we didn't dirty any TLBs afterwards. * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you * take CPU migration into account. */ void check_and_switch_context(struct mm_struct *mm); #define init_new_context(tsk, mm) init_new_context(tsk, mm) static inline int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { atomic64_set(&mm->context.id, 0); refcount_set(&mm->context.pinned, 0); return 0; } #ifdef CONFIG_ARM64_SW_TTBR0_PAN static inline void update_saved_ttbr0(struct task_struct *tsk, struct mm_struct *mm) { u64 ttbr; if (!system_uses_ttbr0_pan()) return; if (mm == &init_mm) ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); else ttbr = phys_to_ttbr(virt_to_phys(mm->pgd)) | ASID(mm) << 48; WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr); } #else static inline void update_saved_ttbr0(struct task_struct *tsk, struct mm_struct *mm) { } #endif #define enter_lazy_tlb enter_lazy_tlb static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) { /* * We don't actually care about the ttbr0 mapping, so point it at the * zero page. */ update_saved_ttbr0(tsk, &init_mm); } static inline void __switch_mm(struct mm_struct *next) { /* * init_mm.pgd does not contain any user mappings and it is always * active for kernel addresses in TTBR1. Just set the reserved TTBR0. */ if (next == &init_mm) { cpu_set_reserved_ttbr0(); return; } check_and_switch_context(next); } static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, struct task_struct *tsk) { if (prev != next) __switch_mm(next); /* * Update the saved TTBR0_EL1 of the scheduled-in task as the previous * value may have not been initialised yet (activate_mm caller) or the * ASID has changed since the last run (following the context switch * of another thread of the same process). */ update_saved_ttbr0(tsk, next); } static inline const struct cpumask * task_cpu_possible_mask(struct task_struct *p) { if (!static_branch_unlikely(&arm64_mismatched_32bit_el0)) return cpu_possible_mask; if (!is_compat_thread(task_thread_info(p))) return cpu_possible_mask; return system_32bit_el0_cpumask(); } #define task_cpu_possible_mask task_cpu_possible_mask void verify_cpu_asid_bits(void); void post_ttbr_update_workaround(void); unsigned long arm64_mm_context_get(struct mm_struct *mm); void arm64_mm_context_put(struct mm_struct *mm); #define mm_untag_mask mm_untag_mask static inline unsigned long mm_untag_mask(struct mm_struct *mm) { return -1UL >> 8; } #include <asm-generic/mmu_context.h> #endif /* !__ASSEMBLY__ */ #endif /* !__ASM_MMU_CONTEXT_H */