| | res_func.sa 3.9 7/29/91 | | Normalizes denormalized numbers if necessary and updates the | stack frame. The function is then restored back into the | machine and the 040 completes the operation. This routine | is only used by the unsupported data type/format handler. | (Exception vector 55). | | For packed move out (fmove.p fpm,<ea>) the operation is | completed here; data is packed and moved to user memory. | The stack is restored to the 040 only in the case of a | reportable exception in the conversion. | | | Copyright (C) Motorola, Inc. 1990 | All Rights Reserved | | For details on the license for this file, please see the | file, README, in this same directory. RES_FUNC: |idnt 2,1 | Motorola 040 Floating Point Software Package |section 8 #include "fpsp.h" sp_bnds: .short 0x3f81,0x407e .short 0x3f6a,0x0000 dp_bnds: .short 0x3c01,0x43fe .short 0x3bcd,0x0000 |xref mem_write |xref bindec |xref get_fline |xref round |xref denorm |xref dest_ext |xref dest_dbl |xref dest_sgl |xref unf_sub |xref nrm_set |xref dnrm_lp |xref ovf_res |xref reg_dest |xref t_ovfl |xref t_unfl .global res_func .global p_move res_func: clrb DNRM_FLG(%a6) clrb RES_FLG(%a6) clrb CU_ONLY(%a6) tstb DY_MO_FLG(%a6) beqs monadic dyadic: btstb #7,DTAG(%a6) |if dop = norm=000, zero=001, | ;inf=010 or nan=011 beqs monadic |then branch | ;else denorm | HANDLE DESTINATION DENORM HERE | ;set dtag to norm | ;write the tag & fpte15 to the fstack leal FPTEMP(%a6),%a0 bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) bsr nrm_set |normalize number (exp will go negative) bclrb #sign_bit,LOCAL_EX(%a0) |get rid of false sign bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format beqs dpos bsetb #sign_bit,LOCAL_EX(%a0) dpos: bfclr DTAG(%a6){#0:#4} |set tag to normalized, FPTE15 = 0 bsetb #4,DTAG(%a6) |set FPTE15 orb #0x0f,DNRM_FLG(%a6) monadic: leal ETEMP(%a6),%a0 btstb #direction_bit,CMDREG1B(%a6) |check direction bne opclass3 |it is a mv out | | At this point, only opclass 0 and 2 possible | btstb #7,STAG(%a6) |if sop = norm=000, zero=001, | ;inf=010 or nan=011 bne mon_dnrm |else denorm tstb DY_MO_FLG(%a6) |all cases of dyadic instructions would bne normal |require normalization of denorm | At this point: | monadic instructions: fabs = $18 fneg = $1a ftst = $3a | fmove = $00 fsmove = $40 fdmove = $44 | fsqrt = $05* fssqrt = $41 fdsqrt = $45 | (*fsqrt reencoded to $05) | movew CMDREG1B(%a6),%d0 |get command register andil #0x7f,%d0 |strip to only command word | | At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and | fdsqrt are possible. | For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) | For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) | btstl #0,%d0 bne normal |weed out fsqrt instructions | | cu_norm handles fmove in instructions with normalized inputs. | The routine round is used to correctly round the input for the | destination precision and mode. | cu_norm: st CU_ONLY(%a6) |set cu-only inst flag movew CMDREG1B(%a6),%d0 andib #0x3b,%d0 |isolate bits to select inst tstb %d0 beql cu_nmove |if zero, it is an fmove cmpib #0x18,%d0 beql cu_nabs |if $18, it is fabs cmpib #0x1a,%d0 beql cu_nneg |if $1a, it is fneg | | Inst is ftst. Check the source operand and set the cc's accordingly. | No write is done, so simply rts. | cu_ntst: movew LOCAL_EX(%a0),%d0 bclrl #15,%d0 sne LOCAL_SGN(%a0) beqs cu_ntpo orl #neg_mask,USER_FPSR(%a6) |set N cu_ntpo: cmpiw #0x7fff,%d0 |test for inf/nan bnes cu_ntcz tstl LOCAL_HI(%a0) bnes cu_ntn tstl LOCAL_LO(%a0) bnes cu_ntn orl #inf_mask,USER_FPSR(%a6) rts cu_ntn: orl #nan_mask,USER_FPSR(%a6) movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for | ;snan handler rts cu_ntcz: tstl LOCAL_HI(%a0) bnel cu_ntsx tstl LOCAL_LO(%a0) bnel cu_ntsx orl #z_mask,USER_FPSR(%a6) cu_ntsx: rts | | Inst is fabs. Execute the absolute value function on the input. | Branch to the fmove code. If the operand is NaN, do nothing. | cu_nabs: moveb STAG(%a6),%d0 btstl #5,%d0 |test for NaN or zero bne wr_etemp |if either, simply write it bclrb #7,LOCAL_EX(%a0) |do abs bras cu_nmove |fmove code will finish | | Inst is fneg. Execute the negate value function on the input. | Fall though to the fmove code. If the operand is NaN, do nothing. | cu_nneg: moveb STAG(%a6),%d0 btstl #5,%d0 |test for NaN or zero bne wr_etemp |if either, simply write it bchgb #7,LOCAL_EX(%a0) |do neg | | Inst is fmove. This code also handles all result writes. | If bit 2 is set, round is forced to double. If it is clear, | and bit 6 is set, round is forced to single. If both are clear, | the round precision is found in the fpcr. If the rounding precision | is double or single, round the result before the write. | cu_nmove: moveb STAG(%a6),%d0 andib #0xe0,%d0 |isolate stag bits bne wr_etemp |if not norm, simply write it btstb #2,CMDREG1B+1(%a6) |check for rd bne cu_nmrd btstb #6,CMDREG1B+1(%a6) |check for rs bne cu_nmrs | | The move or operation is not with forced precision. Test for | nan or inf as the input; if so, simply write it to FPn. Use the | FPCR_MODE byte to get rounding on norms and zeros. | cu_nmnr: bfextu FPCR_MODE(%a6){#0:#2},%d0 tstb %d0 |check for extended beq cu_wrexn |if so, just write result cmpib #1,%d0 |check for single beq cu_nmrs |fall through to double | | The move is fdmove or round precision is double. | cu_nmrd: movel #2,%d0 |set up the size for denorm movew LOCAL_EX(%a0),%d1 |compare exponent to double threshold andw #0x7fff,%d1 cmpw #0x3c01,%d1 bls cu_nunfl bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode orl #0x00020000,%d1 |or in