// SPDX-License-Identifier: GPL-2.0 /* * Arch specific cpu topology information * * Copyright (C) 2016, ARM Ltd. * Written by: Juri Lelli, ARM Ltd. */ #include <linux/acpi.h> #include <linux/cacheinfo.h> #include <linux/cpu.h> #include <linux/cpufreq.h> #include <linux/device.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/sched/topology.h> #include <linux/cpuset.h> #include <linux/cpumask.h> #include <linux/init.h> #include <linux/rcupdate.h> #include <linux/sched.h> #define CREATE_TRACE_POINTS #include <trace/events/thermal_pressure.h> static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); static struct cpumask scale_freq_counters_mask; static bool scale_freq_invariant; static DEFINE_PER_CPU(u32, freq_factor) = 1; static bool supports_scale_freq_counters(const struct cpumask *cpus) { return cpumask_subset(cpus, &scale_freq_counters_mask); } bool topology_scale_freq_invariant(void) { return cpufreq_supports_freq_invariance() || supports_scale_freq_counters(cpu_online_mask); } static void update_scale_freq_invariant(bool status) { if (scale_freq_invariant == status) return; /* * Task scheduler behavior depends on frequency invariance support, * either cpufreq or counter driven. If the support status changes as * a result of counter initialisation and use, retrigger the build of * scheduling domains to ensure the information is propagated properly. */ if (topology_scale_freq_invariant() == status) { scale_freq_invariant = status; rebuild_sched_domains_energy(); } } void topology_set_scale_freq_source(struct scale_freq_data *data, const struct cpumask *cpus) { struct scale_freq_data *sfd; int cpu; /* * Avoid calling rebuild_sched_domains() unnecessarily if FIE is * supported by cpufreq. */ if (cpumask_empty(&scale_freq_counters_mask)) scale_freq_invariant = topology_scale_freq_invariant(); rcu_read_lock(); for_each_cpu(cpu, cpus) { sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); /* Use ARCH provided counters whenever possible */ if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { rcu_assign_pointer(per_cpu(sft_data, cpu), data); cpumask_set_cpu(cpu, &scale_freq_counters_mask); } } rcu_read_unlock(); update_scale_freq_invariant(true); } EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); void topology_clear_scale_freq_source(enum scale_freq_source source, const struct cpumask *cpus) { struct scale_freq_data *sfd; int cpu; rcu_read_lock(); for_each_cpu(cpu, cpus) { sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); if (sfd && sfd->source == source) { rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); cpumask_clear_cpu(cpu, &scale_freq_counters_mask); } } rcu_read_unlock(); /* * Make sure all references to previous sft_data are dropped to avoid * use-after-free races. */ synchronize_rcu(); update_scale_freq_invariant(false); } EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); void topology_scale_freq_tick(void) { struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); if (sfd) sfd->set_freq_scale(); } DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, unsigned long max_freq) { unsigned long scale; int i; if (WARN_ON_ONCE(!cur_freq || !max_freq)) return; /* * If the use of counters for FIE is enabled, just return as we don't * want to update the scale factor with information from CPUFREQ. * Instead the scale factor will be updated from arch_scale_freq_tick. */ if (supports_scale_freq_counters(cpus)) return; scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; for_each_cpu(i, cpus) per_cpu(arch_freq_scale, i) = scale; } DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) { per_cpu(cpu_scale, cpu) = capacity; } DEFINE_PER_CPU(unsigned long, thermal_pressure); /** * topology_update_thermal_pressure() - Update thermal pressure for CPUs * @cpus : The related CPUs for which capacity has been reduced * @capped_freq : The maximum allowed frequency that CPUs can run at * * Update the value of thermal pressure for all @cpus in