/* * HP i8042-based System Device Controller driver. * * Copyright (c) 2001 Brian S. Julin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL"). * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * * References: * System Device Controller Microprocessor Firmware Theory of Operation * for Part Number 1820-4784 Revision B. Dwg No. A-1820-4784-2 * Helge Deller's original hilkbd.c port for PA-RISC. * * * Driver theory of operation: * * hp_sdc_put does all writing to the SDC. ISR can run on a different * CPU than hp_sdc_put, but only one CPU runs hp_sdc_put at a time * (it cannot really benefit from SMP anyway.) A tasket fit this perfectly. * * All data coming back from the SDC is sent via interrupt and can be read * fully in the ISR, so there are no latency/throughput problems there. * The problem is with output, due to the slow clock speed of the SDC * compared to the CPU. This should not be too horrible most of the time, * but if used with HIL devices that support the multibyte transfer command, * keeping outbound throughput flowing at the 6500KBps that the HIL is * capable of is more than can be done at HZ=100. * * Busy polling for IBF clear wastes CPU cycles and bus cycles. hp_sdc.ibf * is set to 0 when the IBF flag in the status register has cleared. ISR * may do this, and may also access the parts of queued transactions related * to reading data back from the SDC, but otherwise will not touch the * hp_sdc state. Whenever a register is written hp_sdc.ibf is set to 1. * * The i8042 write index and the values in the 4-byte input buffer * starting at 0x70 are kept track of in hp_sdc.wi, and .r7[], respectively, * to minimize the amount of IO needed to the SDC. However these values * do not need to be locked since they are only ever accessed by hp_sdc_put. * * A timer task schedules the tasklet once per second just to make * sure it doesn't freeze up and to allow for bad reads to time out. */ #include <linux/hp_sdc.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/module.h> #include <linux/ioport.h> #include <linux/time.h> #include <linux/semaphore.h> #include <linux/slab.h> #include <linux/hil.h> #include <asm/io.h> /* Machine-specific abstraction */ #if defined(__hppa__) # include <asm/parisc-device.h> # define sdc_readb(p) gsc_readb(p) # define sdc_writeb(v,p) gsc_writeb((v),(p)) #elif defined(__mc68000__) #include <linux/uaccess.h> # define sdc_readb(p) in_8(p) # define sdc_writeb(v,p) out_8((p),(v)) #else # error "HIL is not supported on this platform" #endif #define PREFIX "HP SDC: " MODULE_AUTHOR("Brian S. Julin <bri@calyx.com>"); MODULE_DESCRIPTION("HP i8042-based SDC Driver"); MODULE_LICENSE("Dual BSD/GPL"); EXPORT_SYMBOL(hp_sdc_request_timer_irq); EXPORT_SYMBOL(hp_sdc_request_hil_irq); EXPORT_SYMBOL(hp_sdc_request_cooked_irq); EXPORT_SYMBOL(hp_sdc_release_timer_irq); EXPORT_SYMBOL(hp_sdc_release_hil_irq); EXPORT_SYMBOL(hp_sdc_release_cooked_irq); EXPORT_SYMBOL(__hp_sdc_enqueue_transaction); EXPORT_SYMBOL(hp_sdc_enqueue_transaction); EXPORT_SYMBOL(hp_sdc_dequeue_transaction); static bool hp_sdc_disabled; module_param_named(no_hpsdc, hp_sdc_disabled, bool, 0); MODULE_PARM_DESC(no_hpsdc, "Do not enable HP SDC driver."); static hp_i8042_sdc hp_sdc; /* All driver state is kept in here. */ /*************** primitives for use in any context *********************/ static inline uint8_t hp_sdc_status_in8(void) { uint8_t status; unsigned long flags; write_lock_irqsave(&hp_sdc.ibf_lock, flags); status = sdc_readb(hp_sdc.status_io); if (!