rprec (double) clrl %d0 |clear g,r,s for round bclrb #sign_bit,LOCAL_EX(%a0) |convert to internal format sne LOCAL_SGN(%a0) bsrl round bfclr LOCAL_SGN(%a0){#0:#8} beqs cu_nmrdc bsetb #sign_bit,LOCAL_EX(%a0) cu_nmrdc: movew LOCAL_EX(%a0),%d1 |check for overflow andw #0x7fff,%d1 cmpw #0x43ff,%d1 bge cu_novfl |take care of overflow case bra cu_wrexn | | The move is fsmove or round precision is single. | cu_nmrs: movel #1,%d0 movew LOCAL_EX(%a0),%d1 andw #0x7fff,%d1 cmpw #0x3f81,%d1 bls cu_nunfl bfextu FPCR_MODE(%a6){#2:#2},%d1 orl #0x00010000,%d1 clrl %d0 bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) bsrl round bfclr LOCAL_SGN(%a0){#0:#8} beqs cu_nmrsc bsetb #sign_bit,LOCAL_EX(%a0) cu_nmrsc: movew LOCAL_EX(%a0),%d1 andw #0x7FFF,%d1 cmpw #0x407f,%d1 blt cu_wrexn | | The operand is above precision boundaries. Use t_ovfl to | generate the correct value. | cu_novfl: bsr t_ovfl bra cu_wrexn | | The operand is below precision boundaries. Use denorm to | generate the correct value. | cu_nunfl: bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) bsr denorm bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format beqs cu_nucont bsetb #sign_bit,LOCAL_EX(%a0) cu_nucont: bfextu FPCR_MODE(%a6){#2:#2},%d1 btstb #2,CMDREG1B+1(%a6) |check for rd bne inst_d btstb #6,CMDREG1B+1(%a6) |check for rs bne inst_s swap %d1 moveb FPCR_MODE(%a6),%d1 lsrb #6,%d1 swap %d1 bra inst_sd inst_d: orl #0x00020000,%d1 bra inst_sd inst_s: orl #0x00010000,%d1 inst_sd: bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) bsrl round bfclr LOCAL_SGN(%a0){#0:#8} beqs cu_nuflp bsetb #sign_bit,LOCAL_EX(%a0) cu_nuflp: btstb #inex2_bit,FPSR_EXCEPT(%a6) beqs cu_nuninx orl #aunfl_mask,USER_FPSR(%a6) |if the round was inex, set AUNFL cu_nuninx: tstl LOCAL_HI(%a0) |test for zero bnes cu_nunzro tstl LOCAL_LO(%a0) bnes cu_nunzro | | The mantissa is zero from the denorm loop. Check sign and rmode | to see if rounding should have occurred which would leave the lsb. | movel USER_FPCR(%a6),%d0 andil #0x30,%d0 |isolate rmode cmpil #0x20,%d0 blts cu_nzro bnes cu_nrp cu_nrm: tstw LOCAL_EX(%a0) |if positive, set lsb bges cu_nzro btstb #7,FPCR_MODE(%a6) |check for double beqs cu_nincs bras cu_nincd cu_nrp: tstw LOCAL_EX(%a0) |if positive, set lsb blts cu_nzro btstb #7,FPCR_MODE(%a6) |check for double beqs cu_nincs cu_nincd: orl #0x800,LOCAL_LO(%a0) |inc for double bra cu_nunzro cu_nincs: orl #0x100,LOCAL_HI(%a0) |inc for single bra cu_nunzro cu_nzro: orl #z_mask,USER_FPSR(%a6) moveb STAG(%a6),%d0 andib #0xe0,%d0 cmpib #0x40,%d0 |check if input was tagged zero beqs cu_numv cu_nunzro: orl #unfl_mask,USER_FPSR(%a6) |set unfl cu_numv: movel (%a0),ETEMP(%a6) movel 4(%a0),ETEMP_HI(%a6) movel 8(%a0),ETEMP_LO(%a6) | | Write the result to memory, setting the fpsr cc bits. NaN and Inf | bypass cu_wrexn. | cu_wrexn: tstw LOCAL_EX(%a0) |test for zero beqs cu_wrzero cmpw #0x8000,LOCAL_EX(%a0) |test for zero bnes cu_wreon cu_wrzero: orl #z_mask,USER_FPSR(%a6) |set Z bit cu_wreon: tstw LOCAL_EX(%a0) bpl wr_etemp orl #neg_mask,USER_FPSR(%a6) bra wr_etemp | | HANDLE SOURCE DENORM HERE | | ;clear denorm stag to norm | ;write the new tag & ete15 to the fstack mon_dnrm: | | At this point, check for the cases in which normalizing the | denorm produces incorrect results. | tstb DY_MO_FLG(%a6) |all cases of dyadic instructions would bnes nrm_src |require normalization of denorm | At this point: | monadic instructions: fabs = $18 fneg = $1a ftst = $3a | fmove = $00 fsmove = $40 fdmove = $44 | fsqrt = $05* fssqrt = $41 fdsqrt = $45 | (*fsqrt reencoded to $05) | movew CMDREG1B(%a6),%d0 |get command register andil #0x7f,%d0 |strip to only command word | | At this point, fabs, fneg, fsmove, fdmove, ftst, fsqrt, fssqrt, and | fdsqrt are possible. | For cases fabs, fneg, fsmove, and fdmove goto spos (do not normalize) | For cases fsqrt, fssqrt, and fdsqrt goto nrm_src (do normalize) | btstl #0,%d0 bnes nrm_src |weed out fsqrt instructions st CU_ONLY(%a6) |set cu-only inst flag bra cu_dnrm |fmove, fabs, fneg, ftst | ;cases go to cu_dnrm nrm_src: bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) bsr nrm_set |normalize number (exponent will go | ; negative) bclrb #sign_bit,LOCAL_EX(%a0) |get rid of false sign bfclr LOCAL_SGN(%a0){#0:#8} |change back to IEEE ext format beqs spos bsetb #sign_bit,LOCAL_EX(%a0) spos: bfclr STAG(%a6){#0:#4} |set tag to normalized, FPTE15 = 0 bsetb #4,STAG(%a6) |set ETE15 orb #0xf0,DNRM_FLG(%a6) normal: tstb DNRM_FLG(%a6) |check if any of the ops were denorms bne ck_wrap |if so, check if it is a potential | ;wrap-around case fix_stk: moveb #0xfe,CU_SAVEPC(%a6) bclrb #E1,E_BYTE(%a6) clrw NMNEXC(%a6) st RES_FLG(%a6) |indicate that a restore is needed rts | | cu_dnrm handles all cu-only instructions (fmove, fabs, fneg, and | ftst) completely in software without an frestore to the 040. | cu_dnrm: st CU_ONLY(%a6) movew CMDREG1B(%a6),%d0 andib #0x3b,%d0 |isolate bits to select inst tstb %d0 beql cu_dmove |if zero, it is an fmove cmpib #0x18,%d0 beql cu_dabs |if $18, it is fabs cmpib #0x1a,%d0 beql cu_dneg |if $1a, it is fneg | | Inst is ftst. Check the source operand and set the cc's accordingly. | No write is done, so simply rts. | cu_dtst: movew LOCAL_EX(%a0),%d0 bclrl #15,%d0 sne LOCAL_SGN(%a0) beqs cu_dtpo orl #neg_mask,USER_FPSR(%a6) |set N cu_dtpo: cmpiw #0x7fff,%d0 |test for inf/nan bnes cu_dtcz tstl LOCAL_HI(%a0) bnes cu_dtn tstl LOCAL_LO(%a0) bnes cu_dtn orl #inf_mask,USER_FPSR(%a6) rts cu_dtn: orl #nan_mask,USER_FPSR(%a6) movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for | ;snan handler rts cu_dtcz: tstl LOCAL_HI(%a0) bnel cu_dtsx tstl LOCAL_LO(%a0) bnel cu_dtsx orl #z_mask,USER_FPSR(%a6) cu_dtsx: rts | | Inst is fabs. Execute the absolute value function on the input. | Branch to the fmove code. | cu_dabs: bclrb #7,LOCAL_EX(%a0) |do abs bras cu_dmove |fmove code will finish | | Inst is fneg. Execute the negate value function on the input. | Fall though to the fmove code. | cu_dneg: bchgb #7,LOCAL_EX(%a0) |do neg | | Inst is fmove. This code also handles all result writes. | If bit 2 is set, round is forced to double. If it is clear, | and bit 6 is set, round is forced to single. If both are clear, | the round precision is found in the fpcr. If the rounding precision | is double or single, the result is zero, and the mode is checked | to determine if the lsb of the result should be set. | cu_dmove: btstb #2,CMDREG1B+1(%a6) |check for rd bne cu_dmrd btstb #6,CMDREG1B+1(%a6) |check for rs bne cu_dmrs | | The move or operation is not with forced precision. Use the | FPCR_MODE byte to get rounding. | cu_dmnr: bfextu FPCR_MODE(%a6){#0:#2},%d0 tstb %d0 |check for extended beq cu_wrexd |if so, just write result cmpib #1,%d0 |check for single beq cu_dmrs |fall through to double | | The move is fdmove or round precision is double. Result is zero. | Check rmode for rp or rm and set lsb accordingly. | cu_dmrd: bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode tstw LOCAL_EX(%a0) |check sign blts cu_dmdn cmpib #3,%d1 |check for rp bne cu_dpd |load double pos zero bra cu_dpdr |load double pos zero w/lsb cu_dmdn: cmpib #2,%d1 |check for rm bne cu_dnd |load double neg zero bra cu_dndr |load double neg zero w/lsb | | The move is fsmove or round precision is single. Result is zero. | Check for rp or rm and set lsb accordingly. | cu_dmrs: bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rmode tstw LOCAL_EX(%a0) |check sign blts cu_dmsn cmpib #3,%d1 |check for rp bne cu_spd |load single pos zero bra cu_spdr |load single pos zero w/lsb cu_dmsn: cmpib #2,%d1 |check for rm bne cu_snd |load single neg zero bra cu_sndr |load single neg zero w/lsb | | The precision is extended, so the result in etemp is correct. | Simply set unfl (not inex2 or aunfl) and write the result to | the correct fp register. cu_wrexd: orl #unfl_mask,USER_FPSR(%a6) tstw LOCAL_EX(%a0) beq wr_etemp orl #neg_mask,USER_FPSR(%a6) bra wr_etemp | | These routines write +/- zero in double format. The routines | cu_dpdr and cu_dndr set the double lsb. | cu_dpd: movel #0x3c010000,LOCAL_EX(%a0) |force pos double zero clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) orl #z_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_dpdr: movel #0x3c010000,LOCAL_EX(%a0) |force pos double zero clrl LOCAL_HI(%a0) movel #0x800,LOCAL_LO(%a0) |with lsb set orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_dnd: movel #0xbc010000,LOCAL_EX(%a0) |force pos double zero clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) orl #z_mask,USER_FPSR(%a6) orl #neg_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_dndr: movel #0xbc010000,LOCAL_EX(%a0) |force pos double zero clrl LOCAL_HI(%a0) movel #0x800,LOCAL_LO(%a0) |with lsb set orl #neg_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp | | These routines write +/- zero in single format. The routines | cu_dpdr and cu_dndr set the single lsb. | cu_spd: movel #0x3f810000,LOCAL_EX(%a0) |force pos single zero clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) orl #z_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_spdr: movel #0x3f810000,LOCAL_EX(%a0) |force pos single zero movel #0x100,LOCAL_HI(%a0) |with lsb set clrl LOCAL_LO(%a0) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_snd: movel #0xbf810000,LOCAL_EX(%a0) |force pos single zero clrl LOCAL_HI(%a0) clrl LOCAL_LO(%a0) orl #z_mask,USER_FPSR(%a6) orl #neg_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp cu_sndr: movel #0xbf810000,LOCAL_EX(%a0) |force pos single zero movel #0x100,LOCAL_HI(%a0) |with lsb set clrl LOCAL_LO(%a0) orl #neg_mask,USER_FPSR(%a6) orl #unfinx_mask,USER_FPSR(%a6) bra wr_etemp | | This code checks for 16-bit overflow conditions on dyadic | operations which are not restorable into the floating-point | unit and must be completed in software. Basically, this | condition exists with a very large norm and a denorm. One | of the operands must be denormalized to enter this code. | | Flags used: | DY_MO_FLG contains 0 for monadic op, $ff for dyadic | DNRM_FLG contains $00 for neither op denormalized | $0f for the destination op denormalized | $f0 for the source op denormalized | $ff for both ops denormalized | | The wrap-around condition occurs for add, sub, div, and cmp | when | | abs(dest_exp - src_exp) >= $8000 | | and for mul when | | (dest_exp + src_exp) < $0 | | we must process the operation here if this case is true. | | The rts following the frcfpn routine is the exit from res_func | for this condition. The restore flag (RES_FLG) is left clear. | No frestore is done unless an exception is to be reported. | | For fadd: | if(sign_of(dest) != sign_of(src)) | replace exponent of src with $3fff (keep sign) | use fpu to perform dest+new_src (user's rmode and X) | clr sticky | else | set sticky | call round with user's precision and mode | move result to fpn and wbtemp | | For fsub: | if(sign_of(dest) == sign_of(src)) | replace exponent of src with $3fff (keep sign) | use fpu to perform dest+new_src (user's rmode and X) | clr sticky | else | set sticky | call round with user's precision and mode | move result to