// SPDX-License-Identifier: GPL-2.0-only /* us2e_cpufreq.c: UltraSPARC-IIe cpu frequency support * * Copyright (C) 2003 David S. Miller (davem@redhat.com) * * Many thanks to Dominik Brodowski for fixing up the cpufreq * infrastructure in order to make this driver easier to implement. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/cpufreq.h> #include <linux/threads.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/init.h> #include <asm/asi.h> #include <asm/timer.h> struct us2e_freq_percpu_info { struct cpufreq_frequency_table table[6]; }; /* Indexed by cpu number. */ static struct us2e_freq_percpu_info *us2e_freq_table; #define HBIRD_MEM_CNTL0_ADDR 0x1fe0000f010UL #define HBIRD_ESTAR_MODE_ADDR 0x1fe0000f080UL /* UltraSPARC-IIe has five dividers: 1, 2, 4, 6, and 8. These are controlled * in the ESTAR mode control register. */ #define ESTAR_MODE_DIV_1 0x0000000000000000UL #define ESTAR_MODE_DIV_2 0x0000000000000001UL #define ESTAR_MODE_DIV_4 0x0000000000000003UL #define ESTAR_MODE_DIV_6 0x0000000000000002UL #define ESTAR_MODE_DIV_8 0x0000000000000004UL #define ESTAR_MODE_DIV_MASK 0x0000000000000007UL #define MCTRL0_SREFRESH_ENAB 0x0000000000010000UL #define MCTRL0_REFR_COUNT_MASK 0x0000000000007f00UL #define MCTRL0_REFR_COUNT_SHIFT 8 #define MCTRL0_REFR_INTERVAL 7800 #define MCTRL0_REFR_CLKS_P_CNT 64 static unsigned long read_hbreg(unsigned long addr) { unsigned long ret; __asm__ __volatile__("ldxa [%1] %2, %0" : "=&r" (ret) : "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E)); return ret; } static void write_hbreg(unsigned long addr, unsigned long val) { __asm__ __volatile__("stxa %0, [%1] %2\n\t" "membar #Sync" : /* no outputs */ : "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E) : "memory"); if (addr == HBIRD_ESTAR_MODE_ADDR) { /* Need to wait 16 clock cycles for the PLL to lock. */ udelay(1); } } static void self_refresh_ctl(int enable) { unsigned long mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR); if (enable) mctrl |= MCTRL0_SREFRESH_ENAB; else mctrl &= ~MCTRL0_SREFRESH_ENAB; write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl); (void) read_hbreg(HBIRD_MEM_CNTL0_ADDR); } static void frob_mem_refresh(int cpu_slowing_down, unsigned long clock_tick, unsigned long old_divisor, unsigned long divisor) { unsigned long old_refr_count, refr_count, mctrl; refr_count = (clock_tick * MCTRL0_REFR_INTERVAL); refr_count /= (MCTRL0_REFR_CLKS_P_CNT * divisor * 1000000000UL); mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR); old_refr_count = (mctrl & MCTRL0_REFR_COUNT_MASK) >> MCTRL0_REFR_COUNT_SHIFT; mctrl &= ~MCTRL0_REFR_COUNT_MASK; mctrl |= refr_count << MCTRL0_REFR_COUNT_SHIFT; write_hbreg(HBIRD_MEM_CNTL0_ADDR, mctrl); mctrl = read_hbreg(HBIRD_MEM_CNTL0_ADDR); if (cpu_slowing_down && !(mctrl & MCTRL0_SREFRESH_ENAB)) { unsigned long usecs; /* We have to wait for both refresh counts (old * and new) to go to zero. */ usecs = (MCTRL0_REFR_CLKS_P_CNT * (refr_count + old_refr_count) * 1000000UL * old_divisor) / clock_tick; udelay(usecs + 1UL); } } static void us2e_transition(unsigned long estar, unsigned long new_bits, unsigned long clock_tick, unsigned long old_divisor, unsigned long divisor) { estar &= ~ESTAR_MODE_DIV_MASK; /* This is based upon the state transition diagram in the IIe manual. */ if (old_divisor == 2 && divisor == 1) { self_refresh_ctl(0); write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits); frob_mem_refresh(0, clock_tick, old_divisor, divisor); } else if (old_divisor == 1 && divisor == 2) { frob_mem_refresh(1, clock_tick, old_divisor, divisor); write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits); self_refresh_ctl(1); } else if (old_divisor == 1 && divisor > 2) { us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick, 1, 2); us2e_transition(estar, new_bits, clock_tick, 2, divisor); } else if (old_divisor > 2 && divisor == 1) { us2e_transition(estar, ESTAR_MODE_DIV_2, clock_tick, old_divisor, 2); us2e_transition(estar, new_bits, clock_tick, 2, divisor); } else if (old_divisor < divisor) { frob_mem_refresh(0, clock_tick, old_divisor, divisor); write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits); } else if (old_divisor > divisor) { write_hbreg(HBIRD_ESTAR_MODE_ADDR, estar | new_bits); frob_mem_refresh(1, clock_tick, old_divisor, divisor); } else { BUG(); } } static unsigned long index_to_estar_mode(unsigned int index) { switch (index) { case 0: return ESTAR_MODE_DIV_1; case 1: return ESTAR_MODE_DIV_2; case 2: return ESTAR_MODE_DIV_4; case 3: return ESTAR_MODE_DIV_6; case 4: return ESTAR_MODE_DIV_8; default: BUG(); } } static unsigned long index_to_divisor(unsigned int index) { switch (index) { case 0: return 1; case 1: return 2; case 2: return 4; case 3: return 6; case 4: return 8; default: BUG(); } } static unsigned long estar_to_divisor(unsigned long estar) { unsigned long ret; switch (estar & ESTAR_MODE_DIV_MASK) { case ESTAR_MODE_DIV_1: ret = 1; break; case ESTAR_MODE_DIV_2: ret = 2; break; case ESTAR_MODE_DIV_4: ret = 4; break; case ESTAR_MODE_DIV_6: ret = 6; break; case ESTAR_MODE_DIV_8: ret = 8; break; default: BUG(); } return ret; } static void __us2e_freq_get(void *arg) { unsigned long *estar = arg; *estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR); } static unsigned int us2e_freq_get(unsigned int cpu) { unsigned long clock_tick, estar; clock_tick = sparc64_get_clock_tick(cpu) / 1000; if (smp_call_function_single(cpu, __us2e_freq_get, &estar, 1)) return 0; return clock_tick / estar_to_divisor(estar); } static void __us2e_freq_target(void *arg) { unsigned int cpu = smp_processor_id(); unsigned int *index = arg; unsigned long new_bits, new_freq; unsigned long clock_tick, divisor, old_divisor, estar; new_freq = clock_tick = sparc64_get_clock_tick(cpu) / 1000; new_bits = index_to_estar_mode(*index); divisor = index_to_divisor(*index); new_freq /= divisor; estar = read_hbreg(HBIRD_ESTAR_MODE_ADDR); old_divisor = estar_to_divisor(estar); if (old_divisor != divisor) { us2e_transition(estar, new_bits, clock_tick * 1000, old_divisor, divisor); } } static int us2e_freq_target(struct cpufreq_policy *policy, unsigned int index) { unsigned int cpu = policy->cpu; return smp_call_function_single(cpu, __us2e_freq_target, &index, 1); } static int us2e_freq_cpu_init(struct cpufreq_policy *policy) { unsigned int cpu = policy->cpu; unsigned long clock_tick = sparc64_get_clock_tick(cpu) / 1000; struct cpufreq_frequency_table *table = &us2e_freq_table[cpu].table[0]; table[0].driver_data = 0; table[0].frequency = clock_tick / 1; table[1].driver_data = 1; table[1].frequency = clock_tick / 2; table[2].driver_data = 2; table[2].frequency = clock_tick / 4; table[2].driver_data = 3; table[2].frequency = clock_tick / 6; table[2].driver_data = 4; table[2].frequency = clock_tick / 8; table[2].driver_data = 5; table[3].frequency = CPUFREQ_TABLE_END; policy->cpuinfo.transition_latency = 0; policy->cur = clock_tick; policy->freq_table = table; return 0; } static int us2e_freq_cpu_exit(struct cpufreq_policy *policy) { us2e_freq_target(policy, 0); return 0; } static struct cpufreq_driver cpufreq_us2e_driver = { .name = "UltraSPARC-IIe", .init = us2e_freq_cpu_init, .verify = cpufreq_generic_frequency_table_verify, .target_index = us2e_freq_target, .get = us2e_freq_get, .exit = us2e_freq_cpu_exit, }; static int __init us2e_freq_init(void) { unsigned long manuf, impl, ver; int ret; if (tlb_type != spitfire) return -ENODEV; __asm__("rdpr %%ver, %0" : "=r" (ver)); manuf = ((ver >> 48) & 0xffff); impl = ((ver >> 32) & 0xffff); if (manuf == 0x17 && impl == 0x13) { us2e_freq_table = kzalloc(NR_CPUS * sizeof(*us2e_freq_table), GFP_KERNEL); if (!us2e_freq_table) return -ENOMEM; ret = cpufreq_register_driver(&cpufreq_us2e_driver); if (ret) kfree(us2e_freq_table); return ret; } return -ENODEV; } static void __exit us2e_freq_exit(void) { cpufreq_unregister_driver(&cpufreq_us2e_driver); kfree(us2e_freq_table); } MODULE_AUTHOR("David S. Miller <davem@redhat.com>"); MODULE_DESCRIPTION("cpufreq driver for UltraSPARC-IIe"); MODULE_LICENSE("GPL"); module_init(us2e_freq_init); module_exit(us2e_freq_exit);