/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * Copyright 2016-17 IBM Corp. */ #ifndef _VAS_H #define _VAS_H #include <linux/atomic.h> #include <linux/idr.h> #include <asm/vas.h> #include <linux/io.h> #include <linux/dcache.h> #include <linux/mutex.h> #include <linux/stringify.h> /* * Overview of Virtual Accelerator Switchboard (VAS). * * VAS is a hardware "switchboard" that allows senders and receivers to * exchange messages with _minimal_ kernel involvment. The receivers are * typically NX coprocessor engines that perform compression or encryption * in hardware, but receivers can also be other software threads. * * Senders are user/kernel threads that submit compression/encryption or * other requests to the receivers. Senders must format their messages as * Coprocessor Request Blocks (CRB)s and submit them using the "copy" and * "paste" instructions which were introduced in Power9. * * A Power node can have (upto?) 8 Power chips. There is one instance of * VAS in each Power9 chip. Each instance of VAS has 64K windows or ports, * Senders and receivers must each connect to a separate window before they * can exchange messages through the switchboard. * * Each window is described by two types of window contexts: * * Hypervisor Window Context (HVWC) of size VAS_HVWC_SIZE bytes * * OS/User Window Context (UWC) of size VAS_UWC_SIZE bytes. * * A window context can be viewed as a set of 64-bit registers. The settings * in these registers configure/control/determine the behavior of the VAS * hardware when messages are sent/received through the window. The registers * in the HVWC are configured by the kernel while the registers in the UWC can * be configured by the kernel or by the user space application that is using * the window. * * The HVWCs for all windows on a specific instance of VAS are in a contiguous * range of hardware addresses or Base address region (BAR) referred to as the * HVWC BAR for the instance. Similarly the UWCs for all windows on an instance * are referred to as the UWC BAR for the instance. * * The two BARs for each instance are defined Power9 MMIO Ranges spreadsheet * and available to the kernel in the VAS node's "reg" property in the device * tree: * * /proc/device-tree/vasm@.../reg * * (see vas_probe() for details on the reg property). * * The kernel maps the HVWC and UWC BAR regions into the kernel address * space (hvwc_map and uwc_map). The kernel can then access the window * contexts of a specific window using: * * hvwc = hvwc_map + winid * VAS_HVWC_SIZE. * uwc = uwc_map + winid * VAS_UWC_SIZE. * * where winid is the window index (0..64K). * * As mentioned, a window context is used to "configure" a window. Besides * this configuration address, each _send_ window also has a unique hardware * "paste" address that is used to submit requests/CRBs (see vas_paste_crb()). * * The hardware paste address for a window is computed using the "paste * base address" and "paste win id shift" reg properties in the VAS device * tree node using: * * paste_addr = paste_base + ((winid << paste_win_id_shift)) * * (again, see vas_probe() for ->paste_base_addr and ->paste_win_id_shift). * * The kernel maps this hardware address into the sender's address space * after which they can use the 'paste' instruction (new in Power9) to * send a message (submit a request aka CRB) to the coprocessor. * * NOTE: In the initial version, senders can only in-kernel drivers/threads. * Support for user space threads will be added in follow-on patches. * * TODO: Do we need to map the UWC into user address space so they can return * credits? Its NA for NX but may be needed for other receive