/* * controlfb.c -- frame buffer device for the PowerMac 'control' display * * Created 12 July 1998 by Dan Jacobowitz <dan@debian.org> * Copyright (C) 1998 Dan Jacobowitz * Copyright (C) 2001 Takashi Oe * * Mmap code by Michel Lanners <mlan@cpu.lu> * * Frame buffer structure from: * drivers/video/chipsfb.c -- frame buffer device for * Chips & Technologies 65550 chip. * * Copyright (C) 1998 Paul Mackerras * * This file is derived from the Powermac "chips" driver: * Copyright (C) 1997 Fabio Riccardi. * And from the frame buffer device for Open Firmware-initialized devices: * Copyright (C) 1997 Geert Uytterhoeven. * * Hardware information from: * control.c: Console support for PowerMac "control" display adaptor. * Copyright (C) 1996 Paul Mackerras * * Updated to 2.5 framebuffer API by Ben Herrenschmidt * <benh@kernel.crashing.org>, Paul Mackerras <paulus@samba.org>, * and James Simmons <jsimmons@infradead.org>. * * This file is subject to the terms and conditions of the GNU General Public * License. See the file COPYING in the main directory of this archive for * more details. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/fb.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/nvram.h> #include <linux/adb.h> #include <linux/cuda.h> #ifdef CONFIG_BOOTX_TEXT #include <asm/btext.h> #endif #include "macmodes.h" #include "controlfb.h" #if !defined(CONFIG_PPC_PMAC) || !defined(CONFIG_PPC32) #define invalid_vram_cache(addr) #undef in_8 #undef out_8 #undef in_le32 #undef out_le32 #define in_8(addr) 0 #define out_8(addr, val) (void)(val) #define in_le32(addr) 0 #define out_le32(addr, val) (void)(val) #ifndef pgprot_cached_wthru #define pgprot_cached_wthru(prot) (prot) #endif #else static void invalid_vram_cache(void __force *addr) { eieio(); dcbf(addr); mb(); eieio(); dcbf(addr); mb(); } #endif struct fb_par_control { int vmode, cmode; int xres, yres; int vxres, vyres; int xoffset, yoffset; int pitch; struct control_regvals regvals; unsigned long sync; unsigned char ctrl; }; #define DIRTY(z) ((x)->z != (y)->z) #define DIRTY_CMAP(z) (memcmp(&((x)->z), &((y)->z), sizeof((y)->z))) static inline int PAR_EQUAL(struct fb_par_control *x, struct fb_par_control *y) { int i, results; results = 1; for (i = 0; i < 3; i++) results &= !DIRTY(regvals.clock_params[i]); if (!results) return 0; for (i = 0; i < 16; i++) results &= !DIRTY(regvals.regs[i]); if (!results) return 0; return (!DIRTY(cmode) && !DIRTY(xres) && !DIRTY(yres) && !DIRTY(vxres) && !DIRTY(vyres)); } struct fb_info_control { struct fb_info info; struct fb_par_control par; u32 pseudo_palette[16]; struct cmap_regs __iomem *cmap_regs; unsigned long cmap_regs_phys; struct control_regs __iomem *control_regs; unsigned long control_regs_phys; unsigned long control_regs_size; __u8 __iomem *frame_buffer; unsigned long frame_buffer_phys; unsigned long fb_orig_base; unsigned long fb_orig_size; int control_use_bank2; unsigned long total_vram; unsigned char vram_attr; }; /* control register access macro */ #define CNTRL_REG(INFO,REG) (&(((INFO)->control_regs->REG).r)) /************************** Internal variables *******************************/ static struct fb_info_control *control_fb; static int default_vmode __initdata = VMODE_NVRAM; static int default_cmode __initdata = CMODE_NVRAM; static int controlfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue, u_int transp, struct