// SPDX-License-Identifier: GPL-2.0 //! Kernel errors. //! //! C header: [`include/uapi/asm-generic/errno-base.h`](../../../include/uapi/asm-generic/errno-base.h) use crate::str::CStr; use alloc::{ alloc::{AllocError, LayoutError}, collections::TryReserveError, }; use core::convert::From; use core::fmt; use core::num::TryFromIntError; use core::str::Utf8Error; /// Contains the C-compatible error codes. #[rustfmt::skip] pub mod code { macro_rules! declare_err { ($err:tt $(,)? $($doc:expr),+) => { $( #[doc = $doc] )* pub const $err: super::Error = super::Error(-(crate::bindings::$err as i32)); }; } declare_err!(EPERM, "Operation not permitted."); declare_err!(ENOENT, "No such file or directory."); declare_err!(ESRCH, "No such process."); declare_err!(EINTR, "Interrupted system call."); declare_err!(EIO, "I/O error."); declare_err!(ENXIO, "No such device or address."); declare_err!(E2BIG, "Argument list too long."); declare_err!(ENOEXEC, "Exec format error."); declare_err!(EBADF, "Bad file number."); declare_err!(ECHILD, "No child processes."); declare_err!(EAGAIN, "Try again."); declare_err!(ENOMEM, "Out of memory."); declare_err!(EACCES, "Permission denied."); declare_err!(EFAULT, "Bad address."); declare_err!(ENOTBLK, "Block device required."); declare_err!(EBUSY, "Device or resource busy."); declare_err!(EEXIST, "File exists."); declare_err!(EXDEV, "Cross-device link."); declare_err!(ENODEV, "No such device."); declare_err!(ENOTDIR, "Not a directory."); declare_err!(EISDIR, "Is a directory."); declare_err!(EINVAL, "Invalid argument."); declare_err!(ENFILE, "File table overflow."); declare_err!(EMFILE, "Too many open files."); declare_err!(ENOTTY, "Not a typewriter."); declare_err!(ETXTBSY, "Text file busy."); declare_err!(EFBIG, "File too large."); declare_err!(ENOSPC, "No space left on device."); declare_err!(ESPIPE, "Illegal seek."); declare_err!(EROFS, "Read-only file system."); declare_err!(EMLINK, "Too many links."); declare_err!(EPIPE, "Broken pipe."); declare_err!(EDOM, "Math argument out of domain of func."); declare_err!(ERANGE, "Math result not representable."); declare_err!(ERESTARTSYS, "Restart the system call."); declare_err!(ERESTARTNOINTR, "System call was interrupted by a signal and will be restarted."); declare_err!(ERESTARTNOHAND, "Restart if no handler."); declare_err!(ENOIOCTLCMD, "No ioctl command."); declare_err!(ERESTART_RESTARTBLOCK, "Restart by calling sys_restart_syscall."); declare_err!(EPROBE_DEFER, "Driver requests probe retry."); declare_err!(EOPENSTALE, "Open found a stale dentry."); declare_err!(ENOPARAM, "Parameter not supported."); declare_err!(EBADHANDLE, "Illegal NFS file handle."); declare_err!(ENOTSYNC, "Update synchronization mismatch."); declare_err!(EBADCOOKIE, "Cookie is stale."); declare_err!(ENOTSUPP, "Operation is not supported."); declare_err!(ETOOSMALL, "Buffer or request is too small."); declare_err!(ESERVERFAULT, "An untranslatable error occurred."); declare_err!(EBADTYPE, "Type not supported by server."); declare_err!(EJUKEBOX, "Request initiated, but will not complete before timeout."); declare_err!(EIOCBQUEUED, "iocb queued, will get completion event."); declare_err!(ERECALLCONFLICT, "Conflict with recalled state."); declare_err!