the mask. The * cpumask should include all (online+offline) affected CPUs, to avoid * operating on stale data when hot-plug is used for some CPUs. The * @capped_freq reflects the currently allowed max CPUs frequency due to * thermal capping. It might be also a boost frequency value, which is bigger * than the internal 'freq_factor' max frequency. In such case the pressure * value should simply be removed, since this is an indication that there is * no thermal throttling. The @capped_freq must be provided in kHz. */ void topology_update_thermal_pressure(const struct cpumask *cpus, unsigned long capped_freq) { unsigned long max_capacity, capacity, th_pressure; u32 max_freq; int cpu; cpu = cpumask_first(cpus); max_capacity = arch_scale_cpu_capacity(cpu); max_freq = per_cpu(freq_factor, cpu); /* Convert to MHz scale which is used in 'freq_factor' */ capped_freq /= 1000; /* * Handle properly the boost frequencies, which should simply clean * the thermal pressure value. */ if (max_freq <= capped_freq) capacity = max_capacity; else capacity = mult_frac(max_capacity, capped_freq, max_freq); th_pressure = max_capacity - capacity; trace_thermal_pressure_update(cpu, th_pressure); for_each_cpu(cpu, cpus) WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); } EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); static ssize_t cpu_capacity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct cpu *cpu = container_of(dev, struct cpu, dev); return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); } static void update_topology_flags_workfn(struct work_struct *work); static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); static DEVICE_ATTR_RO(cpu_capacity); static int register_cpu_capacity_sysctl(void) { int i; struct device *cpu; for_each_possible_cpu(i) { cpu = get_cpu_device(i); if (!cpu) { pr_err("%s: too early to get CPU%d device!\n", __func__, i); continue; } device_create_file(cpu, &dev_attr_cpu_capacity); } return 0; } subsys_initcall(register_cpu_capacity_sysctl); static int update_topology; int topology_update_cpu_topology(void) { return update_topology; } /* * Updating the sched_domains can't be done directly from cpufreq callbacks * due to locking, so queue the work for later. */ static void update_topology_flags_workfn(struct work_struct *work) { update_topology = 1; rebuild_sched_domains(); pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); update_topology = 0; } static u32 *raw_capacity; static int free_raw_capacity(void) { kfree(raw_capacity); raw_capacity = NULL; return 0; } void topology_normalize_cpu_scale(void) { u64 capacity; u64 capacity_scale; int cpu; if (!raw_capacity) return; capacity_scale = 1; for_each_possible_cpu(cpu) { capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); capacity_scale = max(capacity, capacity_scale); } pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); for_each_possible_cpu(cpu) { capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, capacity_scale); topology_set_cpu_scale(cpu, capacity); pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", cpu, topology_get_cpu_scale(cpu)); } } bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) { struct clk *cpu_clk; static bool cap_parsing_failed; int ret; u32 cpu_capacity; if (cap_parsing_failed) return false; ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", &cpu_capacity); if (!ret) { if (!raw_capacity) { raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), GFP_KERNEL); if (!raw_capacity) { cap_parsing_failed = true; return false; } } raw_capacity[cpu] = cpu_capacity; pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", cpu_node, raw_capacity[cpu]); /* * Update freq_factor for calculating early boot cpu capacities. * For non-clk CPU DVFS mechanism, there's no way to get the * frequency value now, assuming they are running at the same * frequency (by keeping the initial freq_factor value). */ cpu_clk = of_clk_get(cpu_node, 0); if (!PTR_ERR_OR_ZERO(cpu_clk)) { per_cpu(freq_factor, cpu) = clk_get_rate(cpu_clk) / 1000; clk_put(cpu_clk); } } else { if (raw_capacity) { pr_err("cpu_capacity: missing %pOF raw capacity\n", cpu_node); pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); } cap_parsing_failed = true; free_raw_capacity(); } return !ret; } #ifdef CONFIG_ACPI_CPPC_LIB #include <acpi/cppc_acpi.h> void topology_init_cpu_capacity_cppc(void) { struct cppc_perf_caps perf_caps; int cpu; if (likely(!acpi_cpc_valid())) return; raw_capacity = kcalloc(num_possible_cpus(), sizeof(*raw_capacity), GFP_KERNEL); if (!raw_capacity) return; for_each_possible_cpu(cpu) { if (!cppc_get_perf_caps(cpu, &perf_caps) && (perf_caps.highest_perf >= perf_caps.nominal_perf) && (perf_caps.highest_perf >= perf_caps.lowest_perf)) { raw_capacity[cpu] = perf_caps.highest_perf; pr_debug("cpu_capacity: CPU%d cpu_capacity=%u (raw).\n", cpu, raw_capacity[cpu]); continue; } pr_err("cpu_capacity: CPU%d missing/invalid highest performance.\n", cpu); pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); goto exit; } topology_normalize_cpu_scale(); schedule_work(&update_topology_flags_work); pr_debug("cpu_capacity: cpu_capacity initialization done\n"); exit: free_raw_capacity(); } #endif #ifdef CONFIG_CPU_FREQ static cpumask_var_t cpus_to_visit; static void parsing_done_workfn(struct work_struct *work); static DECLARE_WORK(parsing_done_work, parsing_done_workfn); static int init_cpu_capacity_callback(struct notifier_block *nb, unsigned long val, void *data) { struct cpufreq_policy *policy = data; int cpu; if (!raw_capacity) return 0; if (val != CPUFREQ_CREATE_POLICY) return 0; pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", cpumask_pr_args(policy->related_cpus), cpumask_pr_args(cpus_to_visit)); cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); for_each_cpu(cpu, policy->related_cpus) per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; if (cpumask_empty(cpus_to_visit)) { topology_normalize_cpu_scale(); schedule_work(&update_topology_flags_work); free_raw_capacity(); pr_debug("cpu_capacity: parsing done\n"); schedule_work(&parsing_done_work); } return 0; } static struct notifier_block init_cpu_capacity_notifier = { .notifier_call = init_cpu_capacity_callback, }; static int __init register_cpufreq_notifier(void) { int ret; /* * On ACPI-based systems skip registering cpufreq notifier as cpufreq * information is not needed for cpu capacity initialization. */ if (!acpi_disabled || !raw_capacity) return -EINVAL; if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) return -ENOMEM; cpumask_copy(cpus_to_visit, cpu_possible_mask); ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, CPUFREQ_POLICY_NOTIFIER); if (ret) free_cpumask_var(cpus_to_visit); return ret; } core_initcall(register_cpufreq_notifier); static void parsing_done_workfn(struct work_struct *work) { cpufreq_unregister_notifier(&init_cpu_capacity_notifier, CPUFREQ_POLICY_NOTIFIER); free_cpumask_var(cpus_to_visit); } #else core_initcall(free_raw_capacity); #endif #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) /* * This function returns the logic cpu number of the node. * There are basically three kinds of return values: * (1) logic cpu number which is > 0. * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but * there is no possible logical CPU in the kernel to match. This happens * when CONFIG_NR_CPUS is configure to be smaller than the number of * CPU nodes in DT. We need to just ignore this case. * (3) -1 if the node does not exist in the device tree */ static int __init get_cpu_for_node(struct device_node *node) { struct device_node *cpu_node; int cpu; cpu_node = of_parse_phandle(node, "cpu", 0); if (!cpu_node) return -1; cpu = of_cpu_node_to_id(cpu_node); if (cpu >= 0) topology_parse_cpu_capacity(cpu_node, cpu); else pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", cpu_node, cpumask_pr_args(cpu_possible_mask)); of_node_put(cpu_node); return cpu; } static