// SPDX-License-Identifier: GPL-2.0 /* * arch/sh/kernel/hw_breakpoint.c * * Unified kernel/user-space hardware breakpoint facility for the on-chip UBC. * * Copyright (C) 2009 - 2010 Paul Mundt */ #include <linux/init.h> #include <linux/perf_event.h> #include <linux/sched/signal.h> #include <linux/hw_breakpoint.h> #include <linux/percpu.h> #include <linux/kallsyms.h> #include <linux/notifier.h> #include <linux/kprobes.h> #include <linux/kdebug.h> #include <linux/io.h> #include <linux/clk.h> #include <asm/hw_breakpoint.h> #include <asm/mmu_context.h> #include <asm/ptrace.h> #include <asm/traps.h> /* * Stores the breakpoints currently in use on each breakpoint address * register for each cpus */ static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); /* * A dummy placeholder for early accesses until the CPUs get a chance to * register their UBCs later in the boot process. */ static struct sh_ubc ubc_dummy = { .num_events = 0 }; static struct sh_ubc *sh_ubc __read_mostly = &ubc_dummy; /* * Install a perf counter breakpoint. * * We seek a free UBC channel and use it for this breakpoint. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ int arch_install_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); int i; for (i = 0; i < sh_ubc->num_events; i++) { struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); if (!*slot) { *slot = bp; break; } } if (WARN_ONCE(i == sh_ubc->num_events, "Can't find any breakpoint slot")) return -EBUSY; clk_enable(sh_ubc->clk); sh_ubc->enable(info, i); return 0; } /* * Uninstall the breakpoint contained in the given counter. * * First we search the debug address register it uses and then we disable * it. * * Atomic: we hold the counter->ctx->lock and we only handle variables * and registers local to this cpu. */ void arch_uninstall_hw_breakpoint(struct perf_event *bp) { struct arch_hw_breakpoint *info = counter_arch_bp(bp); int i; for (i = 0; i < sh_ubc->num_events; i++) { struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); if (*slot == bp) { *slot = NULL; break; } } if (WARN_ONCE(i == sh_ubc->num_events, "Can't find any breakpoint slot")) return; sh_ubc->disable(info, i); clk_disable(sh_ubc->clk); } static int get_hbp_len(u16 hbp_len) { unsigned int len_in_bytes = 0; switch (hbp_len) { case SH_BREAKPOINT_LEN_1: len_in_bytes = 1; break; case SH_BREAKPOINT_LEN_2: len_in_bytes = 2; break; case SH_BREAKPOINT_LEN_4: len_in_bytes = 4; break; case SH_BREAKPOINT_LEN_8: len_in_bytes = 8; break; } return len_in_bytes; } /* * Check for virtual address in kernel space. */ int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) { unsigned int len; unsigned long va; va = hw->address; len = get_hbp_len(hw->len); return (va >= TASK_SIZE) && ((va + len - 1) >= TASK_SIZE); } int arch_bp_generic_fields(int sh_len, int sh_type, int *gen_len, int *gen_type) { /* Len */ switch (sh_len) { case SH_BREAKPOINT_LEN_1: *gen_len = HW_BREAKPOINT_LEN_1; break; case SH_BREAKPOINT_LEN_2: *gen_len = HW_BREAKPOINT_LEN_2; break; case SH_BREAKPOINT_LEN_4: *gen_len = HW_BREAKPOINT_LEN_4; break; case SH_BREAKPOINT_LEN_8: *gen_len = HW_BREAKPOINT_LEN_8; break; default: return -EINVAL; } /* Type */ switch (sh_type) { case SH_BREAKPOINT_READ: *gen_type = HW_BREAKPOINT_R; break; case SH_BREAKPOINT_WRITE: *gen_type = HW_BREAKPOINT_W; break; case SH_BREAKPOINT_RW: *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; break; default: return -EINVAL; } return 0; } static int arch_build_bp_info(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { hw->address = attr->bp_addr; /* Len */ switch (attr->bp_len) { case HW_BREAKPOINT_LEN_1: hw->len = SH_BREAKPOINT_LEN_1; break; case HW_BREAKPOINT_LEN_2: hw->len = SH_BREAKPOINT_LEN_2; break; case HW_BREAKPOINT_LEN_4: hw->len = SH_BREAKPOINT_LEN_4; break; case HW_BREAKPOINT_LEN_8: hw->len = SH_BREAKPOINT_LEN_8; break; default: return -EINVAL; } /* Type */ switch (attr->bp_type) { case HW_BREAKPOINT_R: hw->type = SH_BREAKPOINT_READ; break; case HW_BREAKPOINT_W: hw->type = SH_BREAKPOINT_WRITE; break; case HW_BREAKPOINT_W | HW_BREAKPOINT_R: hw->type = SH_BREAKPOINT_RW; break; default: return -EINVAL; } return 0; } /* * Validate the arch-specific HW Breakpoint register settings */ int hw_breakpoint_arch_parse(struct perf_event *bp, const struct perf_event_attr *attr, struct arch_hw_breakpoint *hw) { unsigned int align; int ret; ret = arch_build_bp_info(bp, attr, hw); if (ret) return ret; ret = -EINVAL; switch (hw->len) { case SH_BREAKPOINT_LEN_1: align = 0; break; case SH_BREAKPOINT_LEN_2: align = 1; break; case SH_BREAKPOINT_LEN_4: align = 3; break; case SH_BREAKPOINT_LEN_8: align = 7; break; default: return ret; } /* * Check that the low-order bits of the address are appropriate * for the alignment implied by len. */ if (hw->address & align) return -EINVAL; return 0; } /* * Release the user breakpoints used by ptrace */ void flush_ptrace_hw_breakpoint(struct task_struct *tsk) { int i; struct thread_struct *t = &tsk->thread; for (i = 0; i < sh_ubc->num_events; i++) { unregister_hw_breakpoint(t->ptrace_bps[i]); t->ptrace_bps[i] = NULL; } } static int __kprobes hw_breakpoint_handler(struct die_args *args) { int cpu, i, rc = NOTIFY_STOP; struct perf_event *bp; unsigned int cmf, resume_mask; /* * Do an early return if none of the channels triggered. */ cmf = sh_ubc->triggered_mask(); if (unlikely(!cmf)) return NOTIFY_DONE; /* * By default, resume all of the active channels. */ resume_mask = sh_ubc->active_mask(); /* * Disable breakpoints during exception handling. */ sh_ubc->disable_all(); cpu = get_cpu(); for (i = 0; i < sh_ubc->num_events; i++) { unsigned long event_mask = (1 << i); if (likely(!(cmf & event_mask))) continue; /* * The counter may be concurrently released but that can only * occur from a call_rcu() path. We can then safely fetch * the breakpoint, use its callback, touch its counter * while we are in an rcu_read_lock() path. */ rcu_read_lock(); bp = per_cpu(bp_per_reg[i], cpu); if (bp) rc = NOTIFY_DONE; /* * Reset the condition match flag to denote completion of * exception handling. */ sh_ubc->clear_triggered_mask(event_mask); /* * bp can be NULL due to concurrent perf counter * removing. */ if (!bp) { rcu_read_unlock(); break; } /* * Don't restore the channel if the breakpoint is from * ptrace, as it always operates in one-shot mode. */ if (bp->overflow_handler == ptrace_triggered) resume_mask &= ~(1 << i); perf_bp_event(bp, args->regs); /* Deliver the signal to userspace */ if (!arch_check_bp_in_kernelspace(&bp->hw.info)) { force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)NULL); } rcu_read_unlock(); } if (cmf == 0) rc = NOTIFY_DONE; sh_ubc->enable_all(resume_mask); put_cpu(); return rc; } BUILD_TRAP_HANDLER(breakpoint) { unsigned long ex = lookup_exception_vector(); TRAP_HANDLER_DECL; notify_die(DIE_BREAKPOINT, "breakpoint", regs, 0, ex, SIGTRAP); } /* * Handle debug exception notifications. */ int __kprobes hw_breakpoint_exceptions_notify(struct notifier_block *unused, unsigned long val, void *data) { struct die_args *args = data; if (val != DIE_BREAKPOINT) return NOTIFY_DONE; /* * If the breakpoint hasn't been triggered by the UBC, it's * probably from a debugger, so don't do anything more here. * * This also permits the UBC interface clock to remain off for * non-UBC breakpoints, as we don't need to check the triggered * or active channel masks. */ if (args->trapnr != sh_ubc->trap_nr) return NOTIFY_DONE; return hw_breakpoint_handler(data); } void hw_breakpoint_pmu_read(struct perf_event *bp) { /* TODO */ } int register_sh_ubc(struct sh_ubc *ubc) { /* Bail if it's already assigned */ if (sh_ubc != &ubc_dummy) return -EBUSY; sh_ubc = ubc; pr_info("HW Breakpoints: %s UBC support registered\n", ubc->name); WARN_ON(ubc->num_events > HBP_NUM); return 0; }