(status & HP_SDC_STATUS_IBF)) hp_sdc.ibf = 0; write_unlock_irqrestore(&hp_sdc.ibf_lock, flags); return status; } static inline uint8_t hp_sdc_data_in8(void) { return sdc_readb(hp_sdc.data_io); } static inline void hp_sdc_status_out8(uint8_t val) { unsigned long flags; write_lock_irqsave(&hp_sdc.ibf_lock, flags); hp_sdc.ibf = 1; if ((val & 0xf0) == 0xe0) hp_sdc.wi = 0xff; sdc_writeb(val, hp_sdc.status_io); write_unlock_irqrestore(&hp_sdc.ibf_lock, flags); } static inline void hp_sdc_data_out8(uint8_t val) { unsigned long flags; write_lock_irqsave(&hp_sdc.ibf_lock, flags); hp_sdc.ibf = 1; sdc_writeb(val, hp_sdc.data_io); write_unlock_irqrestore(&hp_sdc.ibf_lock, flags); } /* Care must be taken to only invoke hp_sdc_spin_ibf when * absolutely needed, or in rarely invoked subroutines. * Not only does it waste CPU cycles, it also wastes bus cycles. */ static inline void hp_sdc_spin_ibf(void) { unsigned long flags; rwlock_t *lock; lock = &hp_sdc.ibf_lock; read_lock_irqsave(lock, flags); if (!hp_sdc.ibf) { read_unlock_irqrestore(lock, flags); return; } read_unlock(lock); write_lock(lock); while (sdc_readb(hp_sdc.status_io) & HP_SDC_STATUS_IBF) { } hp_sdc.ibf = 0; write_unlock_irqrestore(lock, flags); } /************************ Interrupt context functions ************************/ static void hp_sdc_take(int irq, void *dev_id, uint8_t status, uint8_t data) { hp_sdc_transaction *curr; read_lock(&hp_sdc.rtq_lock); if (hp_sdc.rcurr < 0) { read_unlock(&hp_sdc.rtq_lock); return; } curr = hp_sdc.tq[hp_sdc.rcurr]; read_unlock(&hp_sdc.rtq_lock); curr->seq[curr->idx++] = status; curr->seq[curr->idx++] = data; hp_sdc.rqty -= 2; hp_sdc.rtime = ktime_get(); if (hp_sdc.rqty <= 0) { /* All data has been gathered. */ if (curr->seq[curr->actidx] & HP_SDC_ACT_SEMAPHORE) if (curr->act.semaphore) up(curr->act.semaphore); if (curr->seq[curr->actidx] & HP_SDC_ACT_CALLBACK) if (curr->act.irqhook) curr->act.irqhook(irq, dev_id, status, data); curr->actidx = curr->idx; curr->idx++; /* Return control of this transaction */ write_lock(&hp_sdc.rtq_lock); hp_sdc.rcurr = -1; hp_sdc.rqty = 0; write_unlock(&hp_sdc.rtq_lock); tasklet_schedule(&hp_sdc.task); } } static irqreturn_t hp_sdc_isr(int irq, void *dev_id) { uint8_t status, data; status = hp_sdc_status_in8(); /* Read data unconditionally to advance i8042. */ data = hp_sdc_data_in8(); /* For now we are ignoring these until we get the SDC to behave. */ if (((status & 0xf1) == 0x51) && data == 0x82) return IRQ_HANDLED; switch (status & HP_SDC_STATUS_IRQMASK) { case 0: /* This case is not documented. */ break; case HP_SDC_STATUS_USERTIMER: case HP_SDC_STATUS_PERIODIC: case HP_SDC_STATUS_TIMER: read_lock(&hp_sdc.hook_lock); if (hp_sdc.timer != NULL) hp_sdc.timer(irq, dev_id, status, data); read_unlock(&hp_sdc.hook_lock); break; case HP_SDC_STATUS_REG: hp_sdc_take(irq, dev_id, status, data); break; case HP_SDC_STATUS_HILCMD: case HP_SDC_STATUS_HILDATA: read_lock(&hp_sdc.hook_lock); if (hp_sdc.hil != NULL) hp_sdc.hil(irq, dev_id, status, data); read_unlock(&hp_sdc.hook_lock); break; case HP_SDC_STATUS_PUP: read_lock(&hp_sdc.hook_lock); if (hp_sdc.pup != NULL) hp_sdc.pup(irq, dev_id, status, data); else printk(KERN_INFO PREFIX "HP SDC reports successful PUP.