// SPDX-License-Identifier: GPL-2.0 /* * access_tracking_perf_test * * Copyright (C) 2021, Google, Inc. * * This test measures the performance effects of KVM's access tracking. * Access tracking is driven by the MMU notifiers test_young, clear_young, and * clear_flush_young. These notifiers do not have a direct userspace API, * however the clear_young notifier can be triggered by marking a pages as idle * in /sys/kernel/mm/page_idle/bitmap. This test leverages that mechanism to * enable access tracking on guest memory. * * To measure performance this test runs a VM with a configurable number of * vCPUs that each touch every page in disjoint regions of memory. Performance * is measured in the time it takes all vCPUs to finish touching their * predefined region. * * Note that a deterministic correctness test of access tracking is not possible * by using page_idle as it exists today. This is for a few reasons: * * 1. page_idle only issues clear_young notifiers, which lack a TLB flush. This * means subsequent guest accesses are not guaranteed to see page table * updates made by KVM until some time in the future. * * 2. page_idle only operates on LRU pages. Newly allocated pages are not * immediately allocated to LRU lists. Instead they are held in a "pagevec", * which is drained to LRU lists some time in the future. There is no * userspace API to force this drain to occur. * * These limitations are worked around in this test by using a large enough * region of memory for each vCPU such that the number of translations cached in * the TLB and the number of pages held in pagevecs are a small fraction of the * overall workload. And if either of those conditions are not true (for example * in nesting, where TLB size is unlimited) this test will print a warning * rather than silently passing. */ #include <inttypes.h> #include <limits.h> #include <pthread.h> #include <sys/mman.h> #include <sys/types.h> #include <sys/stat.h> #include "kvm_util.h" #include "test_util.h" #include "memstress.h" #include "guest_modes.h" #include "processor.h" /* Global variable used to synchronize all of the vCPU threads. */ static int iteration; /* Defines what vCPU threads should do during a given iteration. */ static enum { /* Run the vCPU to access all its memory. */ ITERATION_ACCESS_MEMORY, /* Mark the vCPU's memory idle in page_idle. */ ITERATION_MARK_IDLE, } iteration_work; /* The iteration that was last completed by each vCPU. */ static int vcpu_last_completed_iteration[KVM_MAX_VCPUS]; /* Whether to overlap the regions of memory vCPUs access. */ static bool overlap_memory_access; struct test_params { /* The backing source for the region of memory. */ enum vm_mem_backing_src_type backing_src; /* The amount of memory to allocate for each vCPU. */ uint64_t vcpu_memory_bytes; /* The number of vCPUs to create in the VM. */ int nr_vcpus; }; static uint64_t pread_uint64(int fd, const char *filename, uint64_t index) { uint64_t value; off_t offset = index * sizeof(value); TEST_ASSERT(pread(fd, &value, sizeof(value), offset) == sizeof(value), "pread from %s offset 0x%" PRIx64 " failed!", filename, offset); return value; } #define PAGEMAP_PRESENT (1ULL << 63) #define PAGEMAP_PFN_MASK ((1ULL << 55) - 1) static uint64_t lookup_pfn(int pagemap_fd, struct kvm_vm *vm, uint64_t gva) { uint64_t hva = (uint64_t) addr_gva2hva(vm, gva); uint64_t entry; uint64_t pfn; entry = pread_uint64(pagemap_fd, "pagemap", hva / getpagesize()); if (!(entry & PAGEMAP_PRESENT)) return 0; pfn = entry & PAGEMAP_PFN_MASK; __TEST_REQUIRE(pfn, "Looking up PFNs requires CAP_SYS_ADMIN"); return pfn; } static bool is_page_idle(int page_idle_fd, uint64_t pfn) { uint64_t bits = pread_uint64(page_idle_fd, "page_idle", pfn / 64); return !!