// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, Linaro Limited */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/arm_ffa.h> #include <linux/errno.h> #include <linux/scatterlist.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/tee_drv.h> #include <linux/types.h> #include "optee_private.h" #include "optee_ffa.h" #include "optee_rpc_cmd.h" /* * This file implement the FF-A ABI used when communicating with secure world * OP-TEE OS via FF-A. * This file is divided into the following sections: * 1. Maintain a hash table for lookup of a global FF-A memory handle * 2. Convert between struct tee_param and struct optee_msg_param * 3. Low level support functions to register shared memory in secure world * 4. Dynamic shared memory pool based on alloc_pages() * 5. Do a normal scheduled call into secure world * 6. Driver initialization. */ /* * 1. Maintain a hash table for lookup of a global FF-A memory handle * * FF-A assigns a global memory handle for each piece shared memory. * This handle is then used when communicating with secure world. * * Main functions are optee_shm_add_ffa_handle() and optee_shm_rem_ffa_handle() */ struct shm_rhash { struct tee_shm *shm; u64 global_id; struct rhash_head linkage; }; static void rh_free_fn(void *ptr, void *arg) { kfree(ptr); } static const struct rhashtable_params shm_rhash_params = { .head_offset = offsetof(struct shm_rhash, linkage), .key_len = sizeof(u64), .key_offset = offsetof(struct shm_rhash, global_id), .automatic_shrinking = true, }; static struct tee_shm *optee_shm_from_ffa_handle(struct optee *optee, u64 global_id) { struct tee_shm *shm = NULL; struct shm_rhash *r; mutex_lock(&optee->ffa.mutex); r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id, shm_rhash_params); if (r) shm = r->shm; mutex_unlock(&optee->ffa.mutex); return shm; } static int optee_shm_add_ffa_handle(struct optee *optee, struct tee_shm *shm, u64 global_id) { struct shm_rhash *r; int rc; r = kmalloc(sizeof(*r), GFP_KERNEL); if (!r) return -ENOMEM; r->shm = shm; r->global_id = global_id; mutex_lock(&optee->ffa.mutex); rc = rhashtable_lookup_insert_fast(&optee->ffa.global_ids, &r->linkage, shm_rhash_params); mutex_unlock(&optee->ffa.mutex); if (rc) kfree(r); return rc; } static int optee_shm_rem_ffa_handle(struct optee *optee, u64 global_id) { struct shm_rhash *r; int rc = -ENOENT; mutex_lock(&optee->ffa.mutex); r = rhashtable_lookup_fast(&optee->ffa.global_ids, &global_id, shm_rhash_params); if (r) rc = rhashtable_remove_fast(&optee->ffa.global_ids, &r->linkage, shm_rhash_params); mutex_unlock(&optee->ffa.mutex); if (!rc) kfree(r); return rc; } /* * 2. Convert between struct tee_param and struct optee_msg_param * * optee_ffa_from_msg_param() and optee_ffa_to_msg_param() are the main * functions. */ static void from_msg_param_ffa_mem(struct optee *optee, struct tee_param *p, u32 attr, const struct optee_msg_param *mp) { struct tee_shm *shm = NULL; u64 offs_high = 0; u64 offs_low = 0; p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT + attr - OPTEE_MSG_ATTR_TYPE_FMEM_INPUT; p->u.memref.size = mp->u.fmem.size; if (mp->u.fmem.global_id != OPTEE_MSG_FMEM_INVALID_GLOBAL_ID) shm = optee_shm_from_ffa_handle(optee, mp->u.fmem.global_id); p->u.memref.shm = shm; if (shm) { offs_low = mp->u.fmem.offs_low; offs_high = mp->u.fmem.offs_high; } p->u.memref.shm_offs = offs_low | offs_high << 32; } /** * optee_ffa_from_msg_param() - convert from OPTEE_MSG parameters to * struct tee_param * @optee: main service struct * @params: subsystem internal parameter representation * @num_params: number of elements in the parameter arrays * @msg_params: OPTEE_MSG parameters * * Returns 0 on success or <0 on failure */ static int optee_ffa_from_msg_param(struct optee *optee, struct tee_param *params, size_t num_params, const struct optee_msg_param *msg_params) { size_t n; for (n = 0; n < num_params; n++) { struct tee_param *p = params + n; const struct optee_msg_param *mp = msg_params + n; u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK; switch (attr) { case OPTEE_MSG_ATTR_TYPE_NONE: p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; memset(&p->u, 0, sizeof(p->u)); break; case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT: case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT: case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT: optee_from_msg_param_value(p, attr, mp); break; case OPTEE_MSG_ATTR_TYPE_FMEM_INPUT: case OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT: case OPTEE_MSG_ATTR_TYPE_FMEM_INOUT: from_msg_param_ffa_mem(optee, p, attr, mp); break; default: return -EINVAL; } } return 0; } static int to_msg_param_ffa_mem(struct optee_msg_param *mp, const struct tee_param *p) { struct tee_shm *shm = p->u.memref.shm; mp->attr = OPTEE_MSG_ATTR_TYPE_FMEM_INPUT + p->attr - TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT; if (shm) { u64 shm_offs = p->u.memref.shm_offs; mp->u.fmem.internal_offs = shm->offset; mp->u.fmem.offs_low = shm_offs; mp->u.fmem.offs_high = shm_offs >> 32; /* Check that the entire offset could be stored. */ if (mp->u.fmem.offs_high != shm_offs >> 32) return -EINVAL; mp->u.fmem.global_id = shm->sec_world_id; } else { memset(&mp->u, 0, sizeof(mp->u)); mp->u.fmem.global_id = OPTEE_MSG_FMEM_INVALID_GLOBAL_ID; } mp->u.fmem.size = p->u.memref.size; return 0; } /** * optee_ffa_to_msg_param() - convert from struct tee_params to OPTEE_MSG * parameters * @optee: main service struct * @msg_params: OPTEE_MSG parameters * @num_params: number of elements in the parameter arrays * @params: subsystem itnernal parameter representation * Returns 0 on success or <0 on failure */ static int optee_ffa_to_msg_param(struct optee *optee, struct optee_msg_param *msg_params, size_t num_params, const struct tee_param *params) { size_t n; for (n = 0; n < num_params; n++) { const struct tee_param *p = params + n; struct optee_msg_param *mp = msg_params + n; switch (p->attr) { case TEE_IOCTL_PARAM_ATTR_TYPE_NONE: mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE; memset(&mp->u, 0, sizeof(mp->u)); break; case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT: optee_to_msg_param_value(mp, p); break; case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT: case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT: if (to_msg_param_ffa_mem(mp, p)) return -EINVAL; break; default: return -EINVAL; } } return 0; } /* * 3. Low level support functions to register shared memory in secure world * * Functions to register and unregister shared memory both for normal * clients and for tee-supplicant. */ static int optee_ffa_shm_register(struct tee_context *ctx, struct tee_shm *shm, struct page **pages, size_t num_pages, unsigned long start) { struct optee *optee = tee_get_drvdata(ctx->teedev); struct ffa_device *ffa_dev = optee->ffa.ffa_dev; const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; struct ffa_mem_region_attributes mem_attr = { .receiver = ffa_dev->vm_id, .attrs = FFA_MEM_RW, }; struct ffa_mem_ops_args args = { .use_txbuf = true, .attrs = &mem_attr, .nattrs = 1, }; struct sg_table sgt; int rc; rc = optee_check_mem_type(start, num_pages); if (rc) return rc; rc = sg_alloc_table_from_pages(&sgt, pages, num_pages, 0, num_pages * PAGE_SIZE, GFP_KERNEL); if (rc) return rc; args.sg = sgt.sgl; rc = mem_ops->memory_share(&args); sg_free_table(&sgt); if (rc) return rc; rc = optee_shm_add_ffa_handle(optee, shm, args.g_handle); if (rc) { mem_ops->memory_reclaim(args.g_handle, 0); return rc; } shm->sec_world_id = args.g_handle; return 0; } static int optee_ffa_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) { struct optee *optee = tee_get_drvdata(ctx->teedev); struct ffa_device *ffa_dev = optee->ffa.ffa_dev; const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; const struct ffa_mem_ops *mem_ops = ffa_dev->ops->mem_ops; u64 global_handle = shm->sec_world_id; struct ffa_send_direct_data data = { .data0 = OPTEE_FFA_UNREGISTER_SHM, .data1 = (u32)global_handle, .data2 = (u32)(global_handle >> 32) }; int rc; optee_shm_rem_ffa_handle(optee, global_handle); shm->sec_world_id = 0; rc = msg_ops->sync_send_receive(ffa_dev, &data); if (rc) pr_err("Unregister SHM id 0x%llx rc %d\n", global_handle, rc); rc = mem_ops->memory_reclaim(global_handle, 0); if (rc) pr_err("mem_reclaim: 0x%llx %d", global_handle, rc); return rc; } static int optee_ffa_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) { struct optee *optee = tee_get_drvdata(ctx->teedev); const struct ffa_mem_ops *mem_ops; u64 global_handle = shm->sec_world_id; int rc; /* * We're skipping the OPTEE_FFA_YIELDING_CALL_UNREGISTER_SHM call * since this is OP-TEE freeing via RPC so it has already retired * this ID. */ optee_shm_rem_ffa_handle(optee, global_handle); mem_ops = optee->ffa.ffa_dev->ops->mem_ops; rc = mem_ops->memory_reclaim(global_handle, 0); if (rc) pr_err("mem_reclaim: 0x%llx %d", global_handle, rc); shm->sec_world_id = 0; return rc; } /* * 4. Dynamic shared memory pool based on alloc_pages() * * Implements an OP-TEE specific shared memory pool. * The main function is optee_ffa_shm_pool_alloc_pages(). */ static int pool_ffa_op_alloc(struct tee_shm_pool *pool, struct tee_shm *shm, size_t size, size_t align) { return optee_pool_op_alloc_helper(pool, shm, size, align, optee_ffa_shm_register); } static void pool_ffa_op_free(struct tee_shm_pool *pool, struct tee_shm *shm) { optee_pool_op_free_helper(pool, shm, optee_ffa_shm_unregister); } static void pool_ffa_op_destroy_pool(struct tee_shm_pool *pool) { kfree(pool); } static const struct tee_shm_pool_ops pool_ffa_ops = { .alloc = pool_ffa_op_alloc, .free = pool_ffa_op_free, .destroy_pool = pool_ffa_op_destroy_pool, }; /** * optee_ffa_shm_pool_alloc_pages() - create page-based allocator pool * * This pool is used with OP-TEE over FF-A. In this case command buffers * and such are allocated from kernel's own memory. */ static struct tee_shm_pool *optee_ffa_shm_pool_alloc_pages(void) { struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL); if (!pool) return ERR_PTR(-ENOMEM); pool->ops = &pool_ffa_ops; return pool; } /* * 5. Do a normal scheduled call into secure world * * The function optee_ffa_do_call_with_arg() performs a normal scheduled * call into secure world. During this call may normal world request help * from normal world using RPCs, Remote Procedure Calls. This includes * delivery of non-secure interrupts to for instance allow rescheduling of * the current task. */ static void handle_ffa_rpc_func_cmd_shm_alloc(struct tee_context *ctx, struct optee *optee, struct optee_msg_arg *arg) { struct tee_shm *shm; if (arg->num_params != 1 || arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) { arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } switch (arg->params[0].u.value.a) { case OPTEE_RPC_SHM_TYPE_APPL: shm = optee_rpc_cmd_alloc_suppl(ctx, arg->params[0].u.value.b); break; case OPTEE_RPC_SHM_TYPE_KERNEL: shm = tee_shm_alloc_priv_buf(optee->ctx, arg->params[0].u.value.b); break; default: arg->ret = TEEC_ERROR_BAD_PARAMETERS; return; } if (IS_ERR(shm)) { arg->ret = TEEC_ERROR_OUT_OF_MEMORY; return; } arg->params[0] = (struct optee_msg_param){ .attr = OPTEE_MSG_ATTR_TYPE_FMEM_OUTPUT, .u.fmem.size = tee_shm_get_size(shm), .u.fmem.global_id = shm->sec_world_id, .u.fmem.internal_offs = shm->offset, }; arg->ret = TEEC_SUCCESS; } static void handle_ffa_rpc_func_cmd_shm_free(struct tee_context *ctx, struct optee *optee, struct optee_msg_arg *arg) { struct tee_shm *shm; if (arg->num_params != 1 || arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) goto err_bad_param; shm = optee_shm_from_ffa_handle(optee, arg->params[0].u.value.b); if (!shm) goto err_bad_param; switch (arg->params[0].u.value.a) { case OPTEE_RPC_SHM_TYPE_APPL: optee_rpc_cmd_free_suppl(ctx, shm); break; case OPTEE_RPC_SHM_TYPE_KERNEL: tee_shm_free(shm); break; default: goto err_bad_param; } arg->ret = TEEC_SUCCESS; return; err_bad_param: arg->ret = TEEC_ERROR_BAD_PARAMETERS; } static void handle_ffa_rpc_func_cmd(struct tee_context *ctx, struct optee *optee, struct optee_msg_arg *arg) { arg->ret_origin = TEEC_ORIGIN_COMMS; switch (arg->cmd) { case OPTEE_RPC_CMD_SHM_ALLOC: handle_ffa_rpc_func_cmd_shm_alloc(ctx, optee, arg); break; case OPTEE_RPC_CMD_SHM_FREE: handle_ffa_rpc_func_cmd_shm_free(ctx, optee, arg); break; default: optee_rpc_cmd(ctx, optee, arg); } } static void optee_handle_ffa_rpc(struct tee_context *ctx, struct optee *optee, u32 cmd, struct optee_msg_arg *arg) { switch (cmd) { case OPTEE_FFA_YIELDING_CALL_RETURN_RPC_CMD: handle_ffa_rpc_func_cmd(ctx, optee, arg); break; case OPTEE_FFA_YIELDING_CALL_RETURN_INTERRUPT: /* Interrupt delivered by now */ break; default: pr_warn("Unknown RPC func 0x%x\n", cmd); break; } } static int optee_ffa_yielding_call(struct tee_context *ctx, struct ffa_send_direct_data *data, struct optee_msg_arg *rpc_arg) { struct optee *optee = tee_get_drvdata(ctx->teedev); struct ffa_device *ffa_dev = optee->ffa.ffa_dev; const struct ffa_msg_ops *msg_ops = ffa_dev->ops->msg_ops; struct optee_call_waiter w; u32 cmd = data->data0; u32 w4 = data->data1; u32 w5 = data->data2; u32 w6 = data->data3; int rc; /* Initialize waiter */ optee_cq_wait_init(&optee->call_queue, &w); while (true) { rc = msg_ops->sync_send_receive(ffa_dev, data); if (rc) goto done; switch ((int)data->data0) { case TEEC_SUCCESS: break; case TEEC_ERROR_BUSY: if (cmd == OPTEE_FFA_YIELDING_CALL_RESUME) { rc = -EIO; goto done; } /* * Out of threads in secure world, wait for a thread * become available. */ optee_cq_wait_for_completion(&optee->call_queue, &w); data->data0 = cmd; data->data1 = w4; data->data2 = w5; data->data3 = w6; continue; default: rc = -EIO; goto done; } if (data->data1 == OPTEE_FFA_YIELDING_CALL_RETURN_DONE) goto done; /* * OP-TEE has returned with a RPC request. * * Note that data->data4 (passed in register w7) is already * filled in by ffa_mem_ops->sync_send_receive() returning * above. */ cond_resched(); optee_handle_ffa_rpc(ctx, optee, data->data1, rpc_arg); cmd = OPTEE_FFA_YIELDING_CALL_RESUME; data->data0 = cmd; data->data1 = 0; data->data2 = 0; data->data3 = 0; } done: /* * We're done with our thread in secure world, if there's any * thread waiters wake up one. */ optee_cq_wait_final(&optee->call_queue, &w); return rc; } /** * optee_ffa_do_call_with_arg() - Do a FF-A call to enter OP-TEE in secure world * @ctx: calling context * @shm: shared memory holding the message to pass to secure world * @offs: offset of the message in @shm * * Does a FF-A call to OP-TEE in secure world and handles eventual resulting * Remote Procedure Calls (RPC) from OP-TEE. * * Returns return code from FF-A, 0 is OK */ static int optee_ffa_do_call_with_arg(struct tee_context *ctx, struct tee_shm *shm, u_int offs) { struct ffa_send_direct_data