(ENOGRACE, "NFS file lock reclaim refused."); } /// Generic integer kernel error. /// /// The kernel defines a set of integer generic error codes based on C and /// POSIX ones. These codes may have a more specific meaning in some contexts. /// /// # Invariants /// /// The value is a valid `errno` (i.e. `>= -MAX_ERRNO && < 0`). #[derive(Clone, Copy, PartialEq, Eq)] pub struct Error(core::ffi::c_int); impl Error { /// Creates an [`Error`] from a kernel error code. /// /// It is a bug to pass an out-of-range `errno`. `EINVAL` would /// be returned in such a case. pub(crate) fn from_errno(errno: core::ffi::c_int) -> Error { if errno < -(bindings::MAX_ERRNO as i32) || errno >= 0 { // TODO: Make it a `WARN_ONCE` once available. crate::pr_warn!( "attempted to create `Error` with out of range `errno`: {}", errno ); return code::EINVAL; } // INVARIANT: The check above ensures the type invariant // will hold. Error(errno) } /// Creates an [`Error`] from a kernel error code. /// /// # Safety /// /// `errno` must be within error code range (i.e. `>= -MAX_ERRNO && < 0`). unsafe fn from_errno_unchecked(errno: core::ffi::c_int) -> Error { // INVARIANT: The contract ensures the type invariant // will hold. Error(errno) } /// Returns the kernel error code. pub fn to_errno(self) -> core::ffi::c_int { self.0 } /// Returns the error encoded as a pointer. #[allow(dead_code)] pub(crate) fn to_ptr<T>(self) -> *mut T { // SAFETY: `self.0` is a valid error due to its invariant. unsafe { bindings::ERR_PTR(self.0.into()) as *mut _ } } /// Returns a string representing the error, if one exists. #[cfg(not(testlib))] pub fn name(&self) -> Option<&'static CStr> { // SAFETY: Just an FFI call, there are no extra safety requirements. let ptr = unsafe { bindings::errname(-self.0) }; if ptr.is_null() { None } else { // SAFETY: The string returned by `errname` is static and `NUL`-terminated. Some(unsafe { CStr::from_char_ptr(ptr) }) } } /// Returns a string representing the error, if one exists. /// /// When `testlib` is configured, this always returns `None` to avoid the dependency on a /// kernel function so that tests that use this (e.g., by calling [`Result::unwrap`]) can still /// run in userspace. #[cfg(testlib)] pub fn name(&self) -> Option<&'static CStr> { None } } impl fmt::Debug for Error { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.name() { // Print out number if no name can be found. None => f.debug_tuple("Error").field(&-self.0).finish(), // SAFETY: These strings are ASCII-only. Some(name) => f .debug_tuple(unsafe { core::str::from_utf8_unchecked(name) }) .finish(), } } } impl From<AllocError> for Error { fn from(_: AllocError) -> Error { code::ENOMEM } } impl From<TryFromIntError> for Error { fn from(_: TryFromIntError) -> Error { code::EINVAL } } impl From<Utf8Error> for Error { fn from(_: Utf8Error) -> Error { code::EINVAL } } impl From<TryReserveError> for Error { fn from(_: TryReserveError) -> Error { code::ENOMEM } } impl From<LayoutError> for Error { fn from(_: LayoutError) -> Error { code::ENOMEM } } impl From<core::fmt::Error> for Error { fn from(_: core::fmt::Error) -> Error { code::EINVAL } } impl From<core::convert::Infallible> for Error { fn from(e: core::convert::Infallible) -> Error { match e {} } } /// A [`Result`] with an [`Error`] error type. /// /// To be used as the return type for functions that may fail. /// /// # Error codes in C and Rust /// /// In C, it is common that functions indicate success or failure through /// their return value; modifying or returning extra data through non-`const` /// pointer parameters. In particular, in the kernel, functions that may fail /// typically return an `int` that represents a generic error code. We model /// those as [`Error`]. /// /// In Rust, it is idiomatic to model functions that may fail as returning /// a [`Result`]. Since in the