((bits >> (pfn % 64)) & 1); } static void mark_page_idle(int page_idle_fd, uint64_t pfn) { uint64_t bits = 1ULL << (pfn % 64); TEST_ASSERT(pwrite(page_idle_fd, &bits, 8, 8 * (pfn / 64)) == 8, "Set page_idle bits for PFN 0x%" PRIx64, pfn); } static void mark_vcpu_memory_idle(struct kvm_vm *vm, struct memstress_vcpu_args *vcpu_args) { int vcpu_idx = vcpu_args->vcpu_idx; uint64_t base_gva = vcpu_args->gva; uint64_t pages = vcpu_args->pages; uint64_t page; uint64_t still_idle = 0; uint64_t no_pfn = 0; int page_idle_fd; int pagemap_fd; /* If vCPUs are using an overlapping region, let vCPU 0 mark it idle. */ if (overlap_memory_access && vcpu_idx) return; page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); TEST_ASSERT(page_idle_fd > 0, "Failed to open page_idle."); pagemap_fd = open("/proc/self/pagemap", O_RDONLY); TEST_ASSERT(pagemap_fd > 0, "Failed to open pagemap."); for (page = 0; page < pages; page++) { uint64_t gva = base_gva + page * memstress_args.guest_page_size; uint64_t pfn = lookup_pfn(pagemap_fd, vm, gva); if (!pfn) { no_pfn++; continue; } if (is_page_idle(page_idle_fd, pfn)) { still_idle++; continue; } mark_page_idle(page_idle_fd, pfn); } /* * Assumption: Less than 1% of pages are going to be swapped out from * under us during this test. */ TEST_ASSERT(no_pfn < pages / 100, "vCPU %d: No PFN for %" PRIu64 " out of %" PRIu64 " pages.", vcpu_idx, no_pfn, pages); /* * Check that at least 90% of memory has been marked idle (the rest * might not be marked idle because the pages have not yet made it to an * LRU list or the translations are still cached in the TLB). 90% is * arbitrary; high enough that we ensure most memory access went through * access tracking but low enough as to not make the test too brittle * over time and across architectures. * * When running the guest as a nested VM, "warn" instead of asserting * as the TLB size is effectively unlimited and the KVM doesn't * explicitly flush the TLB when aging SPTEs. As a result, more pages * are cached and the guest won't see the "idle" bit cleared. */ if (still_idle >= pages / 10) { #ifdef __x86_64__ TEST_ASSERT(this_cpu_has(X86_FEATURE_HYPERVISOR), "vCPU%d: Too many pages still idle (%lu out of %lu)", vcpu_idx, still_idle, pages); #endif printf("WARNING: vCPU%d: Too many pages still idle (%lu out of %lu), " "this will affect performance results.\n", vcpu_idx, still_idle, pages); } close(page_idle_fd); close(pagemap_fd); } static void assert_ucall(struct kvm_vcpu *vcpu, uint64_t expected_ucall) { struct ucall uc; uint64_t actual_ucall = get_ucall(vcpu, &uc); TEST_ASSERT(expected_ucall == actual_ucall, "Guest exited unexpectedly (expected ucall %" PRIu64 ", got %" PRIu64 ")", expected_ucall, actual_ucall); } static bool spin_wait_for_next_iteration(int *current_iteration) { int last_iteration = *current_iteration; do { if (READ_ONCE(memstress_args.stop_vcpus)) return false; *current_iteration = READ_ONCE(iteration); } while (last_iteration == *current_iteration); return true; } static void vcpu_thread_main(struct memstress_vcpu_args *vcpu_args) { struct kvm_vcpu *vcpu = vcpu_args->vcpu; struct kvm_vm *vm = memstress_args.vm; int vcpu_idx = vcpu_args->vcpu_idx; int current_iteration = 0; while (spin_wait_for_next_iteration(¤t_iteration)) { switch (READ_ONCE(iteration_work)) { case ITERATION_ACCESS_MEMORY: vcpu_run(vcpu); assert_ucall(vcpu, UCALL_SYNC); break; case ITERATION_MARK_IDLE: mark_vcpu_memory_idle(vm, vcpu_args); break; }; vcpu_last_completed_iteration[vcpu_idx] = current_iteration; } } static void spin_wait_for_vcpu(int vcpu_idx, int target_iteration) { while (READ_ONCE(vcpu_last_completed_iteration[vcpu_idx]) != target_iteration) { continue; } } /* The