// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2001,2002,2005 Broadcom Corporation * Copyright (C) 2004 by Ralf Baechle (ralf@linux-mips.org) */ /* * BCM1480/1455-specific HT support (looking like PCI) * * This module provides the glue between Linux's PCI subsystem * and the hardware. We basically provide glue for accessing * configuration space, and set up the translation for I/O * space accesses. * * To access configuration space, we use ioremap. In the 32-bit * kernel, this consumes either 4 or 8 page table pages, and 16MB of * kernel mapped memory. Hopefully neither of these should be a huge * problem. * */ #include <linux/types.h> #include <linux/pci.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/mm.h> #include <linux/console.h> #include <linux/tty.h> #include <asm/sibyte/bcm1480_regs.h> #include <asm/sibyte/bcm1480_scd.h> #include <asm/sibyte/board.h> #include <asm/io.h> /* * Macros for calculating offsets into config space given a device * structure or dev/fun/reg */ #define CFGOFFSET(bus, devfn, where) (((bus)<<16)+((devfn)<<8)+(where)) #define CFGADDR(bus, devfn, where) CFGOFFSET((bus)->number, (devfn), where) static void *ht_cfg_space; #define PCI_BUS_ENABLED 1 #define PCI_DEVICE_MODE 2 static int bcm1480ht_bus_status; #define PCI_BRIDGE_DEVICE 0 #define HT_BRIDGE_DEVICE 1 /* * HT's level-sensitive interrupts require EOI, which is generated * through a 4MB memory-mapped region */ unsigned long ht_eoi_space; /* * Read/write 32-bit values in config space. */ static inline u32 READCFG32(u32 addr) { return *(u32 *)(ht_cfg_space + (addr&~3)); } static inline void WRITECFG32(u32 addr, u32 data) { *(u32 *)(ht_cfg_space + (addr & ~3)) = data; } /* * Some checks before doing config cycles: * In PCI Device Mode, hide everything on bus 0 except the LDT host * bridge. Otherwise, access is controlled by bridge MasterEn bits. */ static int bcm1480ht_can_access(struct pci_bus *bus, int devfn) { u32 devno; if (!(bcm1480ht_bus_status & (PCI_BUS_ENABLED | PCI_DEVICE_MODE))) return 0; if (bus->number == 0) { devno = PCI_SLOT(devfn); if (bcm1480ht_bus_status & PCI_DEVICE_MODE) return 0; } return 1; } /* * Read/write access functions for various sizes of values * in config space. Return all 1's for disallowed accesses * for a kludgy but adequate simulation of master aborts. */ static int bcm1480ht_pcibios_read(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 * val) { u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (bcm1480ht_can_access(bus, devfn)) data = READCFG32(CFGADDR(bus, devfn, where)); else data = 0xFFFFFFFF; if (size == 1) *val = (data >> ((where & 3) << 3)) & 0xff; else if (size == 2) *val = (data >> ((where & 3) << 3)) & 0xffff; else *val = data; return PCIBIOS_SUCCESSFUL; } static int bcm1480ht_pcibios_write(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { u32 cfgaddr = CFGADDR(bus, devfn, where); u32 data = 0; if ((size == 2) && (where & 1)) return PCIBIOS_BAD_REGISTER_NUMBER; else if ((size == 4) && (where & 3)) return PCIBIOS_BAD_REGISTER_NUMBER; if (!bcm1480ht_can_access(bus, devfn)) return PCIBIOS_BAD_REGISTER_NUMBER; data = READCFG32(cfgaddr); if (size == 1) data = (data & ~(0xff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else if (size == 2) data = (data & ~(0xffff << ((where & 3) << 3))) | (val << ((where & 3) << 3)); else data = val; WRITECFG32(cfgaddr, data); return PCIBIOS_SUCCESSFUL; } static int bcm1480ht_pcibios_get_busno(void) { return 0; } struct pci_ops bcm1480ht_pci_ops = { .read = bcm1480ht_pcibios_read, .write = bcm1480ht_pcibios_write, }; static struct resource bcm1480ht_mem_resource = { .name = "BCM1480 HT MEM", .start = A_BCM1480_PHYS_HT_MEM_MATCH_BYTES, .end = A_BCM1480_PHYS_HT_MEM_MATCH_BYTES + 0x1fffffffUL, .flags = IORESOURCE_MEM, }; static struct resource bcm1480ht_io_resource = { .name = "BCM1480 HT I/O", .start = A_BCM1480_PHYS_HT_IO_MATCH_BYTES, .end = A_BCM1480_PHYS_HT_IO_MATCH_BYTES + 0x01ffffffUL, .flags = IORESOURCE_IO, }; struct pci_controller bcm1480ht_controller = { .pci_ops = &bcm1480ht_pci_ops, .mem_resource = &bcm1480ht_mem_resource, .io_resource = &bcm1480ht_io_resource, .index = 1, .get_busno = bcm1480ht_pcibios_get_busno, .io_offset = A_BCM1480_PHYS_HT_IO_MATCH_BYTES, }; static int __init bcm1480ht_pcibios_init(void) { ht_cfg_space = ioremap(A_BCM1480_PHYS_HT_CFG_MATCH_BITS, 16*1024*1024); /* CFE doesn't always init all HT paths, so we always scan */ bcm1480ht_bus_status |= PCI_BUS_ENABLED; ht_eoi_space = (unsigned long) ioremap(A_BCM1480_PHYS_HT_SPECIAL_MATCH_BYTES, 4 * 1024 * 1024); bcm1480ht_controller.io_map_base = (unsigned long) ioremap(A_BCM1480_PHYS_HT_IO_MATCH_BYTES, 65536); bcm1480ht_controller.io_map_base -= bcm1480ht_controller.io_offset; register_pci_controller(&bcm1480ht_controller); return 0; } arch_initcall(bcm1480ht_pcibios_init);