data = { .data0 = OPTEE_FFA_YIELDING_CALL_WITH_ARG, .data1 = (u32)shm->sec_world_id, .data2 = (u32)(shm->sec_world_id >> 32), .data3 = offs, }; struct optee_msg_arg *arg; unsigned int rpc_arg_offs; struct optee_msg_arg *rpc_arg; /* * The shared memory object has to start on a page when passed as * an argument struct. This is also what the shm pool allocator * returns, but check this before calling secure world to catch * eventual errors early in case something changes. */ if (shm->offset) return -EINVAL; arg = tee_shm_get_va(shm, offs); if (IS_ERR(arg)) return PTR_ERR(arg); rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params); rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs); if (IS_ERR(rpc_arg)) return PTR_ERR(rpc_arg); return optee_ffa_yielding_call(ctx, &data, rpc_arg); } /* * 6. Driver initialization * * During driver inititialization is the OP-TEE Secure Partition is probed * to find out which features it supports so the driver can be initialized * with a matching configuration. */ static bool optee_ffa_api_is_compatbile(struct ffa_device *ffa_dev, const struct ffa_ops *ops) { const struct ffa_msg_ops *msg_ops = ops->msg_ops; struct ffa_send_direct_data data = { OPTEE_FFA_GET_API_VERSION }; int rc; msg_ops->mode_32bit_set(ffa_dev); rc = msg_ops->sync_send_receive(ffa_dev, &data); if (rc) { pr_err("Unexpected error %d\n", rc); return false; } if (data.data0 != OPTEE_FFA_VERSION_MAJOR || data.data1 < OPTEE_FFA_VERSION_MINOR) { pr_err("Incompatible OP-TEE API version %lu.%lu", data.data0, data.data1); return false; } data = (struct ffa_send_direct_data){ OPTEE_FFA_GET_OS_VERSION }; rc = msg_ops->sync_send_receive(ffa_dev, &data); if (rc) { pr_err("Unexpected error %d\n", rc); return false; } if (data.data2) pr_info("revision %lu.%lu (%08lx)", data.data0, data.data1, data.data2); else pr_info("revision %lu.%lu", data.data0, data.data1); return true; } static bool optee_ffa_exchange_caps(struct ffa_device *ffa_dev, const struct ffa_ops *ops, u32 *sec_caps, unsigned int *rpc_param_count) { struct ffa_send_direct_data data = { OPTEE_FFA_EXCHANGE_CAPABILITIES }; int rc; rc = ops->msg_ops->sync_send_receive(ffa_dev, &data); if (rc) { pr_err("Unexpected error %d", rc); return false; } if (data.data0) { pr_err("Unexpected exchange error %lu", data.data0); return false; } *rpc_param_count = (u8)data.data1; *sec_caps = data.data2; return true; } static void optee_ffa_get_version(struct tee_device *teedev, struct tee_ioctl_version_data *vers) { struct tee_ioctl_version_data v = { .impl_id = TEE_IMPL_ID_OPTEE, .impl_caps = TEE_OPTEE_CAP_TZ, .gen_caps = TEE_GEN_CAP_GP | TEE_GEN_CAP_REG_MEM | TEE_GEN_CAP_MEMREF_NULL, }; *vers = v; } static int optee_ffa_open(struct tee_context *ctx) { return optee_open(ctx, true); } static const struct tee_driver_ops optee_ffa_clnt_ops = { .get_version = optee_ffa_get_version, .open = optee_ffa_open, .release = optee_release, .open_session = optee_open_session, .close_session = optee_close_session, .invoke_func = optee_invoke_func, .cancel_req = optee_cancel_req, .shm_register = optee_ffa_shm_register, .shm_unregister = optee_ffa_shm_unregister, }; static const struct tee_desc optee_ffa_clnt_desc = { .name = DRIVER_NAME "-ffa-clnt", .ops = &optee_ffa_clnt_ops, .owner = THIS_MODULE, }; static const struct tee_driver_ops optee_ffa_supp_ops = { .get_version = optee_ffa_get_version, .open = optee_ffa_open, .release = optee_release_supp, .supp_recv = optee_supp_recv, .supp_send = optee_supp_send, .shm_register = optee_ffa_shm_register, /* same as for clnt ops */ .shm_unregister = optee_ffa_shm_unregister_supp, }; static const struct tee_desc optee_ffa_supp_desc = { .name = DRIVER_NAME "-ffa-supp", .ops = &optee_ffa_supp_ops, .owner = THIS_MODULE, .flags = TEE_DESC_PRIVILEGED, }; static const struct optee_ops optee_ffa_ops = { .do_call_with_arg = optee_ffa_do_call_with_arg, .to_msg_param = optee_ffa_to_msg_param, .from_msg_param = optee_ffa_from_msg_param, }; static void optee_ffa_remove(struct ffa_device *ffa_dev) { struct optee *optee = ffa_dev_get_drvdata(ffa_dev); optee_remove_common(optee); mutex_destroy(&optee->ffa.mutex); rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL); kfree(optee); } static int optee_ffa_probe(struct ffa_device *ffa_dev) { const struct ffa_ops *ffa_ops; unsigned int rpc_param_count; struct tee_shm_pool *pool; struct tee_device *teedev; struct tee_context *ctx; u32 arg_cache_flags = 0; struct optee *optee; u32 sec_caps; int rc; ffa_ops = ffa_dev->ops; if (!optee_ffa_api_is_compatbile(ffa_dev, ffa_ops)) return -EINVAL; if (!optee_ffa_exchange_caps(ffa_dev, ffa_ops, &sec_caps, &rpc_param_count)) return -EINVAL; if (sec_caps & OPTEE_FFA_SEC_CAP_ARG_OFFSET) arg_cache_flags |= OPTEE_SHM_ARG_SHARED; optee = kzalloc(sizeof(*optee), GFP_KERNEL); if (!optee) return -ENOMEM; pool = optee_ffa_shm_pool_alloc_pages(); if (IS_ERR(pool)) { rc = PTR_ERR(pool); goto err_free_optee; } optee->pool = pool; optee->ops = &optee_ffa_ops; optee->ffa.ffa_dev = ffa_dev; optee->rpc_param_count = rpc_param_count; teedev = tee_device_alloc(&optee_ffa_clnt_desc, NULL, optee->pool, optee); if (IS_ERR(teedev)) { rc = PTR_ERR(teedev); goto err_free_pool; } optee->teedev = teedev; teedev = tee_device_alloc(&optee_ffa_supp_desc, NULL, optee->pool, optee); if (IS_ERR(teedev)) { rc = PTR_ERR(teedev); goto err_unreg_teedev; } optee->supp_teedev = teedev; rc = tee_device_register(optee->teedev); if (rc) goto err_unreg_supp_teedev; rc = tee_device_register(optee->supp_teedev); if (rc) goto err_unreg_supp_teedev; rc = rhashtable_init(&optee->ffa.global_ids, &shm_rhash_params); if (rc) goto err_unreg_supp_teedev; mutex_init(&optee->ffa.mutex); mutex_init(&optee->call_queue.mutex); INIT_LIST_HEAD(&optee->call_queue.waiters); optee_supp_init(&optee->supp); optee_shm_arg_cache_init(optee, arg_cache_flags); ffa_dev_set_drvdata(ffa_dev, optee); ctx = teedev_open(optee->teedev); if (IS_ERR(ctx)) { rc = PTR_ERR(ctx); goto err_rhashtable_free; } optee->ctx = ctx; rc = optee_notif_init(optee, OPTEE_DEFAULT_MAX_NOTIF_VALUE); if (rc) goto err_close_ctx; rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES); if (rc) goto err_unregister_devices; pr_info("initialized driver\n"); return 0; err_unregister_devices: optee_unregister_devices(); optee_notif_uninit(optee); err_close_ctx: teedev_close_context(ctx); err_rhashtable_free: rhashtable_free_and_destroy(&optee->ffa.global_ids, rh_free_fn, NULL); optee_supp_uninit(&optee->supp); mutex_destroy(&optee->call_queue.mutex); mutex_destroy(&optee->ffa.mutex); err_unreg_supp_teedev: tee_device_unregister(optee->supp_teedev); err_unreg_teedev: tee_device_unregister(optee->teedev); err_free_pool: tee_shm_pool_free(pool); err_free_optee: kfree(optee); return rc; } static const struct ffa_device_id optee_ffa_device_id[] = { /* 486178e0-e7f8-11e3-bc5e0002a5d5c51b */ { UUID_INIT(0x486178e0, 0xe7f8, 0x11e3, 0xbc, 0x5e, 0x00, 0x02, 0xa5, 0xd5, 0xc5, 0x1b) }, {} }; static struct ffa_driver optee_ffa_driver = { .name = "optee", .probe = optee_ffa_probe, .remove = optee_ffa_remove, .id_table = optee_ffa_device_id, }; int optee_ffa_abi_register(void) { if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT)) return ffa_register(&optee_ffa_driver); else return -EOPNOTSUPP; } void optee_ffa_abi_unregister(void) { if (IS_REACHABLE(CONFIG_ARM_FFA_TRANSPORT)) ffa_unregister(&optee_ffa_driver); }