// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/plat-spear/time.c * * Copyright (C) 2010 ST Microelectronics * Shiraz Hashim<shiraz.linux.kernel@gmail.com> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/time.h> #include <linux/irq.h> #include <asm/mach/time.h> #include "generic.h" /* * We would use TIMER0 and TIMER1 as clockevent and clocksource. * Timer0 and Timer1 both belong to same gpt block in cpu subbsystem. Further * they share same functional clock. Any change in one's functional clock will * also affect other timer. */ #define CLKEVT 0 /* gpt0, channel0 as clockevent */ #define CLKSRC 1 /* gpt0, channel1 as clocksource */ /* Register offsets, x is channel number */ #define CR(x) ((x) * 0x80 + 0x80) #define IR(x) ((x) * 0x80 + 0x84) #define LOAD(x) ((x) * 0x80 + 0x88) #define COUNT(x) ((x) * 0x80 + 0x8C) /* Reg bit definitions */ #define CTRL_INT_ENABLE 0x0100 #define CTRL_ENABLE 0x0020 #define CTRL_ONE_SHOT 0x0010 #define CTRL_PRESCALER1 0x0 #define CTRL_PRESCALER2 0x1 #define CTRL_PRESCALER4 0x2 #define CTRL_PRESCALER8 0x3 #define CTRL_PRESCALER16 0x4 #define CTRL_PRESCALER32 0x5 #define CTRL_PRESCALER64 0x6 #define CTRL_PRESCALER128 0x7 #define CTRL_PRESCALER256 0x8 #define INT_STATUS 0x1 /* * Minimum clocksource/clockevent timer range in seconds */ #define SPEAR_MIN_RANGE 4 static __iomem void *gpt_base; static struct clk *gpt_clk; static int clockevent_next_event(unsigned long evt, struct clock_event_device *clk_event_dev); static void __init spear_clocksource_init(void) { u32 tick_rate; u16 val; /* program the prescaler (/256)*/ writew(CTRL_PRESCALER256, gpt_base + CR(CLKSRC)); /* find out actual clock driving Timer */ tick_rate = clk_get_rate(gpt_clk); tick_rate >>= CTRL_PRESCALER256; writew(0xFFFF, gpt_base + LOAD(CLKSRC)); val = readw(gpt_base + CR(CLKSRC)); val &= ~CTRL_ONE_SHOT; /* autoreload mode */ val |= CTRL_ENABLE ; writew(val, gpt_base + CR(CLKSRC)); /* register the clocksource */ clocksource_mmio_init(gpt_base + COUNT(CLKSRC), "tmr1", tick_rate, 200, 16, clocksource_mmio_readw_up); } static inline void spear_timer_shutdown(struct clock_event_device *evt) { u16 val = readw(gpt_base + CR(CLKEVT)); /* stop the timer */ val &= ~CTRL_ENABLE; writew(val, gpt_base + CR(CLKEVT)); } static int spear_shutdown(struct clock_event_device *evt) { spear_timer_shutdown(evt); return 0; } static int spear_set_oneshot(struct clock_event_device *evt) { u16 val; /* stop the timer */ spear_timer_shutdown(evt); val = readw(gpt_base + CR(CLKEVT)); val |= CTRL_ONE_SHOT; writew(val, gpt_base + CR(CLKEVT)); return 0; } static int spear_set_periodic(struct clock_event_device *evt) { u32 period; u16 val; /* stop the timer */ spear_timer_shutdown(evt); period = clk_get_rate(gpt_clk) / HZ; period >>= CTRL_PRESCALER16; writew(period, gpt_base + LOAD(CLKEVT)); val = readw(gpt_base + CR(CLKEVT)); val &= ~CTRL_ONE_SHOT; val |= CTRL_ENABLE | CTRL_INT_ENABLE; writew(val, gpt_base + CR(CLKEVT)); return 0; } static struct clock_event_device clkevt = { .name = "tmr0", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = spear_shutdown, .set_state_periodic = spear_set_periodic, .set_state_oneshot = spear_set_oneshot, .tick_resume = spear_shutdown, .set_next_event = clockevent_next_event, .shift = 0, /* to be computed */ }; static int clockevent_next_event(unsigned long cycles, struct clock_event_device *clk_event_dev) { u16 val = readw(gpt_base + CR(CLKEVT)); if (val & CTRL_ENABLE) writew(val & ~CTRL_ENABLE, gpt_base + CR(CLKEVT)); writew(cycles, gpt_base + LOAD(CLKEVT)); val |= CTRL_ENABLE | CTRL_INT_ENABLE; writew(val, gpt_base + CR(CLKEVT)); return 0; } static irqreturn_t spear_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &clkevt; writew(INT_STATUS, gpt_base + IR(CLKEVT)); evt->event_handler(evt); return IRQ_HANDLED; } static void __init spear_clockevent_init(int irq) { u32 tick_rate; /* program the prescaler */ writew(CTRL_PRESCALER16, gpt_base + CR(CLKEVT)); tick_rate = clk_get_rate(gpt_clk); tick_rate >>= CTRL_PRESCALER16; clkevt.cpumask = cpumask_of(0); clockevents_config_and_register(&clkevt, tick_rate, 3, 0xfff0); if (request_irq(irq, spear_timer_interrupt, IRQF_TIMER, "timer", NULL)) pr_err("Failed to request irq %d (timer)\n", irq); } static const struct of_device_id timer_of_match[] __initconst = { { .compatible = "st,spear-timer", }, { }, }; void __init spear_setup_of_timer(void) { struct device_node *np; int irq, ret; np = of_find_matching_node(NULL, timer_of_match); if (!np) { pr_err("%s: No timer passed via DT\n", __func__); return; } irq = irq_of_parse_and_map(np, 0); if (!irq) { pr_err("%s: No irq passed for timer via DT\n", __func__); goto err_put_np; } gpt_base = of_iomap(np, 0); if (!gpt_base) { pr_err("%s: of iomap failed\n", __func__); goto err_put_np; } gpt_clk = clk_get_sys("gpt0", NULL); if (IS_ERR(gpt_clk)) { pr_err("%s:couldn't get clk for gpt\n", __func__); goto err_iomap; } ret = clk_prepare_enable(gpt_clk); if (ret < 0) { pr_err("%s:couldn't prepare-enable gpt clock\n", __func__); goto err_prepare_enable_clk; } of_node_put(np); spear_clockevent_init(irq); spear_clocksource_init(); return; err_prepare_enable_clk: clk_put(gpt_clk); err_iomap: iounmap(gpt_base); err_put_np: of_node_put(np); }