// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 Emilio López <emilio@elopez.com.ar> * * Adjustable factor-based clock implementation */ #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/slab.h> #include <linux/string.h> #include "clk-factors.h" /* * DOC: basic adjustable factor-based clock * * Traits of this clock: * prepare - clk_prepare only ensures that parents are prepared * enable - clk_enable only ensures that parents are enabled * rate - rate is adjustable. * clk->rate = (parent->rate * N * (K + 1) >> P) / (M + 1) * parent - fixed parent. No clk_set_parent support */ #define to_clk_factors(_hw) container_of(_hw, struct clk_factors, hw) #define FACTORS_MAX_PARENTS 5 #define SETMASK(len, pos) (((1U << (len)) - 1) << (pos)) #define CLRMASK(len, pos) (~(SETMASK(len, pos))) #define FACTOR_GET(bit, len, reg) (((reg) & SETMASK(len, bit)) >> (bit)) #define FACTOR_SET(bit, len, reg, val) \ (((reg) & CLRMASK(len, bit)) | (val << (bit))) static unsigned long clk_factors_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { u8 n = 1, k = 0, p = 0, m = 0; u32 reg; unsigned long rate; struct clk_factors *factors = to_clk_factors(hw); const struct clk_factors_config *config = factors->config; /* Fetch the register value */ reg = readl(factors->reg); /* Get each individual factor if applicable */ if (config->nwidth != SUNXI_FACTORS_NOT_APPLICABLE) n = FACTOR_GET(config->nshift, config->nwidth, reg); if (config->kwidth != SUNXI_FACTORS_NOT_APPLICABLE) k = FACTOR_GET(config->kshift, config->kwidth, reg); if (config->mwidth != SUNXI_FACTORS_NOT_APPLICABLE) m = FACTOR_GET(config->mshift, config->mwidth, reg); if (config->pwidth != SUNXI_FACTORS_NOT_APPLICABLE) p = FACTOR_GET(config->pshift, config->pwidth, reg); if (factors->recalc) { struct factors_request factors_req = { .parent_rate = parent_rate, .n = n, .k = k, .m = m, .p = p, }; /* get mux details from mux clk structure */ if (factors->mux) factors_req.parent_index = (reg >> factors->mux->shift) & factors->mux->mask; factors->recalc(&factors_req); return factors_req.rate; } /* Calculate the rate */ rate = (parent_rate * (n + config->n_start) * (k + 1) >> p) / (m + 1); return rate; } static int clk_factors_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_factors *factors = to_clk_factors(hw); struct clk_hw *parent, *best_parent = NULL; int i, num_parents; unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0; /* find the parent that can help provide the fastest rate <= rate */ num_parents = clk_hw_get_num_parents(hw); for (i = 0; i < num_parents; i++) { struct factors_request factors_req = { .rate = req->rate, .parent_index = i, }; parent = clk_hw_get_parent_by_index(hw, i); if (!parent) continue; if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) parent_rate = clk_hw_round_rate(parent, req->rate); else parent_rate = clk_hw_get_rate(parent); factors_req.parent_rate = parent_rate; factors->get_factors(&factors_req); child_rate = factors_req.rate; if (child_rate <= req->rate && child_rate > best_child_rate) { best_parent = parent; best = parent_rate; best_child_rate = child_rate; } } if (!best_parent) return -EINVAL; req->best_parent_hw = best_parent; req->best_parent_rate = best; req->rate = best_child_rate; return 0; } static int clk_factors_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct factors_request req = { .rate = rate, .parent_rate = parent_rate, }; u32 reg; struct clk_factors *factors = to_clk_factors(hw); const struct clk_factors_config *config = factors->config; unsigned long flags = 0; factors->get_factors(&req); if (factors->lock) spin_lock_irqsave(factors->lock, flags); /* Fetch