kernel many functions return an error code, /// [`Result`] is a type alias for a [`core::result::Result`] that uses /// [`Error`] as its error type. /// /// Note that even if a function does not return anything when it succeeds, /// it should still be modeled as returning a `Result` rather than /// just an [`Error`]. pub type Result<T = (), E = Error> = core::result::Result<T, E>; /// Converts an integer as returned by a C kernel function to an error if it's negative, and /// `Ok(())` otherwise. pub fn to_result(err: core::ffi::c_int) -> Result { if err < 0 { Err(Error::from_errno(err)) } else { Ok(()) } } /// Transform a kernel "error pointer" to a normal pointer. /// /// Some kernel C API functions return an "error pointer" which optionally /// embeds an `errno`. Callers are supposed to check the returned pointer /// for errors. This function performs the check and converts the "error pointer" /// to a normal pointer in an idiomatic fashion. /// /// # Examples /// /// ```ignore /// # use kernel::from_err_ptr; /// # use kernel::bindings; /// fn devm_platform_ioremap_resource( /// pdev: &mut PlatformDevice, /// index: u32, /// ) -> Result<*mut core::ffi::c_void> { /// // SAFETY: FFI call. /// unsafe { /// from_err_ptr(bindings::devm_platform_ioremap_resource( /// pdev.to_ptr(), /// index, /// )) /// } /// } /// ``` // TODO: Remove `dead_code` marker once an in-kernel client is available. #[allow(dead_code)] pub(crate) fn from_err_ptr<T>(ptr: *mut T) -> Result<*mut T> { // CAST: Casting a pointer to `*const core::ffi::c_void` is always valid. let const_ptr: *const core::ffi::c_void = ptr.cast(); // SAFETY: The FFI function does not deref the pointer. if unsafe { bindings::IS_ERR(const_ptr) } { // SAFETY: The FFI function does not deref the pointer. let err = unsafe { bindings::PTR_ERR(const_ptr) }; // CAST: If `IS_ERR()` returns `true`, // then `PTR_ERR()` is guaranteed to return a // negative value greater-or-equal to `-bindings::MAX_ERRNO`, // which always fits in an `i16`, as per the invariant above. // And an `i16` always fits in an `i32`. So casting `err` to // an `i32` can never overflow, and is always valid. // // SAFETY: `IS_ERR()` ensures `err` is a // negative value greater-or-equal to `-bindings::MAX_ERRNO`. #[allow(clippy::unnecessary_cast)] return Err(unsafe { Error::from_errno_unchecked(err as core::ffi::c_int) }); } Ok(ptr) } /// Calls a closure returning a [`crate::error::Result<T>`] and converts the result to /// a C integer result. /// /// This is useful when calling Rust functions that return [`crate::error::Result<T>`] /// from inside `extern "C"` functions that need to return an integer error result. /// /// `T` should be convertible from an `i16` via `From<i16>`. /// /// # Examples /// /// ```ignore /// # use kernel::from_result; /// # use kernel::bindings; /// unsafe extern "C" fn probe_callback( /// pdev: *mut bindings::platform_device, /// ) -> core::ffi::c_int { /// from_result(|| { /// let ptr = devm_alloc(pdev)?; /// bindings::platform_set_drvdata(pdev, ptr); /// Ok(0) /// }) /// } /// ``` // TODO: Remove `dead_code` marker once an in-kernel client is available. #[allow(dead_code)] pub(crate) fn from_result<T, F>(f: F) -> T where T: From<i16>, F: FnOnce() -> Result<T>, { match f() { Ok(v) => v, // NO-OVERFLOW: negative `errno`s are no smaller than `-bindings::MAX_ERRNO`, // `-bindings::MAX_ERRNO` fits in an `i16` as per invariant above, // therefore a negative `errno` always fits in an `i16` and will not overflow. Err(e) => T::from(e.to_errno() as i16), } }