windows. * */ #define VAS_WINDOWS_PER_CHIP (64 << 10) /* * Hypervisor and OS/USer Window Context sizes */ #define VAS_HVWC_SIZE 512 #define VAS_UWC_SIZE PAGE_SIZE /* * Initial per-process credits. * Max send window credits: 4K-1 (12-bits in VAS_TX_WCRED) * * TODO: Needs tuning for per-process credits */ #define VAS_TX_WCREDS_MAX ((4 << 10) - 1) #define VAS_WCREDS_DEFAULT (1 << 10) /* * VAS Window Context Register Offsets and bitmasks. * See Section 3.1.4 of VAS Work book */ #define VAS_LPID_OFFSET 0x010 #define VAS_LPID PPC_BITMASK(0, 11) #define VAS_PID_OFFSET 0x018 #define VAS_PID_ID PPC_BITMASK(0, 19) #define VAS_XLATE_MSR_OFFSET 0x020 #define VAS_XLATE_MSR_DR PPC_BIT(0) #define VAS_XLATE_MSR_TA PPC_BIT(1) #define VAS_XLATE_MSR_PR PPC_BIT(2) #define VAS_XLATE_MSR_US PPC_BIT(3) #define VAS_XLATE_MSR_HV PPC_BIT(4) #define VAS_XLATE_MSR_SF PPC_BIT(5) #define VAS_XLATE_LPCR_OFFSET 0x028 #define VAS_XLATE_LPCR_PAGE_SIZE PPC_BITMASK(0, 2) #define VAS_XLATE_LPCR_ISL PPC_BIT(3) #define VAS_XLATE_LPCR_TC PPC_BIT(4) #define VAS_XLATE_LPCR_SC PPC_BIT(5) #define VAS_XLATE_CTL_OFFSET 0x030 #define VAS_XLATE_MODE PPC_BITMASK(0, 1) #define VAS_AMR_OFFSET 0x040 #define VAS_AMR PPC_BITMASK(0, 63) #define VAS_SEIDR_OFFSET 0x048 #define VAS_SEIDR PPC_BITMASK(0, 63) #define VAS_FAULT_TX_WIN_OFFSET 0x050 #define VAS_FAULT_TX_WIN PPC_BITMASK(48, 63) #define VAS_OSU_INTR_SRC_RA_OFFSET 0x060 #define VAS_OSU_INTR_SRC_RA PPC_BITMASK(8, 63) #define VAS_HV_INTR_SRC_RA_OFFSET 0x070 #define VAS_HV_INTR_SRC_RA PPC_BITMASK(8, 63) #define VAS_PSWID_OFFSET 0x078 #define VAS_PSWID_EA_HANDLE PPC_BITMASK(0, 31) #define VAS_SPARE1_OFFSET 0x080 #define VAS_SPARE2_OFFSET 0x088 #define VAS_SPARE3_OFFSET 0x090 #define VAS_SPARE4_OFFSET 0x130 #define VAS_SPARE5_OFFSET 0x160 #define VAS_SPARE6_OFFSET 0x188 #define VAS_LFIFO_BAR_OFFSET 0x0A0 #define VAS_LFIFO_BAR PPC_BITMASK(8, 53) #define VAS_PAGE_MIGRATION_SELECT PPC_BITMASK(54, 56) #define VAS_LDATA_STAMP_CTL_OFFSET 0x0A8 #define VAS_LDATA_STAMP PPC_BITMASK(0, 1) #define VAS_XTRA_WRITE PPC_BIT(2) #define VAS_LDMA_CACHE_CTL_OFFSET 0x0B0 #define VAS_LDMA_TYPE PPC_BITMASK(0, 1) #define VAS_LDMA_FIFO_DISABLE PPC_BIT(2) #define VAS_LRFIFO_PUSH_OFFSET 0x0B8 #define VAS_LRFIFO_PUSH PPC_BITMASK(0, 15) #define VAS_CURR_MSG_COUNT_OFFSET 0x0C0 #define VAS_CURR_MSG_COUNT PPC_BITMASK(0, 7) #define VAS_LNOTIFY_AFTER_COUNT_OFFSET 0x0C8 #define VAS_LNOTIFY_AFTER_COUNT PPC_BITMASK(0, 7) #define VAS_LRX_WCRED_OFFSET 0x0E0 #define VAS_LRX_WCRED PPC_BITMASK(0, 15) #define VAS_LRX_WCRED_ADDER_OFFSET 0x190 #define VAS_LRX_WCRED_ADDER PPC_BITMASK(0, 15) #define VAS_TX_WCRED_OFFSET 0x0F0 #define VAS_TX_WCRED PPC_BITMASK(4, 15) #define VAS_TX_WCRED_ADDER_OFFSET 0x1A0 #define VAS_TX_WCRED_ADDER PPC_BITMASK(4, 15) #define VAS_LFIFO_SIZE_OFFSET 0x100 #define VAS_LFIFO_SIZE PPC_BITMASK(0, 3) #define VAS_WINCTL_OFFSET 0x108 #define VAS_WINCTL_OPEN PPC_BIT(0) #define VAS_WINCTL_REJ_NO_CREDIT PPC_BIT(1) #define VAS_WINCTL_PIN PPC_BIT(2) #define VAS_WINCTL_TX_WCRED_MODE PPC_BIT(3) #define VAS_WINCTL_RX_WCRED_MODE PPC_BIT(4) #define VAS_WINCTL_TX_WORD_MODE PPC_BIT(5) #define VAS_WINCTL_RX_WORD_MODE PPC_BIT(6) #define VAS_WINCTL_RSVD_TXBUF PPC_BIT(7) #define VAS_WINCTL_THRESH_CTL PPC_BITMASK(8, 9) #define VAS_WINCTL_FAULT_WIN PPC_BIT(10) #define VAS_WINCTL_NX_WIN PPC_BIT(11) #define VAS_WIN_STATUS_OFFSET 0x110 #define VAS_WIN_BUSY PPC_BIT(1) #define VAS_WIN_CTX_CACHING_CTL_OFFSET 0x118 #define VAS_CASTOUT_REQ PPC_BIT(0) #define VAS_PUSH_TO_MEM PPC_BIT(1) #define VAS_WIN_CACHE_STATUS PPC_BIT(4) #define VAS_TX_RSVD_BUF_COUNT_OFFSET 0x120 #define VAS_RXVD_BUF_COUNT PPC_BITMASK(58, 63) #define