fpn and wbtemp | | For fdiv/fsgldiv: | if(both operands are denorm) | restore_to_fpu; | if(dest is norm) | force_ovf; | else(dest is denorm) | force_unf: | | For fcmp: | if(dest is norm) | N = sign_of(dest); | else(dest is denorm) | N = sign_of(src); | | For fmul: | if(both operands are denorm) | force_unf; | if((dest_exp + src_exp) < 0) | force_unf: | else | restore_to_fpu; | | local equates: .set addcode,0x22 .set subcode,0x28 .set mulcode,0x23 .set divcode,0x20 .set cmpcode,0x38 ck_wrap: | tstb DY_MO_FLG(%a6) ;check for fsqrt beq fix_stk |if zero, it is fsqrt movew CMDREG1B(%a6),%d0 andiw #0x3b,%d0 |strip to command bits cmpiw #addcode,%d0 beq wrap_add cmpiw #subcode,%d0 beq wrap_sub cmpiw #mulcode,%d0 beq wrap_mul cmpiw #cmpcode,%d0 beq wrap_cmp | | Inst is fdiv. | wrap_div: cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, beq fix_stk |restore to fpu | | One of the ops is denormalized. Test for wrap condition | and force the result. | cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm bnes div_srcd div_destd: bsrl ckinf_ns bne fix_stk bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) subl %d1,%d0 |subtract dest from src cmpl #0x7fff,%d0 blt fix_stk |if less, not wrap case clrb WBTEMP_SGN(%a6) movew ETEMP_EX(%a6),%d0 |find the sign of the result movew FPTEMP_EX(%a6),%d1 eorw %d1,%d0 andiw #0x8000,%d0 beq force_unf st WBTEMP_SGN(%a6) bra force_unf ckinf_ns: moveb STAG(%a6),%d0 |check source tag for inf or nan bra ck_in_com ckinf_nd: moveb DTAG(%a6),%d0 |check destination tag for inf or nan ck_in_com: andib #0x60,%d0 |isolate tag bits cmpb #0x40,%d0 |is it inf? beq nan_or_inf |not wrap case cmpb #0x60,%d0 |is it nan? beq nan_or_inf |yes, not wrap case? cmpb #0x20,%d0 |is it a zero? beq nan_or_inf |yes clrl %d0 rts |then ; it is either a zero of norm, | ;check wrap case nan_or_inf: moveql #-1,%d0 rts div_srcd: bsrl ckinf_nd bne fix_stk bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) subl %d1,%d0 |subtract src from dest cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case clrb WBTEMP_SGN(%a6) movew ETEMP_EX(%a6),%d0 |find the sign of the result movew FPTEMP_EX(%a6),%d1 eorw %d1,%d0 andiw #0x8000,%d0 beqs force_ovf st WBTEMP_SGN(%a6) | | This code handles the case of the instruction resulting in | an overflow condition. | force_ovf: bclrb #E1,E_BYTE(%a6) orl #ovfl_inx_mask,USER_FPSR(%a6) clrw NMNEXC(%a6) leal WBTEMP(%a6),%a0 |point a0 to memory location movew CMDREG1B(%a6),%d0 btstl #6,%d0 |test for forced precision beqs frcovf_fpcr btstl #2,%d0 |check for double bnes frcovf_dbl movel #0x1,%d0 |inst is forced single bras frcovf_rnd frcovf_dbl: movel #0x2,%d0 |inst is forced double bras frcovf_rnd frcovf_fpcr: bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec frcovf_rnd: | The 881/882 does not set inex2 for the following case, so the | line is commented out to be compatible with 881/882 | tst.b %d0 | beq.b frcovf_x | or.l #inex2_mask,USER_FPSR(%a6) ;if prec is s or d, set inex2 |frcovf_x: bsrl ovf_res |get correct result based on | ;round precision/mode. This | ;sets FPSR_CC correctly | ;returns in external format bfclr WBTEMP_SGN(%a6){#0:#8} beq frcfpn bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpn | | Inst is fadd. | wrap_add: cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, beq fix_stk |restore to fpu | | One of the ops is denormalized. Test for wrap condition | and complete the instruction. | cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm bnes add_srcd add_destd: bsrl ckinf_ns bne fix_stk bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) subl %d1,%d0 |subtract dest from src cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case bra add_wrap add_srcd: bsrl ckinf_nd bne fix_stk bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) subl %d1,%d0 |subtract src from dest cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case | | Check the signs of the operands. If they are unlike, the fpu | can be used to add the norm and 1.0 with the sign of the | denorm and it will correctly generate the result in extended | precision. We can then call round with no sticky and the result | will be correct for the user's rounding mode and precision. If | the signs are the same, we call round with the sticky bit set | and the result will be correct for the user's rounding mode and | precision. | add_wrap: movew ETEMP_EX(%a6),%d0 movew FPTEMP_EX(%a6),%d1 eorw %d1,%d0 andiw #0x8000,%d0 beq add_same | | The signs are unlike. | cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? bnes add_u_srcd movew FPTEMP_EX(%a6),%d0 andiw #0x8000,%d0 orw #0x3fff,%d0 |force the exponent to +/- 1 movew %d0,FPTEMP_EX(%a6) |in the denorm movel USER_FPCR(%a6),%d0 andil #0x30,%d0 fmovel %d0,%fpcr |set up users rmode and X fmovex ETEMP(%a6),%fp0 faddx FPTEMP(%a6),%fp0 leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd fmovex %fp0,WBTEMP(%a6) |write result to memory lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call clrl %d0 |force sticky to zero bclrb #sign_bit,WBTEMP_EX(%a6) sne WBTEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beq frcfpnr bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpnr add_u_srcd: movew ETEMP_EX(%a6),%d0 andiw #0x8000,%d0 orw #0x3fff,%d0 |force the exponent to +/- 1 movew %d0,ETEMP_EX(%a6) |in the denorm movel USER_FPCR(%a6),%d0 andil #0x30,%d0 fmovel %d0,%fpcr |set up users rmode and X fmovex ETEMP(%a6),%fp0 faddx FPTEMP(%a6),%fp0 fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame fmovex %fp0,WBTEMP(%a6) |write result to memory lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call clrl %d0 |force sticky to zero bclrb #sign_bit,WBTEMP_EX(%a6) sne WBTEMP_SGN(%a6) |use internal format for round bsrl round |round result to users rmode & prec bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beq frcfpnr bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpnr | | Signs are alike: | add_same: cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? bnes add_s_srcd add_s_destd: leal ETEMP(%a6),%a0 movel USER_FPCR(%a6),%d0 andil #0x30,%d0 lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call movel #0x20000000,%d0 |set sticky for round bclrb #sign_bit,ETEMP_EX(%a6) sne ETEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr ETEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs add_s_dclr bsetb #sign_bit,ETEMP_EX(%a6) add_s_dclr: leal WBTEMP(%a6),%a0 movel ETEMP(%a6),(%a0) |write result to wbtemp movel ETEMP_HI(%a6),4(%a0) movel ETEMP_LO(%a6),8(%a0) tstw ETEMP_EX(%a6) bgt add_ckovf orl #neg_mask,USER_FPSR(%a6) bra add_ckovf add_s_srcd: leal FPTEMP(%a6),%a0 movel USER_FPCR(%a6),%d0 andil #0x30,%d0 lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call movel #0x20000000,%d0 |set sticky for round bclrb #sign_bit,FPTEMP_EX(%a6) sne FPTEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr FPTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs add_s_sclr bsetb #sign_bit,FPTEMP_EX(%a6) add_s_sclr: leal WBTEMP(%a6),%a0 movel FPTEMP(%a6),(%a0) |write result to wbtemp movel FPTEMP_HI(%a6),4(%a0) movel FPTEMP_LO(%a6),8(%a0) tstw FPTEMP_EX(%a6) bgt add_ckovf orl #neg_mask,USER_FPSR(%a6) add_ckovf: movew WBTEMP_EX(%a6),%d0 andiw #0x7fff,%d0 cmpiw #0x7fff,%d0 bne frcfpnr | | The result has overflowed to $7fff exponent. Set I, ovfl, | and aovfl, and clr the mantissa (incorrectly set by the | round routine.) | orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) clrl 4(%a0) bra frcfpnr | | Inst is fsub. | wrap_sub: cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, beq fix_stk |restore to fpu | | One of the ops is denormalized. Test for wrap condition | and complete the instruction. | cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm bnes sub_srcd sub_destd: bsrl ckinf_ns bne fix_stk bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) subl %d1,%d0 |subtract src from dest cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case bra sub_wrap sub_srcd: bsrl ckinf_nd bne fix_stk bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) subl %d1,%d0 |subtract dest from src cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case | | Check the signs of the operands. If they are alike, the fpu | can be used to subtract from the norm 1.0 with the sign of the | denorm and it will correctly generate the result in extended | precision. We can then call round with no sticky and the result | will be correct for the user's rounding mode and precision. If | the signs are unlike, we call round with the sticky bit set | and the result will be correct for the user's rounding mode and | precision. | sub_wrap: movew ETEMP_EX(%a6),%d0 movew FPTEMP_EX(%a6),%d1 eorw %d1,%d0 andiw #0x8000,%d0 bne sub_diff | | The signs are alike. | cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? bnes sub_u_srcd movew FPTEMP_EX(%a6),%d0 andiw #0x8000,%d0 orw #0x3fff,%d0 |force the exponent to +/- 1 movew %d0,FPTEMP_EX(%a6) |in the denorm movel USER_FPCR(%a6),%d0 andil #0x30,%d0 fmovel %d0,%fpcr |set up users rmode and X fmovex FPTEMP(%a6),%fp0 fsubx ETEMP(%a6),%fp0 fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame fmovex %fp0,WBTEMP(%a6) |write result to memory lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call clrl %d0 |force sticky to zero bclrb #sign_bit,WBTEMP_EX(%a6) sne WBTEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beq frcfpnr bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpnr sub_u_srcd: movew ETEMP_EX(%a6),%d0 andiw #0x8000,%d0 orw #0x3fff,%d0 |force the exponent to +/- 1 movew %d0,ETEMP_EX(%a6) |in the denorm movel USER_FPCR(%a6),%d0 andil #0x30,%d0 fmovel %d0,%fpcr |set up users rmode and X fmovex FPTEMP(%a6),%fp0 fsubx ETEMP(%a6),%fp0 fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture cc's and inex from fadd leal WBTEMP(%a6),%a0 |point a0 to wbtemp in frame fmovex %fp0,WBTEMP(%a6) |write result to memory lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call clrl %d0 |force sticky to zero bclrb #sign_bit,WBTEMP_EX(%a6) sne WBTEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beq frcfpnr bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpnr | | Signs are unlike: | sub_diff: cmpb #0x0f,DNRM_FLG(%a6) |is dest the denorm? bnes sub_s_srcd sub_s_destd: leal ETEMP(%a6),%a0 movel USER_FPCR(%a6),%d0 andil #0x30,%d0 lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call movel #0x20000000,%d0 |set sticky for round | | Since the dest is the denorm, the sign is the opposite of the | norm sign. | eoriw #0x8000,ETEMP_EX(%a6) |flip sign on result tstw ETEMP_EX(%a6) bgts sub_s_dwr orl #neg_mask,USER_FPSR(%a6) sub_s_dwr: bclrb #sign_bit,ETEMP_EX(%a6) sne ETEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr ETEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs sub_s_dclr bsetb #sign_bit,ETEMP_EX(%a6) sub_s_dclr: leal WBTEMP(%a6),%a0 movel ETEMP(%a6),(%a0) |write result to wbtemp movel ETEMP_HI(%a6),4(%a0) movel ETEMP_LO(%a6),8(%a0) bra sub_ckovf sub_s_srcd: leal FPTEMP(%a6),%a0 movel USER_FPCR(%a6),%d0 andil #0x30,%d0 lsrl #4,%d0 |put rmode in lower 2 bits movel USER_FPCR(%a6),%d1 andil #0xc0,%d1 lsrl #6,%d1 |put precision in upper