\n"); read_unlock(&hp_sdc.hook_lock); break; default: read_lock(&hp_sdc.hook_lock); if (hp_sdc.cooked != NULL) hp_sdc.cooked(irq, dev_id, status, data); read_unlock(&hp_sdc.hook_lock); break; } return IRQ_HANDLED; } static irqreturn_t hp_sdc_nmisr(int irq, void *dev_id) { int status; status = hp_sdc_status_in8(); printk(KERN_WARNING PREFIX "NMI !\n"); #if 0 if (status & HP_SDC_NMISTATUS_FHS) { read_lock(&hp_sdc.hook_lock); if (hp_sdc.timer != NULL) hp_sdc.timer(irq, dev_id, status, 0); read_unlock(&hp_sdc.hook_lock); } else { /* TODO: pass this on to the HIL handler, or do SAK here? */ printk(KERN_WARNING PREFIX "HIL NMI\n"); } #endif return IRQ_HANDLED; } /***************** Kernel (tasklet) context functions ****************/ unsigned long hp_sdc_put(void); static void hp_sdc_tasklet(unsigned long foo) { write_lock_irq(&hp_sdc.rtq_lock); if (hp_sdc.rcurr >= 0) { ktime_t now = ktime_get(); if (ktime_after(now, ktime_add_us(hp_sdc.rtime, HP_SDC_MAX_REG_DELAY))) { hp_sdc_transaction *curr; uint8_t tmp; curr = hp_sdc.tq[hp_sdc.rcurr]; /* If this turns out to be a normal failure mode * we'll need to figure out a way to communicate * it back to the application. and be less verbose. */ printk(KERN_WARNING PREFIX "read timeout (%lldus)!\n", ktime_us_delta(now, hp_sdc.rtime)); curr->idx += hp_sdc.rqty; hp_sdc.rqty = 0; tmp = curr->seq[curr->actidx]; curr->seq[curr->actidx] |= HP_SDC_ACT_DEAD; if (tmp & HP_SDC_ACT_SEMAPHORE) if (curr->act.semaphore) up(curr->act.semaphore); if (tmp & HP_SDC_ACT_CALLBACK) { /* Note this means that irqhooks may be called * in tasklet/bh context. */ if (curr->act.irqhook) curr->act.irqhook(0, NULL, 0, 0); } curr->actidx = curr->idx; curr->idx++; hp_sdc.rcurr = -1; } } write_unlock_irq(&hp_sdc.rtq_lock); hp_sdc_put(); } unsigned long hp_sdc_put(void) { hp_sdc_transaction *curr; uint8_t act; int idx, curridx; int limit = 0; write_lock(&hp_sdc.lock); /* If i8042 buffers are full, we cannot do anything that requires output, so we skip to the administrativa. */ if (hp_sdc.ibf) { hp_sdc_status_in8(); if (hp_sdc.ibf) goto finish; } anew: /* See if we are in the middle of a sequence. */ if (hp_sdc.wcurr < 0) hp_sdc.wcurr = 0; read_lock_irq(&hp_sdc.rtq_lock); if (hp_sdc.rcurr == hp_sdc.wcurr) hp_sdc.wcurr++; read_unlock_irq(&hp_sdc.rtq_lock); if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0; curridx = hp_sdc.wcurr; if (hp_sdc.tq[curridx] != NULL) goto start; while (++curridx != hp_sdc.wcurr) { if (curridx >= HP_SDC_QUEUE_LEN) { curridx = -1; /* Wrap to top */ continue; } read_lock_irq(&hp_sdc.rtq_lock); if (hp_sdc.rcurr == curridx) { read_unlock_irq(&hp_sdc.rtq_lock); continue; } read_unlock_irq(&hp_sdc.rtq_lock); if (hp_sdc.tq[curridx] != NULL) break; /* Found one. */ } if (curridx == hp_sdc.wcurr) { /* There's nothing queued to do. */ curridx = -1; } hp_sdc.wcurr = curridx; start: /* Check to see if the interrupt mask needs to be set. */ if (hp_sdc.set_im) { hp_sdc_status_out8(hp_sdc.im | HP_SDC_CMD_SET_IM); hp_sdc.set_im = 