the register value */ reg = readl(factors->reg); /* Set up the new factors - macros do not do anything if width is 0 */ reg = FACTOR_SET(config->nshift, config->nwidth, reg, req.n); reg = FACTOR_SET(config->kshift, config->kwidth, reg, req.k); reg = FACTOR_SET(config->mshift, config->mwidth, reg, req.m); reg = FACTOR_SET(config->pshift, config->pwidth, reg, req.p); /* Apply them now */ writel(reg, factors->reg); /* delay 500us so pll stabilizes */ __delay((rate >> 20) * 500 / 2); if (factors->lock) spin_unlock_irqrestore(factors->lock, flags); return 0; } static const struct clk_ops clk_factors_ops = { .determine_rate = clk_factors_determine_rate, .recalc_rate = clk_factors_recalc_rate, .set_rate = clk_factors_set_rate, }; static struct clk *__sunxi_factors_register(struct device_node *node, const struct factors_data *data, spinlock_t *lock, void __iomem *reg, unsigned long flags) { struct clk *clk; struct clk_factors *factors; struct clk_gate *gate = NULL; struct clk_mux *mux = NULL; struct clk_hw *gate_hw = NULL; struct clk_hw *mux_hw = NULL; const char *clk_name = node->name; const char *parents[FACTORS_MAX_PARENTS]; int ret, i = 0; /* if we have a mux, we will have >1 parents */ i = of_clk_parent_fill(node, parents, FACTORS_MAX_PARENTS); /* * some factor clocks, such as pll5 and pll6, may have multiple * outputs, and have their name designated in factors_data */ if (data->name) clk_name = data->name; else of_property_read_string(node, "clock-output-names", &clk_name); factors = kzalloc(sizeof(struct clk_factors), GFP_KERNEL); if (!factors) goto err_factors; /* set up factors properties */ factors->reg = reg; factors->config = data->table; factors->get_factors = data->getter; factors->recalc = data->recalc; factors->lock = lock; /* Add a gate if this factor clock can be gated */ if (data->enable) { gate = kzalloc(sizeof(struct clk_gate), GFP_KERNEL); if (!gate) goto err_gate; factors->gate = gate; /* set up gate properties */ gate->reg = reg; gate->bit_idx = data->enable; gate->lock = factors->lock; gate_hw = &gate->hw; } /* Add a mux if this factor clock can be muxed */ if (data->mux) { mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL); if (!mux) goto err_mux; factors->mux = mux; /* set up gate properties */ mux->reg = reg; mux->shift = data->mux; mux->mask = data->muxmask; mux->lock = factors->lock; mux_hw = &mux->hw; } clk = clk_register_composite(NULL, clk_name, parents, i, mux_hw, &clk_mux_ops, &factors->hw, &clk_factors_ops, gate_hw, &clk_gate_ops, CLK_IS_CRITICAL); if (IS_ERR(clk)) goto err_register; ret = of_clk_add_provider(node, of_clk_src_simple_get, clk); if (ret) goto err_provider; return clk; err_provider: /* TODO: The composite clock stuff will leak a bit here. */ clk_unregister(clk); err_register: kfree(mux); err_mux: kfree(gate); err_gate: kfree(factors); err_factors: return NULL; } struct clk *sunxi_factors_register(struct device_node *node, const struct factors_data *data, spinlock_t *lock, void __iomem *reg) { return __sunxi_factors_register(node, data, lock, reg, 0); } struct clk *sunxi_factors_register_critical(struct device_node *node, const struct factors_data *data, spinlock_t *lock, void __iomem *reg) { return __sunxi_factors_register(node, data, lock, reg, CLK_IS_CRITICAL); } void sunxi_factors_unregister(struct device_node *node, struct clk *clk) { struct clk_hw *hw = __clk_get_hw(clk); struct clk_factors *factors; if (!hw) return; factors = to_clk_factors(hw); of_clk_del_provider(node); /* TODO: The composite clock stuff will leak a bit here. */ clk_unregister(clk); kfree(factors->mux); kfree(factors->gate); kfree(factors); }