fb_info *info) { struct fb_info_control *p = container_of(info, struct fb_info_control, info); __u8 r, g, b; if (regno > 255) return 1; r = red >> 8; g = green >> 8; b = blue >> 8; out_8(&p->cmap_regs->addr, regno); /* tell clut what addr to fill */ out_8(&p->cmap_regs->lut, r); /* send one color channel at */ out_8(&p->cmap_regs->lut, g); /* a time... */ out_8(&p->cmap_regs->lut, b); if (regno < 16) { int i; switch (p->par.cmode) { case CMODE_16: p->pseudo_palette[regno] = (regno << 10) | (regno << 5) | regno; break; case CMODE_32: i = (regno << 8) | regno; p->pseudo_palette[regno] = (i << 16) | i; break; } } return 0; } /******************** End of controlfb_ops implementation ******************/ static void set_control_clock(unsigned char *params) { #ifdef CONFIG_ADB_CUDA struct adb_request req; int i; for (i = 0; i < 3; ++i) { cuda_request(&req, NULL, 5, CUDA_PACKET, CUDA_GET_SET_IIC, 0x50, i + 1, params[i]); while (!req.complete) cuda_poll(); } #endif } /* * Set screen start address according to var offset values */ static inline void set_screen_start(int xoffset, int yoffset, struct fb_info_control *p) { struct fb_par_control *par = &p->par; par->xoffset = xoffset; par->yoffset = yoffset; out_le32(CNTRL_REG(p,start_addr), par->yoffset * par->pitch + (par->xoffset << par->cmode)); } #define RADACAL_WRITE(a,d) \ out_8(&p->cmap_regs->addr, (a)); \ out_8(&p->cmap_regs->dat, (d)) /* Now how about actually saying, Make it so! */ /* Some things in here probably don't need to be done each time. */ static void control_set_hardware(struct fb_info_control *p, struct fb_par_control *par) { struct control_regvals *r; volatile struct preg __iomem *rp; int i, cmode; if (PAR_EQUAL(&p->par, par)) { /* * check if only xoffset or yoffset differs. * this prevents flickers in typical VT switch case. */ if (p->par.xoffset != par->xoffset || p->par.yoffset != par->yoffset) set_screen_start(par->xoffset, par->yoffset, p); return; } p->par = *par; cmode = p->par.cmode; r = &par->regvals; /* Turn off display */ out_le32(CNTRL_REG(p,ctrl), 0x400 | par->ctrl); set_control_clock(r->clock_params); RADACAL_WRITE(0x20, r->radacal_ctrl); RADACAL_WRITE(0x21, p->control_use_bank2 ? 0 : 1); RADACAL_WRITE(0x10, 0); RADACAL_WRITE(0x11, 0); rp = &p->control_regs->vswin; for (i = 0; i < 16; ++i, ++rp) out_le32(&rp->r, r->regs[i]); out_le32(CNTRL_REG(p,pitch), par->pitch); out_le32(CNTRL_REG(p,mode), r->mode); out_le32(CNTRL_REG(p,vram_attr), p->vram_attr); out_le32(CNTRL_REG(p,start_addr), par->yoffset * par->pitch + (par->xoffset << cmode)); out_le32(CNTRL_REG(p,rfrcnt), 0x1e5); out_le32(CNTRL_REG(p,intr_ena), 0); /* Turn on display */ out_le32(CNTRL_REG(p,ctrl), par->ctrl); #ifdef CONFIG_BOOTX_TEXT btext_update_display(p->frame_buffer_phys + CTRLFB_OFF, p->par.xres, p->par.yres, (cmode == CMODE_32? 32: cmode == CMODE_16? 16: 8), p->par.pitch); #endif /* CONFIG_BOOTX_TEXT */ } /* Work out which banks of VRAM we have installed. */ /* danj: I guess the card just ignores writes to nonexistant VRAM... */ static void __init find_vram_size(struct fb_info_control *p) { int bank1, bank2; /* * Set VRAM in 2MB (bank 1) mode * VRAM Bank 2 will be accessible through offset 0x600000 if present * and VRAM Bank 1 will not respond at that offset even if present */ out_le32(CNTRL_REG(p,vram_attr), 0x31); out_8(&p->frame_buffer[0x600000], 0xb3); out_8(&p->frame_buffer[0x600001], 