word swap %d1 orl %d0,%d1 |set up for round call movel #0x20000000,%d0 |set sticky for round bclrb #sign_bit,FPTEMP_EX(%a6) sne FPTEMP_SGN(%a6) bsrl round |round result to users rmode & prec bfclr FPTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs sub_s_sclr bsetb #sign_bit,FPTEMP_EX(%a6) sub_s_sclr: leal WBTEMP(%a6),%a0 movel FPTEMP(%a6),(%a0) |write result to wbtemp movel FPTEMP_HI(%a6),4(%a0) movel FPTEMP_LO(%a6),8(%a0) tstw FPTEMP_EX(%a6) bgt sub_ckovf orl #neg_mask,USER_FPSR(%a6) sub_ckovf: movew WBTEMP_EX(%a6),%d0 andiw #0x7fff,%d0 cmpiw #0x7fff,%d0 bne frcfpnr | | The result has overflowed to $7fff exponent. Set I, ovfl, | and aovfl, and clr the mantissa (incorrectly set by the | round routine.) | orl #inf_mask+ovfl_inx_mask,USER_FPSR(%a6) clrl 4(%a0) bra frcfpnr | | Inst is fcmp. | wrap_cmp: cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, beq fix_stk |restore to fpu | | One of the ops is denormalized. Test for wrap condition | and complete the instruction. | cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm bnes cmp_srcd cmp_destd: bsrl ckinf_ns bne fix_stk bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) subl %d1,%d0 |subtract dest from src cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case tstw ETEMP_EX(%a6) |set N to ~sign_of(src) bge cmp_setn rts cmp_srcd: bsrl ckinf_nd bne fix_stk bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) subl %d1,%d0 |subtract src from dest cmpl #0x8000,%d0 blt fix_stk |if less, not wrap case tstw FPTEMP_EX(%a6) |set N to sign_of(dest) blt cmp_setn rts cmp_setn: orl #neg_mask,USER_FPSR(%a6) rts | | Inst is fmul. | wrap_mul: cmpb #0xff,DNRM_FLG(%a6) |if both ops denorm, beq force_unf |force an underflow (really!) | | One of the ops is denormalized. Test for wrap condition | and complete the instruction. | cmpb #0x0f,DNRM_FLG(%a6) |check for dest denorm bnes mul_srcd mul_destd: bsrl ckinf_ns bne fix_stk bfextu ETEMP_EX(%a6){#1:#15},%d0 |get src exp (always pos) bfexts FPTEMP_EX(%a6){#1:#15},%d1 |get dest exp (always neg) addl %d1,%d0 |subtract dest from src bgt fix_stk bra force_unf mul_srcd: bsrl ckinf_nd bne fix_stk bfextu FPTEMP_EX(%a6){#1:#15},%d0 |get dest exp (always pos) bfexts ETEMP_EX(%a6){#1:#15},%d1 |get src exp (always neg) addl %d1,%d0 |subtract src from dest bgt fix_stk | | This code handles the case of the instruction resulting in | an underflow condition. | force_unf: bclrb #E1,E_BYTE(%a6) orl #unfinx_mask,USER_FPSR(%a6) clrw NMNEXC(%a6) clrb WBTEMP_SGN(%a6) movew ETEMP_EX(%a6),%d0 |find the sign of the result movew FPTEMP_EX(%a6),%d1 eorw %d1,%d0 andiw #0x8000,%d0 beqs frcunfcont st WBTEMP_SGN(%a6) frcunfcont: lea WBTEMP(%a6),%a0 |point a0 to memory location movew CMDREG1B(%a6),%d0 btstl #6,%d0 |test for forced precision beqs frcunf_fpcr btstl #2,%d0 |check for double bnes frcunf_dbl movel #0x1,%d0 |inst is forced single bras frcunf_rnd frcunf_dbl: movel #0x2,%d0 |inst is forced double bras frcunf_rnd frcunf_fpcr: bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec frcunf_rnd: bsrl unf_sub |get correct result based on | ;round precision/mode. This | ;sets FPSR_CC correctly bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs frcfpn bsetb #sign_bit,WBTEMP_EX(%a6) bra frcfpn | | Write the result to the user's fpn. All results must be HUGE to be | written; otherwise the results would have overflowed or underflowed. | If the rounding precision is single or double, the ovf_res routine | is needed to correctly supply the max value. | frcfpnr: movew CMDREG1B(%a6),%d0 btstl #6,%d0 |test for forced precision beqs frcfpn_fpcr btstl #2,%d0 |check for double bnes frcfpn_dbl movel #0x1,%d0 |inst is forced single bras frcfpn_rnd frcfpn_dbl: movel #0x2,%d0 |inst is forced double bras frcfpn_rnd frcfpn_fpcr: bfextu FPCR_MODE(%a6){#0:#2},%d0 |inst not forced - use fpcr prec tstb %d0 beqs frcfpn |if extended, write what you got frcfpn_rnd: bclrb #sign_bit,WBTEMP_EX(%a6) sne WBTEMP_SGN(%a6) bsrl ovf_res |get correct result based on | ;round precision/mode. This | ;sets FPSR_CC correctly bfclr WBTEMP_SGN(%a6){#0:#8} |convert back to IEEE ext format beqs frcfpn_clr bsetb #sign_bit,WBTEMP_EX(%a6) frcfpn_clr: orl #ovfinx_mask,USER_FPSR(%a6) | | Perform the write. | frcfpn: bfextu CMDREG1B(%a6){#6:#3},%d0 |extract fp destination register cmpib #3,%d0 bles frc0123 |check if dest is fp0-fp3 movel #7,%d1 subl %d0,%d1 clrl %d0 bsetl %d1,%d0 fmovemx WBTEMP(%a6),%d0 rts frc0123: cmpib #0,%d0 beqs frc0_dst cmpib #1,%d0 beqs frc1_dst cmpib #2,%d0 beqs frc2_dst frc3_dst: movel WBTEMP_EX(%a6),USER_FP3(%a6) movel WBTEMP_HI(%a6),USER_FP3+4(%a6) movel WBTEMP_LO(%a6),USER_FP3+8(%a6) rts frc2_dst: movel WBTEMP_EX(%a6),USER_FP2(%a6) movel WBTEMP_HI(%a6),USER_FP2+4(%a6) movel WBTEMP_LO(%a6),USER_FP2+8(%a6) rts frc1_dst: movel WBTEMP_EX(%a6),USER_FP1(%a6) movel WBTEMP_HI(%a6),USER_FP1+4(%a6) movel WBTEMP_LO(%a6),USER_FP1+8(%a6) rts frc0_dst: movel WBTEMP_EX(%a6),USER_FP0(%a6) movel WBTEMP_HI(%a6),USER_FP0+4(%a6) movel WBTEMP_LO(%a6),USER_FP0+8(%a6) rts | | Write etemp to fpn. | A check is made on enabled and signalled snan exceptions, | and the destination is not overwritten if this condition exists. | This code is designed to make fmoveins of unsupported data types | faster. | wr_etemp: btstb #snan_bit,FPSR_EXCEPT(%a6) |if snan is set, and beqs fmoveinc |enabled, force restore btstb #snan_bit,FPCR_ENABLE(%a6) |and don't overwrite beqs fmoveinc |the dest movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for | ;snan handler tstb ETEMP(%a6) |check for negative blts snan_neg