type of memory accesses to perform in the VM. */ enum access_type { ACCESS_READ, ACCESS_WRITE, }; static void run_iteration(struct kvm_vm *vm, int nr_vcpus, const char *description) { struct timespec ts_start; struct timespec ts_elapsed; int next_iteration, i; /* Kick off the vCPUs by incrementing iteration. */ next_iteration = ++iteration; clock_gettime(CLOCK_MONOTONIC, &ts_start); /* Wait for all vCPUs to finish the iteration. */ for (i = 0; i < nr_vcpus; i++) spin_wait_for_vcpu(i, next_iteration); ts_elapsed = timespec_elapsed(ts_start); pr_info("%-30s: %ld.%09lds\n", description, ts_elapsed.tv_sec, ts_elapsed.tv_nsec); } static void access_memory(struct kvm_vm *vm, int nr_vcpus, enum access_type access, const char *description) { memstress_set_write_percent(vm, (access == ACCESS_READ) ? 0 : 100); iteration_work = ITERATION_ACCESS_MEMORY; run_iteration(vm, nr_vcpus, description); } static void mark_memory_idle(struct kvm_vm *vm, int nr_vcpus) { /* * Even though this parallelizes the work across vCPUs, this is still a * very slow operation because page_idle forces the test to mark one pfn * at a time and the clear_young notifier serializes on the KVM MMU * lock. */ pr_debug("Marking VM memory idle (slow)...\n"); iteration_work = ITERATION_MARK_IDLE; run_iteration(vm, nr_vcpus, "Mark memory idle"); } static void run_test(enum vm_guest_mode mode, void *arg) { struct test_params *params = arg; struct kvm_vm *vm; int nr_vcpus = params->nr_vcpus; vm = memstress_create_vm(mode, nr_vcpus, params->vcpu_memory_bytes, 1, params->backing_src, !overlap_memory_access); memstress_start_vcpu_threads(nr_vcpus, vcpu_thread_main); pr_info("\n"); access_memory(vm, nr_vcpus, ACCESS_WRITE, "Populating memory"); /* As a control, read and write to the populated memory first. */ access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to populated memory"); access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from populated memory"); /* Repeat on memory that has been marked as idle. */ mark_memory_idle(vm, nr_vcpus); access_memory(vm, nr_vcpus, ACCESS_WRITE, "Writing to idle memory"); mark_memory_idle(vm, nr_vcpus); access_memory(vm, nr_vcpus, ACCESS_READ, "Reading from idle memory"); memstress_join_vcpu_threads(nr_vcpus); memstress_destroy_vm(vm); } static void help(char *name) { puts(""); printf("usage: %s [-h] [-m mode] [-b vcpu_bytes] [-v vcpus] [-o] [-s mem_type]\n", name); puts(""); printf(" -h: Display this help message."); guest_modes_help(); printf(" -b: specify the size of the memory region which should be\n" " dirtied by each vCPU. e.g. 10M or 3G.\n" " (default: 1G)\n"); printf(" -v: specify the number of vCPUs to run.\n"); printf(" -o: Overlap guest memory accesses instead of partitioning\n" " them into a separate region of memory for each vCPU.\n"); backing_src_help("-s"); puts(""); exit(0); } int main(int argc, char *argv[]) { struct test_params params = { .backing_src = DEFAULT_VM_MEM_SRC, .vcpu_memory_bytes = DEFAULT_PER_VCPU_MEM_SIZE, .nr_vcpus = 1, }; int page_idle_fd; int opt; guest_modes_append_default(); while ((opt = getopt(argc, argv, "hm:b:v:os:")) != -1) { switch (opt) { case 'm': guest_modes_cmdline(optarg); break; case 'b': params.vcpu_memory_bytes = parse_size(optarg); break; case 'v': params.nr_vcpus = atoi_positive("Number of vCPUs", optarg); break; case 'o': overlap_memory_access = true; break; case 's': params.backing_src = parse_backing_src_type(optarg); break; case 'h': default: help(argv[0]); break; } } page_idle_fd = open("/sys/kernel/mm/page_idle/bitmap", O_RDWR); __TEST_REQUIRE(page_idle_fd >= 0, "CONFIG_IDLE_PAGE_TRACKING is not enabled"); close(page_idle_fd); for_each_guest_mode(run_test, ¶ms); return 0; }