0x71); invalid_vram_cache(&p->frame_buffer[0x600000]); bank2 = (in_8(&p->frame_buffer[0x600000]) == 0xb3) && (in_8(&p->frame_buffer[0x600001]) == 0x71); /* * Set VRAM in 2MB (bank 2) mode * VRAM Bank 1 will be accessible through offset 0x000000 if present * and VRAM Bank 2 will not respond at that offset even if present */ out_le32(CNTRL_REG(p,vram_attr), 0x39); out_8(&p->frame_buffer[0], 0x5a); out_8(&p->frame_buffer[1], 0xc7); invalid_vram_cache(&p->frame_buffer[0]); bank1 = (in_8(&p->frame_buffer[0]) == 0x5a) && (in_8(&p->frame_buffer[1]) == 0xc7); if (bank2) { if (!bank1) { /* * vram bank 2 only */ p->control_use_bank2 = 1; p->vram_attr = 0x39; p->frame_buffer += 0x600000; p->frame_buffer_phys += 0x600000; } else { /* * 4 MB vram */ p->vram_attr = 0x51; } } else { /* * vram bank 1 only */ p->vram_attr = 0x31; } p->total_vram = (bank1 + bank2) * 0x200000; printk(KERN_INFO "controlfb: VRAM Total = %dMB " "(%dMB @ bank 1, %dMB @ bank 2)\n", (bank1 + bank2) << 1, bank1 << 1, bank2 << 1); } /* * Get the monitor sense value. * Note that this can be called before calibrate_delay, * so we can't use udelay. */ static int read_control_sense(struct fb_info_control *p) { int sense; out_le32(CNTRL_REG(p,mon_sense), 7); /* drive all lines high */ __delay(200); out_le32(CNTRL_REG(p,mon_sense), 077); /* turn off drivers */ __delay(2000); sense = (in_le32(CNTRL_REG(p,mon_sense)) & 0x1c0) << 2; /* drive each sense line low in turn and collect the other 2 */ out_le32(CNTRL_REG(p,mon_sense), 033); /* drive A low */ __delay(2000); sense |= (in_le32(CNTRL_REG(p,mon_sense)) & 0xc0) >> 2; out_le32(CNTRL_REG(p,mon_sense), 055); /* drive B low */ __delay(2000); sense |= ((in_le32(CNTRL_REG(p,mon_sense)) & 0x100) >> 5) | ((in_le32(CNTRL_REG(p,mon_sense)) & 0x40) >> 4); out_le32(CNTRL_REG(p,mon_sense), 066); /* drive C low */ __delay(2000); sense |= (in_le32(CNTRL_REG(p,mon_sense)) & 0x180) >> 7; out_le32(CNTRL_REG(p,mon_sense), 077); /* turn off drivers */ return sense; } /********************** Various translation functions **********************/ #define CONTROL_PIXCLOCK_BASE 256016 #define CONTROL_PIXCLOCK_MIN 5000 /* ~ 200 MHz dot clock */ /* * calculate the clock parameters to be sent to CUDA according to given * pixclock in pico second. */ static int calc_clock_params(unsigned long clk, unsigned char *param) { unsigned long p0, p1, p2, k, l, m, n, min; if (clk > (CONTROL_PIXCLOCK_BASE << 3)) return 1; p2 = ((clk << 4) < CONTROL_PIXCLOCK_BASE)? 3: 2; l = clk << p2; p0 = 0; p1 = 0; for (k = 1, min = l; k < 32; k++) { unsigned long rem; m = CONTROL_PIXCLOCK_BASE * k; n = m / l; rem = m % l; if (n && (n < 128) && rem < min) { p0 = k; p1 = n; min = rem; } } if (!p0 || !p1) return 1; param[0] = p0; param[1] = p1; param[2] = p2; return 0; } /* * This routine takes a user-supplied var, and picks the best vmode/cmode * from it. */ static int control_var_to_par(struct fb_var_screeninfo *var, struct fb_par_control *par, const struct fb_info *fb_info) { int cmode, piped_diff, hstep; unsigned hperiod, hssync, hsblank, hesync, heblank, piped, heq, hlfln, hserr, vperiod, vssync, vesync, veblank, vsblank, vswin, vewin; unsigned long pixclock; struct fb_info_control *p = container_of(fb_info, struct fb_info_control, info); struct control_regvals *r = &par->regvals; switch (var->bits_per_pixel) { case 8: par->cmode = CMODE_8; if (p->total_vram > 0x200000) { r->mode = 3; r->radacal_ctrl = 0x20; piped_diff = 13; } else { r->mode = 2; r->radacal_ctrl = 0x10; piped_diff = 9; } break; case 15: case 16: par->cmode = CMODE_16; if (p->total_vram > 0x200000) { r->mode = 2; r->radacal_ctrl = 0x24; piped_diff = 5; } else { r->mode = 1; r->radacal_ctrl = 0x14; piped_diff = 3; } break; case 32: par->cmode = CMODE_32; if (p->total_vram > 0x200000) { r->mode = 1; r->radacal_ctrl = 0x28; } else { r->mode = 0; r->radacal_ctrl = 0x18; } piped_diff = 1; break; default: return -EINVAL; } /* * adjust xres and vxres so that the corresponding memory widths are * 32-byte aligned */ hstep = 31 >> par->cmode; par->xres = (var->xres + hstep) & ~hstep; par->vxres = (var->xres_virtual + hstep) & ~hstep; par->xoffset = (var->xoffset + hstep) & ~hstep; if (par->vxres < par->xres) par->vxres = par->xres; par->pitch = par->vxres << par->cmode; par->yres = var->yres; par->vyres = var->yres_virtual; par->yoffset = var->yoffset; if (par->vyres < par->yres) par->vyres = par->yres; par->sync = var->sync; if (par->pitch * par->vyres + CTRLFB_OFF > p->total_vram) return -EINVAL; if (par->xoffset + par->xres > par->vxres) par->xoffset = par->vxres - par->xres; if (par->yoffset + par->yres > par->vyres) par->yoffset = par->vyres - par->yres; pixclock = (var->pixclock < CONTROL_PIXCLOCK_MIN)? CONTROL_PIXCLOCK_MIN: var->pixclock; if (calc_clock_params(pixclock, r->clock_params)) return -EINVAL; hperiod = ((var->left_margin + par->xres + var->right_margin + var->hsync_len) >> 1) - 2; hssync = hperiod + 1; hsblank = hssync - (var->right_margin >> 1); hesync = (var->hsync_len >> 1) - 1; heblank = (var->left_margin >> 1) + hesync; piped = heblank - piped_diff; heq = var->hsync_len >> 2; hlfln = (hperiod+2) >> 1; hserr = hssync-hesync; vperiod = (var->vsync_len + var->lower_margin + par->yres + var->upper_margin) << 1; vssync = vperiod - 2; vesync = (var->vsync_len << 1) - vperiod + vssync; veblank = (var->upper_margin << 1) + vesync; vsblank = vssync - (var->lower_margin << 1); vswin = (vsblank+vssync) >> 1; vewin = (vesync+veblank) >> 1; r->regs[0] = vswin; r->regs[1] = vsblank; r->regs[2] = veblank; r->regs[3] = vewin; r->regs[4] = vesync; r->regs[5] = vssync; r->regs[6] = vperiod; r->regs[7] = piped; r->regs[8] = hperiod; r->regs[9] = hsblank; r->regs[10] = heblank; r->regs[11] = hesync; r->regs[12] = hssync; r->regs[13] = heq; r->regs[14] = hlfln; r->regs[15] = hserr; if (par->xres >= 1280 && par->cmode >= CMODE_16) par->ctrl = 0x7f; else par->ctrl = 0x3b; if (mac_var_to_vmode(var, &par->vmode, &cmode)) par->vmode = 0; return 0; } /* * Convert hardware data in par to an fb_var_screeninfo */ static void control_par_to_var(struct fb_par_control *par, struct fb_var_screeninfo *var) { struct control_regints *rv; rv = (struct control_regints *) par->regvals.regs; memset(var, 0, sizeof(*var)); var->xres = par->xres; var->yres = par->yres; var->xres_virtual = par->vxres; var->yres_virtual = par->vyres; var->xoffset = par->xoffset; var->yoffset = par->yoffset; switch(par->cmode) { default: case CMODE_8: var->bits_per_pixel = 8; var->red.length = 8; var->green.length = 8; var->blue.length = 8; break; case CMODE_16: /* RGB 555 */ var->bits_per_pixel = 16; var->red.offset = 10; var->red.length = 5; var->green.offset = 5; var->green.length = 5; var->blue.length = 5; break; case CMODE_32: /* RGB 888 */ var->bits_per_pixel = 32; var->red.offset = 16; var->red.length = 8; var->green.offset = 8; var->green.length = 8; var->blue.length = 8; var->transp.offset = 24; var->transp.length = 8; break; } var->height = -1; var->width = -1; var->vmode = FB_VMODE_NONINTERLACED; var->left_margin = (rv->heblank - rv->hesync) << 1; var->right_margin = (rv->hssync - rv->hsblank) << 1; var->hsync_len = (rv->hperiod + 2 - rv->hssync + rv->hesync) << 1; var->upper_margin = (rv->veblank - rv->vesync) >> 1; var->lower_margin = (rv->vssync - rv->vsblank) >> 1; var->vsync_len = (rv->vperiod - rv->vssync + rv->vesync) >> 1; var->sync = par->sync; /* * 10^12 * clock_params[0] / (3906400 * clock_params[1] * * 2^clock_params[2]) * (10^12 * clock_params[0] / (3906400 * clock_params[1])) * >> clock_params[2] */ /* (255990.17 * clock_params[0] / clock_params[1]) >> clock_params[2] */ var->pixclock = CONTROL_PIXCLOCK_BASE * par->regvals.clock_params[0]; var->pixclock /= par->regvals.clock_params[1]; var->pixclock >>= par->regvals.clock_params[2]; } /******************** The functions for controlfb_ops ********************/ /* * Checks a var structure */ static int controlfb_check_var (struct fb_var_screeninfo *var, struct fb_info *info) { struct fb_par_control par; int err; err = control_var_to_par(var, &par, info); if (err) return err; control_par_to_var(&par, var); return 0; } /* * Applies current var to display */ static int controlfb_set_par (struct fb_info *info) { struct fb_info_control *p = container_of(info, struct fb_info_control, info); struct fb_par_control par; int err; if((err = control_var_to_par(&info->var, &par, info))) { printk (KERN_ERR "controlfb_set_par: error calling" " control_var_to_par: %d.\n", err); return err; } control_set_hardware(p, &par); info->fix.visual = (p->par.cmode == CMODE_8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_DIRECTCOLOR; info->fix.line_length = p->par.pitch; info->fix.xpanstep = 32 >> p->par.cmode; info->fix.ypanstep = 1; return 0; } static int controlfb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info) { unsigned int xoffset, hstep; struct fb_info_control *p = container_of(info, struct fb_info_control, info); struct fb_par_control *par = &p->par; /* * make sure start addr will be 32-byte aligned */ hstep = 0x1f >> par->cmode; xoffset = (var->xoffset + hstep) & ~hstep; if (xoffset+par->xres > par->vxres || var->yoffset+par->yres > par->vyres) return -EINVAL; set_screen_start(xoffset, var->yoffset, p); return 0; } static int controlfb_blank(int blank_mode, struct fb_info *info) { struct fb_info_control __maybe_unused *p = container_of(info, struct fb_info_control, info); unsigned ctrl; ctrl = in_le32(CNTRL_REG(p, ctrl)); if (blank_mode > 0) switch (blank_mode) { case FB_BLANK_VSYNC_SUSPEND: ctrl &= ~3; break; case FB_BLANK_HSYNC_SUSPEND: ctrl &= ~0x30; break; case FB_BLANK_POWERDOWN: ctrl &= ~0x33; fallthrough; case FB_BLANK_NORMAL: ctrl |= 0x400; break; default: break; } else { ctrl &= ~0x400; ctrl |= 0x33; } out_le32(CNTRL_REG(p,ctrl), ctrl); return 0; } /* * Private mmap since we want to have a different caching on the framebuffer * for controlfb. * Note there's no locking in here; it's done in fb_mmap() in fbmem.c. */ static int controlfb_mmap(struct fb_info *info, struct vm_area_struct *vma) { unsigned long mmio_pgoff; unsigned long start; u32 len; start = info->fix.smem_start; len = info->fix.smem_len; mmio_pgoff = PAGE_ALIGN((start & ~PAGE_MASK) + len) >> PAGE_SHIFT; if (vma->vm_pgoff >= mmio_pgoff) { if (info->var.accel_flags) return -EINVAL; vma->vm_pgoff -= mmio_pgoff; start = info->fix.mmio_start; len = info->fix.mmio_len; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); } else { /* framebuffer */ vma->vm_page_prot = pgprot_cached_wthru(vma->vm_page_prot); } return vm_iomap_memory(vma, start, len); } static const struct fb_ops controlfb_ops = { .owner = THIS_MODULE, .fb_check_var = controlfb_check_var, .fb_set_par = controlfb_set_par, .fb_setcolreg = controlfb_setcolreg, .fb_pan_display = controlfb_pan_display, .fb_blank = controlfb_blank, .fb_mmap = controlfb_mmap, .fb_fillrect = cfb_fillrect, .fb_copyarea = cfb_copyarea, .fb_imageblit = cfb_imageblit, }; /* * Set misc info vars for this driver */ static void __init control_init_info(struct fb_info *info, struct fb_info_control *p) { /* Fill fb_info */ info->par = &p->par; info->fbops = &controlfb_ops; info->pseudo_palette = p->pseudo_palette; info->flags = FBINFO_HWACCEL_YPAN; info->screen_base = p->frame_buffer + CTRLFB_OFF; fb_alloc_cmap(&info->cmap, 256, 0); /* Fill fix common fields */ strcpy(info->fix.id, "control"); info->fix.mmio_start = p->control_regs_phys; info->fix.mmio_len = sizeof(struct control_regs); info->fix.type = FB_TYPE_PACKED_PIXELS; info->fix.smem_start = p->frame_buffer_phys + CTRLFB_OFF; info->fix.smem_len = p->total_vram - CTRLFB_OFF; info->fix.ywrapstep = 0; info->fix.type_aux = 0; info->fix.accel = FB_ACCEL_NONE; } /* * Parse user specified options (`video=controlfb:') */ static void __init control_setup(char *options) { char *this_opt; if (!options || !*options) return; while ((this_opt = strsep(&options, ",")) != NULL) { if (!strncmp(this_opt, "vmode:", 6)) { int vmode = simple_strtoul(this_opt+6, NULL, 0); if (vmode > 0 && vmode <= VMODE_MAX && control_mac_modes[vmode - 1].m[1] >= 0) default_vmode = vmode; } else if (!strncmp(this_opt, "cmode:", 6)) { int depth = simple_strtoul(this_opt+6, NULL, 0); switch (depth) { case CMODE_8: case CMODE_16: case CMODE_32: default_cmode = depth; break; case 8: default_cmode = CMODE_8; break; case 15: case 16: default_cmode = CMODE_16; break; case 24: case 32: default_cmode = CMODE_32; break; } } } } /* * finish off the driver initialization and register */ static int __init init_control(struct fb_info_control *p) { int full, sense, vmode, cmode, vyres; struct fb_var_screeninfo var; int rc; printk(KERN_INFO "controlfb: "); full = p->total_vram == 0x400000; /* Try to pick a video mode out of NVRAM if we have one. */ cmode = default_cmode; if (IS_REACHABLE(CONFIG_NVRAM) && cmode == CMODE_NVRAM) cmode = nvram_read_byte(NV_CMODE); if (cmode < CMODE_8 || cmode > CMODE_32) cmode = CMODE_8; vmode = default_vmode; if (IS_REACHABLE(CONFIG_NVRAM) && vmode == VMODE_NVRAM) vmode = nvram_read_byte(NV_VMODE); if (vmode < 1 || vmode > VMODE_MAX || control_mac_modes[vmode - 1].m[full] < cmode) { sense = read_control_sense(p); printk(KERN_CONT "Monitor sense value = 0x%x, ", sense); vmode = mac_map_monitor_sense(sense); if (control_mac_modes[vmode - 1].m[full] < 0) vmode = VMODE_640_480_60; cmode = min(cmode, control_mac_modes[vmode - 1].m[full]); } /* Initialize info structure */ control_init_info(&p->info, p); /* Setup default var */ if (mac_vmode_to_var(vmode, cmode, &var) < 0) { /* This shouldn't happen! */ printk("mac_vmode_to_var(%d, %d,) failed\n", vmode, cmode); try_again: vmode = VMODE_640_480_60; cmode = CMODE_8; if (mac_vmode_to_var(vmode, cmode, &var) < 0) { printk(KERN_ERR "controlfb: mac_vmode_to_var() failed\n"); return -ENXIO; } printk(KERN_INFO "controlfb: "); } printk("using video mode %d and color mode %d.