rts snan_neg: orl #neg_bit,USER_FPSR(%a6) |snan is negative; set N rts fmoveinc: clrw NMNEXC(%a6) bclrb #E1,E_BYTE(%a6) moveb STAG(%a6),%d0 |check if stag is inf andib #0xe0,%d0 cmpib #0x40,%d0 bnes fminc_cnan orl #inf_mask,USER_FPSR(%a6) |if inf, nothing yet has set I tstw LOCAL_EX(%a0) |check sign bges fminc_con orl #neg_mask,USER_FPSR(%a6) bra fminc_con fminc_cnan: cmpib #0x60,%d0 |check if stag is NaN bnes fminc_czero orl #nan_mask,USER_FPSR(%a6) |if nan, nothing yet has set NaN movel ETEMP_EX(%a6),FPTEMP_EX(%a6) |set up fptemp sign for | ;snan handler tstw LOCAL_EX(%a0) |check sign bges fminc_con orl #neg_mask,USER_FPSR(%a6) bra fminc_con fminc_czero: cmpib #0x20,%d0 |check if zero bnes fminc_con orl #z_mask,USER_FPSR(%a6) |if zero, set Z tstw LOCAL_EX(%a0) |check sign bges fminc_con orl #neg_mask,USER_FPSR(%a6) fminc_con: bfextu CMDREG1B(%a6){#6:#3},%d0 |extract fp destination register cmpib #3,%d0 bles fp0123 |check if dest is fp0-fp3 movel #7,%d1 subl %d0,%d1 clrl %d0 bsetl %d1,%d0 fmovemx ETEMP(%a6),%d0 rts fp0123: cmpib #0,%d0 beqs fp0_dst cmpib #1,%d0 beqs fp1_dst cmpib #2,%d0 beqs fp2_dst fp3_dst: movel ETEMP_EX(%a6),USER_FP3(%a6) movel ETEMP_HI(%a6),USER_FP3+4(%a6) movel ETEMP_LO(%a6),USER_FP3+8(%a6) rts fp2_dst: movel ETEMP_EX(%a6),USER_FP2(%a6) movel ETEMP_HI(%a6),USER_FP2+4(%a6) movel ETEMP_LO(%a6),USER_FP2+8(%a6) rts fp1_dst: movel ETEMP_EX(%a6),USER_FP1(%a6) movel ETEMP_HI(%a6),USER_FP1+4(%a6) movel ETEMP_LO(%a6),USER_FP1+8(%a6) rts fp0_dst: movel ETEMP_EX(%a6),USER_FP0(%a6) movel ETEMP_HI(%a6),USER_FP0+4(%a6) movel ETEMP_LO(%a6),USER_FP0+8(%a6) rts opclass3: st CU_ONLY(%a6) movew CMDREG1B(%a6),%d0 |check if packed moveout andiw #0x0c00,%d0 |isolate last 2 bits of size field cmpiw #0x0c00,%d0 |if size is 011 or 111, it is packed beq pack_out |else it is norm or denorm bra mv_out | | MOVE OUT | mv_tbl: .long li .long sgp .long xp .long mvout_end |should never be taken .long wi .long dp .long bi .long mvout_end |should never be taken mv_out: bfextu CMDREG1B(%a6){#3:#3},%d1 |put source specifier in d1 leal mv_tbl,%a0 movel %a0@(%d1:l:4),%a0 jmp (%a0) | | This exit is for move-out to memory. The aunfl bit is | set if the result is inex and unfl is signalled. | mvout_end: btstb #inex2_bit,FPSR_EXCEPT(%a6) beqs no_aufl btstb #unfl_bit,FPSR_EXCEPT(%a6) beqs no_aufl bsetb #aunfl_bit,FPSR_AEXCEPT(%a6) no_aufl: clrw NMNEXC(%a6) bclrb #E1,E_BYTE(%a6) fmovel #0,%FPSR |clear any cc bits from res_func | | Return ETEMP to extended format from internal extended format so | that gen_except will have a correctly signed value for ovfl/unfl | handlers. | bfclr ETEMP_SGN(%a6){#0:#8} beqs mvout_con bsetb #sign_bit,ETEMP_EX(%a6) mvout_con: rts | | This exit is for move-out to int register. The aunfl bit is | not set in any case for this move. | mvouti_end: clrw NMNEXC(%a6) bclrb #E1,E_BYTE(%a6) fmovel #0,%FPSR |clear any cc bits from res_func | | Return ETEMP to extended format from internal extended format so | that gen_except will have a correctly signed value for ovfl/unfl | handlers. | bfclr ETEMP_SGN(%a6){#0:#8} beqs mvouti_con bsetb #sign_bit,ETEMP_EX(%a6) mvouti_con: rts | | li is used to handle a long integer source specifier | li: moveql #4,%d0 |set byte count btstb #7,STAG(%a6) |check for extended denorm bne int_dnrm |if so, branch fmovemx ETEMP(%a6),%fp0-%fp0 fcmpd #0x41dfffffffc00000,%fp0 | 41dfffffffc00000 in dbl prec = 401d0000fffffffe00000000 in ext prec fbge lo_plrg fcmpd #0xc1e0000000000000,%fp0 | c1e0000000000000 in dbl prec = c01e00008000000000000000 in ext prec fble lo_nlrg | | at this point, the answer is between the largest pos and neg values | movel USER_FPCR(%a6),%d1 |use user's rounding mode andil #0x30,%d1 fmovel %d1,%fpcr fmovel %fp0,L_SCR1(%a6) |let the 040 perform conversion fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set bra int_wrt lo_plrg: movel #0x7fffffff,L_SCR1(%a6) |answer is largest positive int fbeq int_wrt |exact answer fcmpd #0x41dfffffffe00000,%fp0 | 41dfffffffe00000 in dbl prec = 401d0000ffffffff00000000 in ext prec fbge int_operr |set operr bra int_inx |set inexact lo_nlrg: movel #0x80000000,L_SCR1(%a6) fbeq int_wrt |exact answer fcmpd #0xc1e0000000100000,%fp0 | c1e0000000100000 in dbl prec = c01e00008000000080000000 in ext prec fblt int_operr |set operr bra int_inx |set inexact | | wi is used to handle a word integer source specifier | wi: moveql #2,%d0 |set byte count btstb #7,STAG(%a6) |check for extended denorm bne int_dnrm |branch if so fmovemx ETEMP(%a6),%fp0-%fp0 fcmps #0x46fffe00,%fp0 | 46fffe00 in sgl prec = 400d0000fffe000000000000 in ext prec fbge wo_plrg fcmps #0xc7000000,%fp0 | c7000000 in sgl prec = c00e00008000000000000000 in ext prec fble wo_nlrg | | at this point, the answer is between the largest pos and neg values | movel USER_FPCR(%a6),%d1 |use user's rounding mode andil #0x30,%d1 fmovel %d1,%fpcr fmovew %fp0,L_SCR1(%a6) |let the 040 perform conversion fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set bra int_wrt wo_plrg: movew #0x7fff,L_SCR1(%a6) |answer is largest positive int fbeq int_wrt |exact answer fcmps #0x46ffff00,%fp0 | 46ffff00 in sgl prec = 400d0000ffff000000000000 in ext prec fbge int_operr |set operr bra int_inx |set inexact wo_nlrg: movew #0x8000,L_SCR1(%a6) fbeq int_wrt |exact answer fcmps #0xc7000080,%fp0 | c7000080 in sgl prec = c00e00008000800000000000 in ext prec fblt int_operr |set operr bra int_inx |set inexact | | bi is used to handle a byte integer source specifier | bi: moveql #1,%d0 |set byte count btstb #7,STAG(%a6) |check for extended