0; goto finish; } if (hp_sdc.wcurr == -1) goto done; curr = hp_sdc.tq[curridx]; idx = curr->actidx; if (curr->actidx >= curr->endidx) { hp_sdc.tq[curridx] = NULL; /* Interleave outbound data between the transactions. */ hp_sdc.wcurr++; if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0; goto finish; } act = curr->seq[idx]; idx++; if (curr->idx >= curr->endidx) { if (act & HP_SDC_ACT_DEALLOC) kfree(curr); hp_sdc.tq[curridx] = NULL; /* Interleave outbound data between the transactions. */ hp_sdc.wcurr++; if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0; goto finish; } while (act & HP_SDC_ACT_PRECMD) { if (curr->idx != idx) { idx++; act &= ~HP_SDC_ACT_PRECMD; break; } hp_sdc_status_out8(curr->seq[idx]); curr->idx++; /* act finished? */ if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_PRECMD) goto actdone; /* skip quantity field if data-out sequence follows. */ if (act & HP_SDC_ACT_DATAOUT) curr->idx++; goto finish; } if (act & HP_SDC_ACT_DATAOUT) { int qty; qty = curr->seq[idx]; idx++; if (curr->idx - idx < qty) { hp_sdc_data_out8(curr->seq[curr->idx]); curr->idx++; /* act finished? */ if (curr->idx - idx >= qty && (act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAOUT) goto actdone; goto finish; } idx += qty; act &= ~HP_SDC_ACT_DATAOUT; } else while (act & HP_SDC_ACT_DATAREG) { int mask; uint8_t w7[4]; mask = curr->seq[idx]; if (idx != curr->idx) { idx++; idx += !!(mask & 1); idx += !!(mask & 2); idx += !!(mask & 4); idx += !!(mask & 8); act &= ~HP_SDC_ACT_DATAREG; break; } w7[0] = (mask & 1) ? curr->seq[++idx] : hp_sdc.r7[0]; w7[1] = (mask & 2) ? curr->seq[++idx] : hp_sdc.r7[1]; w7[2] = (mask & 4) ? curr->seq[++idx] : hp_sdc.r7[2]; w7[3] = (mask & 8) ? curr->seq[++idx] : hp_sdc.r7[3]; if (hp_sdc.wi > 0x73 || hp_sdc.wi < 0x70 || w7[hp_sdc.wi - 0x70] == hp_sdc.r7[hp_sdc.wi - 0x70]) { int i = 0; /* Need to point the write index register */ while (i < 4 && w7[i] == hp_sdc.r7[i]) i++; if (i < 4) { hp_sdc_status_out8(HP_SDC_CMD_SET_D0 + i); hp_sdc.wi = 0x70 + i; goto finish; } idx++; if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG) goto actdone; curr->idx = idx; act &= ~HP_SDC_ACT_DATAREG; break; } hp_sdc_data_out8(w7[hp_sdc.wi - 0x70]); hp_sdc.r7[hp_sdc.wi - 0x70] = w7[hp_sdc.wi - 0x70]; hp_sdc.wi++; /* write index register autoincrements */ { int i = 0; while ((i < 4) && w7[i] == hp_sdc.r7[i]) i++; if (i >= 4) { curr->idx = idx + 1; if ((act & HP_SDC_ACT_DURING) == HP_SDC_ACT_DATAREG) goto actdone; } } goto finish; } /* We don't go any further in the command if there is a pending read, because we don't want interleaved results. */ read_lock_irq(&hp_sdc.rtq_lock); if (hp_sdc.rcurr >= 0) { read_unlock_irq(&hp_sdc.rtq_lock); goto finish; } read_unlock_irq(&hp_sdc.rtq_lock); if (act & HP_SDC_ACT_POSTCMD) { uint8_t postcmd; /* curr->idx should == idx at this point. */ postcmd = curr->seq[idx]; curr->idx++; if (act & HP_SDC_ACT_DATAIN) { /* Start a new read */ hp_sdc.rqty = curr->seq[curr->idx]; hp_sdc.rtime = ktime_get(); curr->idx++; /* Still need to lock here in case of spurious irq. */ write_lock_irq(&hp_sdc.rtq_lock); hp_sdc.rcurr = curridx; write_unlock_irq(&hp_sdc.rtq_lock); hp_sdc_status_out8(postcmd); goto finish; } hp_sdc_status_out8(postcmd); goto