int __init parse_core(struct device_node *core, int package_id, int cluster_id, int core_id) { char name[20]; bool leaf = true; int i = 0; int cpu; struct device_node *t; do { snprintf(name, sizeof(name), "thread%d", i); t = of_get_child_by_name(core, name); if (t) { leaf = false; cpu = get_cpu_for_node(t); if (cpu >= 0) { cpu_topology[cpu].package_id = package_id; cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; cpu_topology[cpu].thread_id = i; } else if (cpu != -ENODEV) { pr_err("%pOF: Can't get CPU for thread\n", t); of_node_put(t); return -EINVAL; } of_node_put(t); } i++; } while (t); cpu = get_cpu_for_node(core); if (cpu >= 0) { if (!leaf) { pr_err("%pOF: Core has both threads and CPU\n", core); return -EINVAL; } cpu_topology[cpu].package_id = package_id; cpu_topology[cpu].cluster_id = cluster_id; cpu_topology[cpu].core_id = core_id; } else if (leaf && cpu != -ENODEV) { pr_err("%pOF: Can't get CPU for leaf core\n", core); return -EINVAL; } return 0; } static int __init parse_cluster(struct device_node *cluster, int package_id, int cluster_id, int depth) { char name[20]; bool leaf = true; bool has_cores = false; struct device_node *c; int core_id = 0; int i, ret; /* * First check for child clusters; we currently ignore any * information about the nesting of clusters and present the * scheduler with a flat list of them. */ i = 0; do { snprintf(name, sizeof(name), "cluster%d", i); c = of_get_child_by_name(cluster, name); if (c) { leaf = false; ret = parse_cluster(c, package_id, i, depth + 1); if (depth > 0) pr_warn("Topology for clusters of clusters not yet supported\n"); of_node_put(c); if (ret != 0) return ret; } i++; } while (c); /* Now check for cores */ i = 0; do { snprintf(name, sizeof(name), "core%d", i); c = of_get_child_by_name(cluster, name); if (c) { has_cores = true; if (depth == 0) { pr_err("%pOF: cpu-map children should be clusters\n", c); of_node_put(c); return -EINVAL; } if (leaf) { ret = parse_core(c, package_id, cluster_id, core_id++); } else { pr_err("%pOF: Non-leaf cluster with core %s\n", cluster, name); ret = -EINVAL; } of_node_put(c); if (ret != 0) return ret; } i++; } while (c); if (leaf && !has_cores) pr_warn("%pOF: empty cluster\n", cluster); return 0; } static int __init parse_socket(struct device_node *socket) { char name[20]; struct device_node *c; bool has_socket = false; int package_id = 0, ret; do { snprintf(name, sizeof(name), "socket%d", package_id); c = of_get_child_by_name(socket, name); if (c) { has_socket = true; ret = parse_cluster(c, package_id, -1, 0); of_node_put(c); if (ret != 0) return ret; } package_id++; } while (c); if (!has_socket) ret = parse_cluster(socket, 0, -1, 0); return ret; } static int __init parse_dt_topology(void) { struct device_node *cn, *map; int ret = 0; int cpu; cn = of_find_node_by_path("/cpus"); if (!cn) { pr_err("No CPU information found in DT\n"); return 0; } /* * When topology is provided cpu-map is essentially a root * cluster with restricted subnodes. */ map = of_get_child_by_name(cn, "cpu-map"); if (!map) goto out; ret = parse_socket(map); if (ret != 0) goto out_map; topology_normalize_cpu_scale(); /* * Check that all cores are in the topology; the SMP code will * only mark cores described in the DT as possible. */ for_each_possible_cpu(cpu) if (cpu_topology[cpu].package_id < 0) { ret = -EINVAL; break; } out_map: of_node_put(map); out: of_node_put(cn); return ret; } #endif /* * cpu topology table */ struct cpu_topology cpu_topology[NR_CPUS]; EXPORT_SYMBOL_GPL(cpu_topology); const struct cpumask *cpu_coregroup_mask(int cpu) { const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); /* Find the smaller of NUMA, core or LLC siblings */ if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { /* not numa in package, lets use the package siblings */ core_mask = &cpu_topology[cpu].core_sibling; } if (last_level_cache_is_valid(cpu)) { if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) core_mask = &cpu_topology[cpu].llc_sibling; } /* * For systems with no shared cpu-side LLC but with clusters defined, * extend core_mask to cluster_siblings. The sched domain builder will * then remove MC as redundant with CLS if SCHED_CLUSTER is enabled. */ if (IS_ENABLED(CONFIG_SCHED_CLUSTER) && cpumask_subset(core_mask, &cpu_topology[cpu].cluster_sibling)) core_mask = &cpu_topology[cpu].cluster_sibling; return core_mask; } const struct cpumask *cpu_clustergroup_mask(int cpu) { /* * Forbid cpu_clustergroup_mask() to span more or the same CPUs as * cpu_coregroup_mask(). */ if (cpumask_subset(cpu_coregroup_mask(cpu), &cpu_topology[cpu].cluster_sibling)) return topology_sibling_cpumask(cpu); return &cpu_topology[cpu].cluster_sibling; } void update_siblings_masks(unsigned int cpuid) { struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; int cpu, ret; ret = detect_cache_attributes(cpuid); if (ret && ret != -ENOENT) pr_info("Early cacheinfo allocation failed, ret = %d\n", ret); /* update core and thread sibling masks */ for_each_online_cpu(cpu) { cpu_topo = &cpu_topology[cpu]; if (last_level_cache_is_shared(cpu, cpuid)) { cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); } if (cpuid_topo->package_id != cpu_topo->package_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); if (cpuid_topo->cluster_id != cpu_topo->cluster_id) continue; if (cpuid_topo->cluster_id >= 0) { cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); } if (cpuid_topo->core_id != cpu_topo->core_id) continue; cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); } } static void clear_cpu_topology(int cpu) { struct cpu_topology *cpu_topo = &cpu_topology[cpu]; cpumask_clear(&cpu_topo->llc_sibling); cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); cpumask_clear(&cpu_topo->cluster_sibling); cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); cpumask_clear(&cpu_topo->core_sibling); cpumask_set_cpu(cpu, &cpu_topo->core_sibling); cpumask_clear(&cpu_topo->thread_sibling); cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); } void __init reset_cpu_topology(void) { unsigned int cpu; for_each_possible_cpu(cpu) { struct cpu_topology *cpu_topo = &cpu_topology[cpu]; cpu_topo->thread_id = -1; cpu_topo->core_id = -1; cpu_topo->cluster_id = -1; cpu_topo->package_id = -1; clear_cpu_topology(cpu); } } void remove_cpu_topology(unsigned int cpu) { int sibling; for_each_cpu(sibling, topology_core_cpumask(cpu)) cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); for_each_cpu(sibling, topology_sibling_cpumask(cpu)) cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); for_each_cpu(sibling, topology_cluster_cpumask(cpu)) cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); for_each_cpu(sibling, topology_llc_cpumask(cpu)) cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); clear_cpu_topology(cpu); } __weak int __init parse_acpi_topology(void) { return 0; } #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) void __init init_cpu_topology(void) { int cpu, ret; reset_cpu_topology(); ret = parse_acpi_topology(); if (!ret) ret = of_have_populated_dt() && parse_dt_topology(); if (ret) { /* * Discard anything that was parsed if we hit an error so we * don't use partial information. But do not return yet to give * arch-specific early cache level detection a chance to run. */ reset_cpu_topology(); } for_each_possible_cpu(cpu) { ret = fetch_cache_info(cpu); if (!ret) continue; else if (ret != -ENOENT) pr_err("Early cacheinfo failed, ret = %d\n", ret); return; } } void store_cpu_topology(unsigned int cpuid) { struct cpu_topology *cpuid_topo = &cpu_topology[cpuid]; if (cpuid_topo->package_id != -1) goto topology_populated; cpuid_topo->thread_id = -1; cpuid_topo->core_id = cpuid; cpuid_topo->package_id = cpu_to_node(cpuid); pr_debug("CPU%u: package %d core %d thread %d\n", cpuid, cpuid_topo->package_id, cpuid_topo->core_id, cpuid_topo->thread_id); topology_populated: update_siblings_masks(cpuid); } #endif