\n", vmode, cmode); vyres = (p->total_vram - CTRLFB_OFF) / (var.xres << cmode); if (vyres > var.yres) var.yres_virtual = vyres; /* Apply default var */ var.activate = FB_ACTIVATE_NOW; rc = fb_set_var(&p->info, &var); if (rc && (vmode != VMODE_640_480_60 || cmode != CMODE_8)) goto try_again; /* Register with fbdev layer */ if (register_framebuffer(&p->info) < 0) return -ENXIO; fb_info(&p->info, "control display adapter\n"); return 0; } static void control_cleanup(void) { struct fb_info_control *p = control_fb; if (!p) return; if (p->cmap_regs) iounmap(p->cmap_regs); if (p->control_regs) iounmap(p->control_regs); if (p->frame_buffer) { if (p->control_use_bank2) p->frame_buffer -= 0x600000; iounmap(p->frame_buffer); } if (p->cmap_regs_phys) release_mem_region(p->cmap_regs_phys, 0x1000); if (p->control_regs_phys) release_mem_region(p->control_regs_phys, p->control_regs_size); if (p->fb_orig_base) release_mem_region(p->fb_orig_base, p->fb_orig_size); kfree(p); } /* * find "control" and initialize */ static int __init control_of_init(struct device_node *dp) { struct fb_info_control *p; struct resource fb_res, reg_res; if (control_fb) { printk(KERN_ERR "controlfb: only one control is supported\n"); return -ENXIO; } if (of_pci_address_to_resource(dp, 2, &fb_res) || of_pci_address_to_resource(dp, 1, ®_res)) { printk(KERN_ERR "can't get 2 addresses for control\n"); return -ENXIO; } p = kzalloc(sizeof(*p), GFP_KERNEL); if (!p) return -ENOMEM; control_fb = p; /* save it for cleanups */ /* Map in frame buffer and registers */ p->fb_orig_base = fb_res.start; p->fb_orig_size = resource_size(&fb_res); /* use the big-endian aperture (??) */ p->frame_buffer_phys = fb_res.start + 0x800000; p->control_regs_phys = reg_res.start; p->control_regs_size = resource_size(®_res); if (!p->fb_orig_base || !request_mem_region(p->fb_orig_base,p->fb_orig_size,"controlfb")) { p->fb_orig_base = 0; goto error_out; } /* map at most 8MB for the frame buffer */ p->frame_buffer = ioremap_wt(p->frame_buffer_phys, 0x800000); if (!p->control_regs_phys || !request_mem_region(p->control_regs_phys, p->control_regs_size, "controlfb regs")) { p->control_regs_phys = 0; goto error_out; } p->control_regs = ioremap(p->control_regs_phys, p->control_regs_size); p->cmap_regs_phys = 0xf301b000; /* XXX not in prom? */ if (!request_mem_region(p->cmap_regs_phys, 0x1000, "controlfb cmap")) { p->cmap_regs_phys = 0; goto error_out; } p->cmap_regs = ioremap(p->cmap_regs_phys, 0x1000); if (!p->cmap_regs || !p->control_regs || !p->frame_buffer) goto error_out; find_vram_size(p); if (!p->total_vram) goto error_out; if (init_control(p) < 0) goto error_out; return 0; error_out: control_cleanup(); return -ENXIO; } static int __init control_init(void) { struct device_node *dp; char *option = NULL; int ret = -ENXIO; if (fb_get_options("controlfb", &option)) return -ENODEV; control_setup(option); dp = of_find_node_by_name(NULL, "control"); if (dp && !control_of_init(dp)) ret = 0; of_node_put(dp); return ret; } device_initcall(control_init);