actdone; } actdone: if (act & HP_SDC_ACT_SEMAPHORE) up(curr->act.semaphore); else if (act & HP_SDC_ACT_CALLBACK) curr->act.irqhook(0,NULL,0,0); if (curr->idx >= curr->endidx) { /* This transaction is over. */ if (act & HP_SDC_ACT_DEALLOC) kfree(curr); hp_sdc.tq[curridx] = NULL; } else { curr->actidx = idx + 1; curr->idx = idx + 2; } /* Interleave outbound data between the transactions. */ hp_sdc.wcurr++; if (hp_sdc.wcurr >= HP_SDC_QUEUE_LEN) hp_sdc.wcurr = 0; finish: /* If by some quirk IBF has cleared and our ISR has run to see that that has happened, do it all again. */ if (!hp_sdc.ibf && limit++ < 20) goto anew; done: if (hp_sdc.wcurr >= 0) tasklet_schedule(&hp_sdc.task); write_unlock(&hp_sdc.lock); return 0; } /******* Functions called in either user or kernel context ****/ int __hp_sdc_enqueue_transaction(hp_sdc_transaction *this) { int i; if (this == NULL) { BUG(); return -EINVAL; } /* Can't have same transaction on queue twice */ for (i = 0; i < HP_SDC_QUEUE_LEN; i++) if (hp_sdc.tq[i] == this) goto fail; this->actidx = 0; this->idx = 1; /* Search for empty slot */ for (i = 0; i < HP_SDC_QUEUE_LEN; i++) if (hp_sdc.tq[i] == NULL) { hp_sdc.tq[i] = this; tasklet_schedule(&hp_sdc.task); return 0; } printk(KERN_WARNING PREFIX "No free slot to add transaction.\n"); return -EBUSY; fail: printk(KERN_WARNING PREFIX "Transaction add failed: transaction already queued?\n"); return -EINVAL; } int hp_sdc_enqueue_transaction(hp_sdc_transaction *this) { unsigned long flags; int ret; write_lock_irqsave(&hp_sdc.lock, flags); ret = __hp_sdc_enqueue_transaction(this); write_unlock_irqrestore(&hp_sdc.lock,flags); return ret; } int hp_sdc_dequeue_transaction(hp_sdc_transaction *this) { unsigned long flags; int i; write_lock_irqsave(&hp_sdc.lock, flags); /* TODO: don't remove it if it's not done. */ for (i = 0; i < HP_SDC_QUEUE_LEN; i++) if (hp_sdc.tq[i] == this) hp_sdc.tq[i] = NULL; write_unlock_irqrestore(&hp_sdc.lock, flags); return 0; } /********************** User context functions **************************/ int hp_sdc_request_timer_irq(hp_sdc_irqhook *callback) { if (callback == NULL || hp_sdc.dev == NULL) return -EINVAL; write_lock_irq(&hp_sdc.hook_lock); if (hp_sdc.timer != NULL) { write_unlock_irq(&hp_sdc.hook_lock); return -EBUSY; } hp_sdc.timer = callback; /* Enable interrupts from the timers */ hp_sdc.im &= ~HP_SDC_IM_FH; hp_sdc.im &= ~HP_SDC_IM_PT; hp_sdc.im &= ~HP_SDC_IM_TIMERS; hp_sdc.set_im = 1; write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } int hp_sdc_request_hil_irq(hp_sdc_irqhook *callback) { if (callback == NULL || hp_sdc.dev == NULL) return -EINVAL; write_lock_irq(&hp_sdc.hook_lock); if (hp_sdc.hil != NULL) { write_unlock_irq(&hp_sdc.hook_lock); return -EBUSY; } hp_sdc.hil = callback; hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET); hp_sdc.set_im = 1; write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } int hp_sdc_request_cooked_irq(hp_sdc_irqhook *callback) { if (callback == NULL || hp_sdc.dev == NULL) return -EINVAL; write_lock_irq(&hp_sdc.hook_lock); if (hp_sdc.cooked != NULL) { write_unlock_irq(&hp_sdc.hook_lock); return -EBUSY; } /* Enable interrupts from the HIL MLC */ hp_sdc.cooked = callback; hp_sdc.im &= ~(HP_SDC_IM_HIL | HP_SDC_IM_RESET); hp_sdc.set_im = 1; write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } int hp_sdc_release_timer_irq(hp_sdc_irqhook *callback) { write_lock_irq(&hp_sdc.hook_lock); if ((callback != hp_sdc.timer) || (hp_sdc.timer == NULL)) { write_unlock_irq(&hp_sdc.hook_lock); return -EINVAL; } /* Disable interrupts from the timers */ hp_sdc.timer = NULL; hp_sdc.im |= HP_SDC_IM_TIMERS; hp_sdc.im |= HP_SDC_IM_FH; hp_sdc.im |= HP_SDC_IM_PT; hp_sdc.set_im = 1; write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } int hp_sdc_release_hil_irq(hp_sdc_irqhook *callback) { write_lock_irq(&hp_sdc.hook_lock); if ((callback != hp_sdc.hil) || (hp_sdc.hil == NULL)) { write_unlock_irq(&hp_sdc.hook_lock); return -EINVAL; } hp_sdc.hil = NULL; /* Disable interrupts from HIL only if there is no cooked driver. */ if(hp_sdc.cooked == NULL) { hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET); hp_sdc.set_im = 1; } write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } int hp_sdc_release_cooked_irq(hp_sdc_irqhook *callback) { write_lock_irq(&hp_sdc.hook_lock); if ((callback != hp_sdc.cooked) || (hp_sdc.cooked == NULL)) { write_unlock_irq(&hp_sdc.hook_lock); return -EINVAL; } hp_sdc.cooked = NULL; /* Disable interrupts from HIL only if there is no raw HIL driver. */ if(hp_sdc.hil == NULL) { hp_sdc.im |= (HP_SDC_IM_HIL | HP_SDC_IM_RESET); hp_sdc.set_im = 1; } write_unlock_irq(&hp_sdc.hook_lock); tasklet_schedule(&hp_sdc.task); return 0; } /************************* Keepalive timer task *********************/ static void hp_sdc_kicker(struct timer_list *unused) { tasklet_schedule(&hp_sdc.task); /* Re-insert the periodic task. */ mod_timer(&hp_sdc.kicker, jiffies + HZ); } /************************** Module Initialization ***************************/ #if defined(__hppa__) static const struct parisc_device_id hp_sdc_tbl[] __initconst = { { .hw_type = HPHW_FIO, .hversion_rev = HVERSION_REV_ANY_ID, .hversion = HVERSION_ANY_ID, .sversion = 0x73, }, { 0, } }; MODULE_DEVICE_TABLE(parisc, hp_sdc_tbl); static int __init hp_sdc_init_hppa(struct parisc_device *d); static struct delayed_work moduleloader_work; static struct parisc_driver hp_sdc_driver __refdata = { .name = "hp_sdc", .id_table = hp_sdc_tbl, .probe = hp_sdc_init_hppa, }; #endif /* __hppa__ */ static int __init hp_sdc_init(void) { char *errstr; hp_sdc_transaction t_sync; uint8_t ts_sync[6]; struct semaphore s_sync; rwlock_init(&hp_sdc.lock); rwlock_init(&hp_sdc.ibf_lock); rwlock_init(&hp_sdc.rtq_lock); rwlock_init(&hp_sdc.hook_lock); hp_sdc.timer = NULL; hp_sdc.hil = NULL; hp_sdc.pup = NULL; hp_sdc.cooked = NULL; hp_sdc.im = HP_SDC_IM_MASK; /* Mask maskable irqs */ hp_sdc.set_im = 1; hp_sdc.wi = 0xff; hp_sdc.r7[0] = 0xff; hp_sdc.r7[1] = 0xff; hp_sdc.r7[2] = 0xff; hp_sdc.r7[3] = 0xff; hp_sdc.ibf = 1; memset(&hp_sdc.tq, 0, sizeof(hp_sdc.tq)); hp_sdc.wcurr = -1; hp_sdc.rcurr = -1; hp_sdc.rqty = 0; hp_sdc.dev_err = -ENODEV; errstr = "IO not found for"; if (!hp_sdc.base_io) goto err0; errstr = "IRQ not found for"; if (!hp_sdc.irq) goto err0; hp_sdc.dev_err = -EBUSY; #if defined(__hppa__) errstr = "IO not available for"; if (request_region(hp_sdc.data_io, 2, hp_sdc_driver.name)) goto err0; #endif errstr = "IRQ not available for"; if (request_irq(hp_sdc.irq, &hp_sdc_isr, IRQF_SHARED, "HP