/* ----------------------------------------------------------------------- * * neon.uc - RAID-6 syndrome calculation using ARM NEON instructions * * Copyright (C) 2012 Rob Herring * Copyright (C) 2015 Linaro Ltd. <ard.biesheuvel@linaro.org> * * Based on altivec.uc: * Copyright 2002-2004 H. Peter Anvin - All Rights Reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, Inc., 53 Temple Place Ste 330, * Boston MA 02111-1307, USA; either version 2 of the License, or * (at your option) any later version; incorporated herein by reference. * * ----------------------------------------------------------------------- */ /* * neon$#.c * * $#-way unrolled NEON intrinsics math RAID-6 instruction set * * This file is postprocessed using unroll.awk */ #include <arm_neon.h> #include "neon.h" typedef uint8x16_t unative_t; #define NSIZE sizeof(unative_t) /* * The SHLBYTE() operation shifts each byte left by 1, *not* * rolling over into the next byte */ static inline unative_t SHLBYTE(unative_t v) { return vshlq_n_u8(v, 1); } /* * The MASK() operation returns 0xFF in any byte for which the high * bit is 1, 0x00 for any byte for which the high bit is 0. */ static inline unative_t MASK(unative_t v) { return (unative_t)vshrq_n_s8((int8x16_t)v, 7); } static inline unative_t PMUL(unative_t v, unative_t u) { return (unative_t)vmulq_p8((poly8x16_t)v, (poly8x16_t)u); } void raid6_neon$#_gen_syndrome_real(int disks, unsigned long bytes, void **ptrs) { uint8_t **dptr = (uint8_t **)ptrs; uint8_t *p, *q; int d, z, z0; register unative_t wd$$, wq$$, wp$$, w1$$, w2$$; const unative_t x1d = vdupq_n_u8(0x1d); z0 = disks - 3; /* Highest data disk */ p = dptr[z0+1]; /* XOR parity */ q = dptr[z0+2]; /* RS syndrome */ for ( d = 0 ; d < bytes ; d += NSIZE*$# ) { wq$$ = wp$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]); for ( z = z0-1 ; z >= 0 ; z-- ) { wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]); wp$$ = veorq_u8(wp$$, wd$$); w2$$ = MASK(wq$$); w1$$ = SHLBYTE(wq$$); w2$$ = vandq_u8(w2$$, x1d); w1$$ = veorq_u8(w1$$, w2$$); wq$$ = veorq_u8(w1$$, wd$$); } vst1q_u8(&p[d+NSIZE*$$], wp$$); vst1q_u8(&q[d+NSIZE*$$], wq$$); } } void raid6_neon$#_xor_syndrome_real(int disks, int start, int stop, unsigned long bytes, void **ptrs) { uint8_t **dptr = (uint8_t **)ptrs; uint8_t *p, *q; int d, z, z0; register unative_t wd$$, wq$$, wp$$, w1$$, w2$$; const unative_t x1d = vdupq_n_u8(0x1d); z0 = stop; /* P/Q right side optimization */ p = dptr[disks-2]; /* XOR parity */ q = dptr[disks-1]; /* RS syndrome */ for ( d = 0 ; d < bytes ; d += NSIZE*$# ) { wq$$ = vld1q_u8(&dptr[z0][d+$$*NSIZE]); wp$$ = veorq_u8(vld1q_u8(&p[d+$$*NSIZE]), wq$$); /* P/Q data pages */ for ( z = z0-1 ; z >= start ; z-- ) { wd$$ = vld1q_u8(&dptr[z][d+$$*NSIZE]); wp$$ = veorq_u8(wp$$, wd$$); w2$$ = MASK(wq$$); w1$$ = SHLBYTE(wq$$); w2$$ = vandq_u8(w2$$, x1d); w1$$ = veorq_u8(w1$$, w2$$); wq$$ = veorq_u8(w1$$, wd$$); } /* P/Q left side optimization */ for ( z = start-1 ; z >= 3 ; z -= 4 ) { w2$$ = vshrq_n_u8(wq$$, 4); w1$$ = vshlq_n_u8(wq$$, 4); w2$$ = PMUL(w2$$, x1d); wq$$ = veorq_u8(w1$$, w2$$); } switch (z) { case 2: w2$$ = vshrq_n_u8(wq$$, 5); w1$$ = vshlq_n_u8(wq$$, 3); w2$$ = PMUL(w2$$, x1d); wq$$ = veorq_u8(w1$$, w2$$); break; case 1: w2$$ = vshrq_n_u8(wq$$, 6); w1$$ = vshlq_n_u8(wq$$, 2); w2$$ = PMUL(w2$$, x1d); wq$$ = veorq_u8(w1$$, w2$$); break; case 0: w2$$ = MASK(wq$$); w1$$ = SHLBYTE(wq$$); w2$$ = vandq_u8(w2$$, x1d); wq$$ = veorq_u8(w1$$, w2$$); } w1$$ = vld1q_u8(&q[d+NSIZE*$$]); wq$$ = veorq_u8(wq$$, w1$$); vst1q_u8(&p[d+NSIZE*$$], wp$$); vst1q_u8(&q[d+NSIZE*$$], wq$$); } }