/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_MMU_8XX_H_ #define _ASM_POWERPC_MMU_8XX_H_ /* * PPC8xx support */ /* Control/status registers for the MPC8xx. * A write operation to these registers causes serialized access. * During software tablewalk, the registers used perform mask/shift-add * operations when written/read. A TLB entry is created when the Mx_RPN * is written, and the contents of several registers are used to * create the entry. */ #define SPRN_MI_CTR 784 /* Instruction TLB control register */ #define MI_GPM 0x80000000 /* Set domain manager mode */ #define MI_PPM 0x40000000 /* Set subpage protection */ #define MI_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ #define MI_RSV4I 0x08000000 /* Reserve 4 TLB entries */ #define MI_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ #define MI_IDXMASK 0x00001f00 /* TLB index to be loaded */ /* These are the Ks and Kp from the PowerPC books. For proper operation, * Ks = 0, Kp = 1. */ #define SPRN_MI_AP 786 #define MI_Ks 0x80000000 /* Should not be set */ #define MI_Kp 0x40000000 /* Should always be set */ /* * All pages' PP data bits are set to either 001 or 011 by copying _PAGE_EXEC * into bit 21 in the ITLBmiss handler (bit 21 is the middle bit), which means * respectively NA for All or X for Supervisor and no access for User. * Then we use the APG to say whether accesses are according to Page rules or * "all Supervisor" rules (Access to all) * _PAGE_ACCESSED is also managed via APG. When _PAGE_ACCESSED is not set, say * "all User" rules, that will lead to NA for all. * Therefore, we define 4 APG groups. lsb is _PAGE_ACCESSED * 0 => Kernel => 11 (all accesses performed according as user iaw page definition) * 1 => Kernel+Accessed => 01 (all accesses performed according to page definition) * 2 => User => 11 (all accesses performed according as user iaw page definition) * 3 => User+Accessed => 10 (all accesses performed according to swaped page definition) for KUEP * 4-15 => Not Used */ #define MI_APG_INIT 0xde000000 /* The effective page number register. When read, contains the information * about the last instruction TLB miss. When MI_RPN is written, bits in * this register are used to create the TLB entry. */ #define SPRN_MI_EPN 787 #define MI_EPNMASK 0xfffff000 /* Effective page number for entry */ #define MI_EVALID 0x00000200 /* Entry is valid */ #define MI_ASIDMASK 0x0000000f /* ASID match value */ /* Reset value is undefined */ /* A "level 1" or "segment" or whatever you want to call it register. * For the instruction TLB, it contains bits that get loaded into the * TLB entry when the MI_RPN is written. */ #define SPRN_MI_TWC 789 #define MI_APG 0x000001e0 /* Access protection group (0) */ #define MI_GUARDED 0x00000010 /* Guarded storage */ #define MI_PSMASK 0x0000000c /* Mask of page size bits */ #define MI_PS8MEG 0x0000000c /* 8M page size */ #define MI_PS512K 0x00000004 /* 512K page size */ #define MI_PS4K_16K 0x00000000 /* 4K or 16K page size */ #define MI_SVALID 0x00000001 /* Segment entry is valid */ /* Reset value is undefined */ /* Real page number. Defined by the pte. Writing this register * causes a TLB entry to be created for the instruction TLB, using * additional information from the MI_EPN, and MI_TWC registers. */ #define SPRN_MI_RPN 790 #define MI_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ /* Define an RPN value for mapping kernel memory to large virtual * pages for boot initialization. This has real page number of 0, * large page size, shared page, cache enabled, and valid. * Also mark all subpages valid and write access. */ #define MI_BOOTINIT 0x000001fd #define SPRN_MD_CTR 792 /* Data TLB control register */ #define MD_GPM 0x80000000 /* Set domain manager mode */ #define MD_PPM 0x40000000 /* Set subpage protection */ #define MD_CIDEF 0x20000000 /* Set cache inhibit when MMU dis */ #define MD_WTDEF 0x10000000 /* Set writethrough when MMU dis */ #define MD_RSV4I 0x08000000 /* Reserve 4 TLB entries */ #define MD_TWAM 0x04000000 /* Use 4K page hardware assist */ #define MD_PPCS 0x02000000 /* Use MI_RPN prob/priv state */ #define MD_IDXMASK 0x00001f00 /* TLB index to be loaded */ #define SPRN_M_CASID 793 /* Address space ID (context) to match */ #define MC_ASIDMASK 0x0000000f /* Bits used for ASID value */ /* These are the Ks and Kp from the PowerPC books. For proper operation, * Ks = 0, Kp = 1. */ #define SPRN_MD_AP 794 #define MD_Ks 0x80000000 /* Should not be set */ #define MD_Kp 0x40000000 /* Should always be set */ /* See explanation above at the definition of MI_APG_INIT */ #define MD_APG_INIT 0xdc000000 #define MD_APG_KUAP 0xde000000 /* The effective page number register. When read, contains the information * about the last instruction TLB miss. When MD_RPN is written, bits in * this register are used to create the TLB entry. */ #define SPRN_MD_EPN 795 #define MD_EPNMASK 0xfffff000 /* Effective page number for entry */ #define MD_EVALID 0x00000200 /* Entry is valid */ #define MD_ASIDMASK 0x0000000f /* ASID match value */ /* Reset value is undefined */ /* The pointer to the base address of the first level page table. * During a software tablewalk, reading this register provides the address * of the entry associated with MD_EPN. */ #define SPRN_M_TWB 796 #define M_L1TB 0xfffff000 /* Level 1 table base address */ #define M_L1INDX 0x00000ffc /* Level 1 index, when read */ /* Reset value is undefined */ /* A "level 1" or "segment" or whatever you want to call it register. * For the data TLB, it contains bits that get loaded into the TLB entry * when the MD_RPN is written. It is also provides the hardware assist * for finding the PTE address during software tablewalk. */ #define SPRN_MD_TWC 797 #define MD_L2TB 0xfffff000 /* Level 2 table base address */ #define MD_L2INDX 0xfffffe00 /* Level 2 index (*pte), when read */ #define MD_APG 0x000001e0 /* Access protection group (0) */ #define MD_GUARDED 0x00000010 /* Guarded storage */ #define MD_PSMASK 0x0000000c /* Mask of page size bits */ #define MD_PS8MEG 0x0000000c /* 8M page size */ #define MD_PS512K 0x00000004 /* 512K page size */ #define MD_PS4K_16K 0x00000000 /* 4K or 16K page size */ #define MD_WT 0x00000002 /* Use writethrough page attribute */ #define MD_SVALID 0x00000001 /* Segment entry is valid */ /* Reset value is undefined */ /* Real page number. Defined by the pte. Writing this register * causes a TLB entry to be created for the data TLB, using * additional information from the MD_EPN, and MD_TWC registers. */ #define SPRN_MD_RPN 798 #define MD_SPS16K 0x00000008 /* Small page size (0 = 4k, 1 = 16k) */ /* This is a temporary storage register that could be used to save * a processor working register during a tablewalk. */ #define SPRN_M_TW 799 #if defined(CONFIG_PPC_4K_PAGES) #define mmu_virtual_psize MMU_PAGE_4K #elif defined(CONFIG_PPC_16K_PAGES) #define mmu_virtual_psize MMU_PAGE_16K #define PTE_FRAG_NR 4 #define PTE_FRAG_SIZE_SHIFT 12 #define PTE_FRAG_SIZE (1UL << 12) #else #error "Unsupported PAGE_SIZE" #endif #define mmu_linear_psize MMU_PAGE_8M #define MODULES_VADDR (PAGE_OFFSET - SZ_256M) #define MODULES_END PAGE_OFFSET #ifndef __ASSEMBLY__ #include <linux/mmdebug.h> #include <linux/sizes.h> void mmu_pin_tlb(unsigned long top, bool readonly); typedef struct { unsigned int id; unsigned int active; void __user *vdso; void *pte_frag; } mm_context_t; #define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000) #define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE)) /* Page size definitions, common between 32 and 64-bit * * shift : is the "PAGE_SHIFT" value for that page size * penc : is the pte encoding mask * */ struct mmu_psize_def { unsigned int shift; /* number of bits */ unsigned int enc; /* PTE encoding */ unsigned int ind; /* Corresponding indirect page size shift */ unsigned int flags; #define MMU_PAGE_SIZE_DIRECT 0x1 /* Supported as a direct size */ #define MMU_PAGE_SIZE_INDIRECT 0x2 /* Supported as an indirect size */ }; extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; static inline int shift_to_mmu_psize(unsigned int shift) { int psize; for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) if (mmu_psize_defs[psize].shift == shift) return psize; return -1; } static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize) { if (mmu_psize_defs[mmu_psize].shift) return mmu_psize_defs[mmu_psize].shift; BUG(); } static inline bool arch_vmap_try_size(unsigned long addr, unsigned long end, u64 pfn, unsigned int max_page_shift, unsigned long size) { if (end - addr < size) return false; if ((1UL << max_page_shift) < size) return false; if (!IS_ALIGNED(addr, size)) return false; if (!IS_ALIGNED(PFN_PHYS(pfn), size)) return false; return true; } static inline unsigned long arch_vmap_pte_range_map_size(unsigned long addr, unsigned long end, u64 pfn, unsigned int max_page_shift) { if (arch_vmap_try_size(addr, end, pfn, max_page_shift, SZ_512K)) return SZ_512K; if (PAGE_SIZE == SZ_16K) return SZ_16K; if (arch_vmap_try_size(addr, end, pfn, max_page_shift, SZ_16K)) return SZ_16K; return PAGE_SIZE; } #define arch_vmap_pte_range_map_size arch_vmap_pte_range_map_size static inline int arch_vmap_pte_supported_shift(unsigned long size) { if (size >= SZ_512K) return 19; else if (size >= SZ_16K) return 14; else return PAGE_SHIFT; } #define arch_vmap_pte_supported_shift arch_vmap_pte_supported_shift /* patch sites */ extern s32 patch__itlbmiss_exit_1, patch__dtlbmiss_exit_1; extern s32 patch__itlbmiss_perf, patch__dtlbmiss_perf; #endif /* !__ASSEMBLY__ */ #endif /* _ASM_POWERPC_MMU_8XX_H_ */