SDC", &hp_sdc)) goto err1; errstr = "NMI not available for"; if (request_irq(hp_sdc.nmi, &hp_sdc_nmisr, IRQF_SHARED, "HP SDC NMI", &hp_sdc)) goto err2; pr_info(PREFIX "HP SDC at 0x%08lx, IRQ %d (NMI IRQ %d)\n", hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi); hp_sdc_status_in8(); hp_sdc_data_in8(); tasklet_init(&hp_sdc.task, hp_sdc_tasklet, 0); /* Sync the output buffer registers, thus scheduling hp_sdc_tasklet. */ t_sync.actidx = 0; t_sync.idx = 1; t_sync.endidx = 6; t_sync.seq = ts_sync; ts_sync[0] = HP_SDC_ACT_DATAREG | HP_SDC_ACT_SEMAPHORE; ts_sync[1] = 0x0f; ts_sync[2] = ts_sync[3] = ts_sync[4] = ts_sync[5] = 0; t_sync.act.semaphore = &s_sync; sema_init(&s_sync, 0); hp_sdc_enqueue_transaction(&t_sync); down(&s_sync); /* Wait for t_sync to complete */ /* Create the keepalive task */ timer_setup(&hp_sdc.kicker, hp_sdc_kicker, 0); hp_sdc.kicker.expires = jiffies + HZ; add_timer(&hp_sdc.kicker); hp_sdc.dev_err = 0; return 0; err2: free_irq(hp_sdc.irq, &hp_sdc); err1: release_region(hp_sdc.data_io, 2); err0: printk(KERN_WARNING PREFIX ": %s SDC IO=0x%p IRQ=0x%x NMI=0x%x\n", errstr, (void *)hp_sdc.base_io, hp_sdc.irq, hp_sdc.nmi); hp_sdc.dev = NULL; return hp_sdc.dev_err; } #if defined(__hppa__) static void request_module_delayed(struct work_struct *work) { request_module("hp_sdc_mlc"); } static int __init hp_sdc_init_hppa(struct parisc_device *d) { int ret; if (!d) return 1; if (hp_sdc.dev != NULL) return 1; /* We only expect one SDC */ hp_sdc.dev = d; hp_sdc.irq = d->irq; hp_sdc.nmi = d->aux_irq; hp_sdc.base_io = d->hpa.start; hp_sdc.data_io = d->hpa.start + 0x800; hp_sdc.status_io = d->hpa.start + 0x801; INIT_DELAYED_WORK(&moduleloader_work, request_module_delayed); ret = hp_sdc_init(); /* after successful initialization give SDC some time to settle * and then load the hp_sdc_mlc upper layer driver */ if (!ret) schedule_delayed_work(&moduleloader_work, msecs_to_jiffies(2000)); return ret; } #endif /* __hppa__ */ static void hp_sdc_exit(void) { /* do nothing if we don't have a SDC */ if (!hp_sdc.dev) return; write_lock_irq(&hp_sdc.lock); /* Turn off all maskable "sub-function" irq's. */ hp_sdc_spin_ibf(); sdc_writeb(HP_SDC_CMD_SET_IM | HP_SDC_IM_MASK, hp_sdc.status_io); /* Wait until we know this has been processed by the i8042 */ hp_sdc_spin_ibf(); free_irq(hp_sdc.nmi, &hp_sdc); free_irq(hp_sdc.irq, &hp_sdc); write_unlock_irq(&hp_sdc.lock); del_timer_sync(&hp_sdc.kicker); tasklet_kill(&hp_sdc.task); #if defined(__hppa__) cancel_delayed_work_sync(&moduleloader_work); if (unregister_parisc_driver(&hp_sdc_driver)) printk(KERN_WARNING PREFIX "Error unregistering HP SDC"); #endif } static int __init hp_sdc_register(void) { hp_sdc_transaction tq_init; uint8_t tq_init_seq[5]; struct semaphore tq_init_sem; #if defined(__mc68000__) unsigned char i; #endif if (hp_sdc_disabled) { printk(KERN_WARNING PREFIX "HP SDC driver disabled by no_hpsdc=1.\n"); return -ENODEV; } hp_sdc.dev = NULL; hp_sdc.dev_err = 0; #if defined(__hppa__) if (register_parisc_driver(&hp_sdc_driver)) { printk(KERN_WARNING PREFIX "Error registering SDC with system bus tree.