// SPDX-License-Identifier: GPL-2.0-only /* * linux/arch/arm/lib/copypage-armv4mc.S * * Copyright (C) 1995-2005 Russell King * * This handles the mini data cache, as found on SA11x0 and XScale * processors. When we copy a user page page, we map it in such a way * that accesses to this page will not touch the main data cache, but * will be cached in the mini data cache. This prevents us thrashing * the main data cache on page faults. */ #include <linux/init.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/pagemap.h> #include <asm/tlbflush.h> #include <asm/cacheflush.h> #include "mm.h" #define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \ L_PTE_MT_MINICACHE) static DEFINE_RAW_SPINLOCK(minicache_lock); /* * ARMv4 mini-dcache optimised copy_user_highpage * * We flush the destination cache lines just before we write the data into the * corresponding address. Since the Dcache is read-allocate, this removes the * Dcache aliasing issue. The writes will be forwarded to the write buffer, * and merged as appropriate. * * Note: We rely on all ARMv4 processors implementing the "invalidate D line" * instruction. If your processor does not supply this, you have to write your * own copy_user_highpage that does the right thing. */ static void mc_copy_user_page(void *from, void *to) { int tmp; asm volatile ("\ .syntax unified\n\ ldmia %0!, {r2, r3, ip, lr} @ 4\n\ 1: mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\ stmia %1!, {r2, r3, ip, lr} @ 4\n\ ldmia %0!, {r2, r3, ip, lr} @ 4+1\n\ stmia %1!, {r2, r3, ip, lr} @ 4\n\ ldmia %0!, {r2, r3, ip, lr} @ 4\n\ mcr p15, 0, %1, c7, c6, 1 @ 1 invalidate D line\n\ stmia %1!, {r2, r3, ip, lr} @ 4\n\ ldmia %0!, {r2, r3, ip, lr} @ 4\n\ subs %2, %2, #1 @ 1\n\ stmia %1!, {r2, r3, ip, lr} @ 4\n\ ldmiane %0!, {r2, r3, ip, lr} @ 4\n\ bne 1b @ " : "+&r" (from), "+&r" (to), "=&r" (tmp) : "2" (PAGE_SIZE / 64) : "r2", "r3", "ip", "lr"); } void v4_mc_copy_user_highpage(struct page *to, struct page *from, unsigned long vaddr, struct vm_area_struct *vma) { struct folio *src = page_folio(from); void *kto = kmap_atomic(to); if (!test_and_set_bit(PG_dcache_clean, &src->flags)) __flush_dcache_folio(folio_flush_mapping(src), src); raw_spin_lock(&minicache_lock); set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot)); mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto); raw_spin_unlock(&minicache_lock); kunmap_atomic(kto); } /* * ARMv4 optimised clear_user_page */ void v4_mc_clear_user_highpage(struct page *page, unsigned long vaddr) { void *ptr, *kaddr = kmap_atomic(page); asm volatile("\ mov r1, %2 @ 1\n\ mov r2, #0 @ 1\n\ mov r3, #0 @ 1\n\ mov ip, #0 @ 1\n\ mov lr, #0 @ 1\n\ 1: mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\ stmia %0!, {r2, r3, ip, lr} @ 4\n\ stmia %0!, {r2, r3, ip, lr} @ 4\n\ mcr p15, 0, %0, c7, c6, 1 @ 1 invalidate D line\n\ stmia %0!, {r2, r3, ip, lr} @ 4\n\ stmia %0!, {r2, r3, ip, lr} @ 4\n\ subs r1, r1, #1 @ 1\n\ bne 1b @ 1" : "=r" (ptr) : "0" (kaddr), "I" (PAGE_SIZE / 64) : "r1", "r2", "r3", "ip", "lr"); kunmap_atomic(kaddr); } struct cpu_user_fns v4_mc_user_fns __initdata = { .cpu_clear_user_highpage = v4_mc_clear_user_highpage, .cpu_copy_user_highpage = v4_mc_copy_user_highpage, };