VAS_LRFIFO_WIN_PTR_OFFSET 0x128 #define VAS_LRX_WIN_ID PPC_BITMASK(0, 15) /* * Local Notification Control Register controls what happens in _response_ * to a paste command and hence applies only to receive windows. */ #define VAS_LNOTIFY_CTL_OFFSET 0x138 #define VAS_NOTIFY_DISABLE PPC_BIT(0) #define VAS_INTR_DISABLE PPC_BIT(1) #define VAS_NOTIFY_EARLY PPC_BIT(2) #define VAS_NOTIFY_OSU_INTR PPC_BIT(3) #define VAS_LNOTIFY_PID_OFFSET 0x140 #define VAS_LNOTIFY_PID PPC_BITMASK(0, 19) #define VAS_LNOTIFY_LPID_OFFSET 0x148 #define VAS_LNOTIFY_LPID PPC_BITMASK(0, 11) #define VAS_LNOTIFY_TID_OFFSET 0x150 #define VAS_LNOTIFY_TID PPC_BITMASK(0, 15) #define VAS_LNOTIFY_SCOPE_OFFSET 0x158 #define VAS_LNOTIFY_MIN_SCOPE PPC_BITMASK(0, 1) #define VAS_LNOTIFY_MAX_SCOPE PPC_BITMASK(2, 3) #define VAS_NX_UTIL_OFFSET 0x1B0 #define VAS_NX_UTIL PPC_BITMASK(0, 63) /* SE: Side effects */ #define VAS_NX_UTIL_SE_OFFSET 0x1B8 #define VAS_NX_UTIL_SE PPC_BITMASK(0, 63) #define VAS_NX_UTIL_ADDER_OFFSET 0x180 #define VAS_NX_UTIL_ADDER PPC_BITMASK(32, 63) /* * VREG(x): * Expand a register's short name (eg: LPID) into two parameters: * - the register's short name in string form ("LPID"), and * - the name of the macro (eg: VAS_LPID_OFFSET), defining the * register's offset in the window context */ #define VREG_SFX(n, s) __stringify(n), VAS_##n##s #define VREG(r) VREG_SFX(r, _OFFSET) /* * Local Notify Scope Control Register. (Receive windows only). */ enum vas_notify_scope { VAS_SCOPE_LOCAL, VAS_SCOPE_GROUP, VAS_SCOPE_VECTORED_GROUP, VAS_SCOPE_UNUSED, }; /* * Local DMA Cache Control Register (Receive windows only). */ enum vas_dma_type { VAS_DMA_TYPE_INJECT, VAS_DMA_TYPE_WRITE, }; /* * Local Notify Scope Control Register. (Receive windows only). * Not applicable to NX receive windows. */ enum vas_notify_after_count { VAS_NOTIFY_AFTER_256 = 0, VAS_NOTIFY_NONE, VAS_NOTIFY_AFTER_2 }; /* * NX can generate an interrupt for multiple faults and expects kernel * to process all of them. So read all valid CRB entries until find the * invalid one. So use pswid which is pasted by NX and ccw[0] (reserved * bit in BE) to check valid CRB. CCW[0] will not be touched by user * space. Application gets CRB formt error if it updates this bit. * * Invalidate FIFO during allocation and process all entries from last * successful read until finds invalid pswid and ccw[0] values. * After reading each CRB entry from fault FIFO, the kernel invalidate * it by updating pswid with FIFO_INVALID_ENTRY and CCW[0] with * CCW0_INVALID. */ #define FIFO_INVALID_ENTRY 0xffffffff #define CCW0_INVALID 1 /* * One per instance of VAS. Each instance will have a separate set of * receive windows, one per coprocessor type. * * See also function header of set_vinst_win() for details on ->windows[] * and ->rxwin[] tables. */ struct vas_instance { int vas_id; struct ida ida; struct list_head node; struct platform_device *pdev; u64 hvwc_bar_start; u64 uwc_bar_start; u64 paste_base_addr; u64 paste_win_id_shift; u64 irq_port; int virq; int fault_crbs; int fault_fifo_size; int fifo_in_progress; /* To wake up thread or return IRQ_HANDLED */ spinlock_t fault_lock; /* Protects fifo_in_progress update */ void *fault_fifo; struct pnv_vas_window *fault_win; /* Fault window */ struct mutex mutex; struct pnv_vas_window *rxwin[VAS_COP_TYPE_MAX]; struct pnv_vas_window *windows[VAS_WINDOWS_PER_CHIP]; char *name; char *dbgname; struct dentry *dbgdir; }; /* * In-kernel state a VAS window on PowerNV. One per window. */ struct pnv_vas_window { struct vas_window vas_win; /* Fields common to send and receive windows */ struct vas_instance *vinst; bool tx_win; /* True if send window */ bool nx_win; /* True if NX window */ bool user_win; /* True if user space window */ void *hvwc_map; /* HV window context */ void *uwc_map; /* OS/User window context */ /* Fields applicable only to send windows */ void *paste_kaddr; char *paste_addr_name; struct pnv_vas_window *rxwin; /* Fields applicable only to receive windows */ atomic_t num_txwins; }; /* * Container for the hardware state of a window. One per-window. * * A VAS Window context is a 512-byte area in the hardware that contains * a set of 64-bit registers. Individual bit-fields in these registers * determine the configuration/operation of the hardware. struct vas_winctx * is a container for the register fields in the window context. */ struct vas_winctx { u64 rx_fifo; int rx_fifo_size; int wcreds_max; int rsvd_txbuf_count; bool user_win; bool nx_win; bool fault_win; bool rsvd_txbuf_enable; bool pin_win; bool rej_no_credit; bool tx_wcred_mode; bool rx_wcred_mode; bool tx_word_mode; bool rx_word_mode; bool data_stamp; bool xtra_write; bool notify_disable; bool intr_disable; bool fifo_disable; bool notify_early; bool notify_os_intr_reg; int lpid; int pidr; /* value from SPRN_PID, not linux pid */ int lnotify_lpid; int lnotify_pid; int lnotify_tid; u32 pswid; int rx_win_id; int fault_win_id; int tc_mode; u64 irq_port; enum vas_dma_type dma_type; enum vas_notify_scope min_scope; enum vas_notify_scope max_scope; enum vas_notify_after_count notify_after_count; }; extern struct mutex vas_mutex; extern struct vas_instance *find_vas_instance(int vasid); extern void vas_init_dbgdir(void); extern void vas_instance_init_dbgdir(struct vas_instance *vinst); extern void vas_window_init_dbgdir(struct pnv_vas_window *win); extern void vas_window_free_dbgdir(struct pnv_vas_window *win); extern int vas_setup_fault_window(struct vas_instance *vinst); extern irqreturn_t vas_fault_thread_fn(int irq, void *data); extern irqreturn_t vas_fault_handler(int irq, void *dev_id); extern void vas_return_credit(struct pnv_vas_window *window, bool tx); extern struct pnv_vas_window *vas_pswid_to_window(struct vas_instance *vinst, uint32_t pswid); extern void vas_win_paste_addr(struct pnv_vas_window *window, u64 *addr, int *len); static inline int vas_window_pid(struct vas_window *window) { return pid_vnr(window->task_ref.pid); } static inline void vas_log_write(struct pnv_vas_window *win, char *name, void *regptr, u64 val) { if (val) pr_debug("%swin #%d: %s reg %p, val 0x%016llx\n", win->tx_win ? "Tx" : "Rx", win->vas_win.winid, name, regptr, val); } static inline void write_uwc_reg(struct pnv_vas_window *win, char *name, s32 reg, u64 val) { void *regptr; regptr = win->uwc_map + reg; vas_log_write(win, name, regptr, val); out_be64(regptr, val); } static inline void write_hvwc_reg(struct pnv_vas_window *win, char *name, s32 reg, u64 val) { void *regptr; regptr = win->hvwc_map + reg; vas_log_write(win, name, regptr, val); out_be64(regptr, val); } static inline u64 read_hvwc_reg(struct pnv_vas_window *win, char *name __maybe_unused, s32 reg) { return in_be64(win->hvwc_map+reg); } /* * Encode/decode the Partition Send Window ID (PSWID) for a window in * a way that we can uniquely identify any window in the system. i.e. * we should be able to locate the 'struct vas_window' given the PSWID. * * Bits Usage * 0:7 VAS id (8 bits) * 8:15 Unused, 0 (3 bits) * 16:31 Window id (16 bits) */ static inline u32 encode_pswid(int vasid, int winid) { return ((u32)winid | (vasid << (31 - 7))); } static inline void decode_pswid(u32 pswid, int *vasid, int *winid) { if (vasid) *vasid = pswid >> (31 - 7) & 0xFF; if (winid) *winid = pswid & 0xFFFF; } #endif /* _VAS_H */