\n"); return -ENODEV; } #elif defined(__mc68000__) if (!MACH_IS_HP300) return -ENODEV; hp_sdc.irq = 1; hp_sdc.nmi = 7; hp_sdc.base_io = (unsigned long) 0xf0428000; hp_sdc.data_io = (unsigned long) hp_sdc.base_io + 1; hp_sdc.status_io = (unsigned long) hp_sdc.base_io + 3; if (!copy_from_kernel_nofault(&i, (unsigned char *)hp_sdc.data_io, 1)) hp_sdc.dev = (void *)1; hp_sdc.dev_err = hp_sdc_init(); #endif if (hp_sdc.dev == NULL) { printk(KERN_WARNING PREFIX "No SDC found.\n"); return hp_sdc.dev_err; } sema_init(&tq_init_sem, 0); tq_init.actidx = 0; tq_init.idx = 1; tq_init.endidx = 5; tq_init.seq = tq_init_seq; tq_init.act.semaphore = &tq_init_sem; tq_init_seq[0] = HP_SDC_ACT_POSTCMD | HP_SDC_ACT_DATAIN | HP_SDC_ACT_SEMAPHORE; tq_init_seq[1] = HP_SDC_CMD_READ_KCC; tq_init_seq[2] = 1; tq_init_seq[3] = 0; tq_init_seq[4] = 0; hp_sdc_enqueue_transaction(&tq_init); down(&tq_init_sem); up(&tq_init_sem); if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) { printk(KERN_WARNING PREFIX "Error reading config byte.\n"); hp_sdc_exit(); return -ENODEV; } hp_sdc.r11 = tq_init_seq[4]; if (hp_sdc.r11 & HP_SDC_CFG_NEW) { const char *str; printk(KERN_INFO PREFIX "New style SDC\n"); tq_init_seq[1] = HP_SDC_CMD_READ_XTD; tq_init.actidx = 0; tq_init.idx = 1; down(&tq_init_sem); hp_sdc_enqueue_transaction(&tq_init); down(&tq_init_sem); up(&tq_init_sem); if ((tq_init_seq[0] & HP_SDC_ACT_DEAD) == HP_SDC_ACT_DEAD) { printk(KERN_WARNING PREFIX "Error reading extended config byte.\n"); return -ENODEV; } hp_sdc.r7e = tq_init_seq[4]; HP_SDC_XTD_REV_STRINGS(hp_sdc.r7e & HP_SDC_XTD_REV, str) printk(KERN_INFO PREFIX "Revision: %s\n", str); if (hp_sdc.r7e & HP_SDC_XTD_BEEPER) printk(KERN_INFO PREFIX "TI SN76494 beeper present\n"); if (hp_sdc.r7e & HP_SDC_XTD_BBRTC) printk(KERN_INFO PREFIX "OKI MSM-58321 BBRTC present\n"); printk(KERN_INFO PREFIX "Spunking the self test register to force PUP " "on next firmware reset.\n"); tq_init_seq[0] = HP_SDC_ACT_PRECMD | HP_SDC_ACT_DATAOUT | HP_SDC_ACT_SEMAPHORE; tq_init_seq[1] = HP_SDC_CMD_SET_STR; tq_init_seq[2] = 1; tq_init_seq[3] = 0; tq_init.actidx = 0; tq_init.idx = 1; tq_init.endidx = 4; down(&tq_init_sem); hp_sdc_enqueue_transaction(&tq_init); down(&tq_init_sem); up(&tq_init_sem); } else printk(KERN_INFO PREFIX "Old style SDC (1820-%s).\n", (hp_sdc.r11 & HP_SDC_CFG_REV) ? "3300" : "2564/3087"); return 0; } module_init(hp_sdc_register); module_exit(hp_sdc_exit); /* Timing notes: These measurements taken on my 64MHz 7100-LC (715/64) * cycles cycles-adj time * between two consecutive mfctl(16)'s: 4 n/a 63ns * hp_sdc_spin_ibf when idle: 119 115 1.7us * gsc_writeb status register: 83 79 1.2us * IBF to clear after sending SET_IM: 6204 6006 93us * IBF to clear after sending LOAD_RT: 4467 4352 68us * IBF to clear after sending two LOAD_RTs: 18974 18859 295us * READ_T1, read status/data, IRQ, call handler: 35564 n/a 556us * cmd to ~IBF READ_T1 2nd time right after: 5158403 n/a 81ms * between IRQ received and ~IBF for above: 2578877 n/a 40ms * * Performance stats after a run of this module configuring HIL and * receiving a few mouse events: * * status in8 282508 cycles 7128 calls * status out8 8404 cycles 341 calls * data out8 1734 cycles 78 calls * isr 174324 cycles 617 calls (includes take) * take 1241 cycles 2 calls * put 1411504 cycles 6937 calls * task 1655209 cycles 6937 calls (includes put) * */