denorm bne int_dnrm |branch if so fmovemx ETEMP(%a6),%fp0-%fp0 fcmps #0x42fe0000,%fp0 | 42fe0000 in sgl prec = 40050000fe00000000000000 in ext prec fbge by_plrg fcmps #0xc3000000,%fp0 | c3000000 in sgl prec = c00600008000000000000000 in ext prec fble by_nlrg | | at this point, the answer is between the largest pos and neg values | movel USER_FPCR(%a6),%d1 |use user's rounding mode andil #0x30,%d1 fmovel %d1,%fpcr fmoveb %fp0,L_SCR1(%a6) |let the 040 perform conversion fmovel %fpsr,%d1 orl %d1,USER_FPSR(%a6) |capture inex2/ainex if set bra int_wrt by_plrg: moveb #0x7f,L_SCR1(%a6) |answer is largest positive int fbeq int_wrt |exact answer fcmps #0x42ff0000,%fp0 | 42ff0000 in sgl prec = 40050000ff00000000000000 in ext prec fbge int_operr |set operr bra int_inx |set inexact by_nlrg: moveb #0x80,L_SCR1(%a6) fbeq int_wrt |exact answer fcmps #0xc3008000,%fp0 | c3008000 in sgl prec = c00600008080000000000000 in ext prec fblt int_operr |set operr bra int_inx |set inexact | | Common integer routines | | int_drnrm---account for possible nonzero result for round up with positive | operand and round down for negative answer. In the first case (result = 1) | byte-width (store in d0) of result must be honored. In the second case, | -1 in L_SCR1(a6) will cover all contingencies (FMOVE.B/W/L out). int_dnrm: movel #0,L_SCR1(%a6) | initialize result to 0 bfextu FPCR_MODE(%a6){#2:#2},%d1 | d1 is the rounding mode cmpb #2,%d1 bmis int_inx | if RN or RZ, done bnes int_rp | if RP, continue below tstw ETEMP(%a6) | RM: store -1 in L_SCR1 if src is negative bpls int_inx | otherwise result is 0 movel #-1,L_SCR1(%a6) bras int_inx int_rp: tstw ETEMP(%a6) | RP: store +1 of proper width in L_SCR1 if | ; source is greater than 0 bmis int_inx | otherwise, result is 0 lea L_SCR1(%a6),%a1 | a1 is address of L_SCR1 addal %d0,%a1 | offset by destination width -1 subal #1,%a1 bsetb #0,(%a1) | set low bit at a1 address int_inx: oril #inx2a_mask,USER_FPSR(%a6) bras int_wrt int_operr: fmovemx %fp0-%fp0,FPTEMP(%a6) |FPTEMP must contain the extended | ;precision source that needs to be | ;converted to integer this is required | ;if the operr exception is enabled. | ;set operr/aiop (no inex2 on int ovfl) oril #opaop_mask,USER_FPSR(%a6) | ;fall through to perform int_wrt int_wrt: movel EXC_EA(%a6),%a1 |load destination address tstl %a1 |check to see if it is a dest register beqs wrt_dn |write data register lea L_SCR1(%a6),%a0 |point to supervisor source address bsrl mem_write bra mvouti_end wrt_dn: movel %d0,-(%sp) |d0 currently contains the size to write bsrl get_fline |get_fline returns Dn in d0 andiw #0x7,%d0 |isolate register movel (%sp)+,%d1 |get size cmpil #4,%d1 |most frequent case beqs sz_long cmpil #2,%d1 bnes sz_con orl #8,%d0 |add 'word' size to register# bras sz_con sz_long: orl #0x10,%d0 |add 'long' size to register# sz_con: movel %d0,%d1 |reg_dest expects size:reg in d1 bsrl reg_dest |load proper data register bra mvouti_end xp: lea ETEMP(%a6),%a0 bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) btstb #7,STAG(%a6) |check for extended denorm bne xdnrm clrl %d0 bras do_fp |do normal case sgp: lea ETEMP(%a6),%a0 bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) btstb #7,STAG(%a6) |check for extended denorm bne sp_catas |branch if so movew LOCAL_EX(%a0),%d0 lea sp_bnds,%a1 cmpw (%a1),%d0 blt sp_under cmpw 2(%a1),%d0 bgt sp_over movel #1,%d0 |set destination format to single bras do_fp |do normal case dp: lea ETEMP(%a6),%a0 bclrb #sign_bit,LOCAL_EX(%a0) sne LOCAL_SGN(%a0) btstb #7,STAG(%a6) |check for extended denorm bne dp_catas |branch if so movew LOCAL_EX(%a0),%d0 lea dp_bnds,%a1 cmpw (%a1),%d0 blt dp_under cmpw 2(%a1),%d0 bgt dp_over movel #2,%d0 |set destination format to double | ;fall through to do_fp | do_fp: bfextu FPCR_MODE(%a6){#2:#2},%d1 |rnd mode in d1 swap %d0 |rnd prec in upper word addl %d0,%d1 |d1 has PREC/MODE info clrl %d0 |clear g,r,s bsrl round |round movel %a0,%a1 movel EXC_EA(%a6),%a0 bfextu CMDREG1B(%a6){#3:#3},%d1 |extract destination format | ;at this point only the dest | ;formats sgl, dbl, ext are | ;possible cmpb #2,%d1 bgts ddbl |double=5, extended=2, single=1 bnes dsgl | ;fall through to dext dext: bsrl dest_ext bra mvout_end dsgl: bsrl dest_sgl bra mvout_end ddbl: bsrl dest_dbl bra mvout_end | | Handle possible denorm or catastrophic underflow cases here | xdnrm: bsr set_xop |initialize WBTEMP bsetb #wbtemp15_bit,WB_BYTE(%a6) |set wbtemp15 movel %a0,%a1 movel EXC_EA(%a6),%a0 |a0 has the destination pointer bsrl dest_ext |store to memory bsetb #unfl_bit,FPSR_EXCEPT(%a6) bra mvout_end sp_under: bsetb #etemp15_bit,STAG(%a6) cmpw 4(%a1),%d0 blts sp_catas |catastrophic underflow case movel #1,%d0 |load in round precision movel #sgl_thresh,%d1 |load in single denorm threshold bsrl dpspdnrm |expects d1 to have the proper | ;denorm threshold bsrl dest_sgl |stores value to destination bsetb #unfl_bit,FPSR_EXCEPT(%a6) bra mvout_end |exit dp_under: bsetb #etemp15_bit,STAG(%a6) cmpw 4(%a1),%d0 blts dp_catas |catastrophic underflow case movel #dbl_thresh,%d1 |load in double precision threshold movel #2,%d0 bsrl dpspdnrm |expects d1 to have proper | ;denorm threshold | ;expects d0 to have round precision bsrl dest_dbl |store value to destination bsetb #unfl_bit,FPSR_EXCEPT(%a6) bra mvout_end |exit | | Handle catastrophic underflow cases here | sp_catas: | Temp fix for z bit set in unf_sub movel USER_FPSR(%a6),-(%a7) movel #1,%d0 |set round precision to sgl bsrl unf_sub |a0 points to result movel (%a7)+,USER_FPSR(%a6) movel #1,%d0 subw %d0,LOCAL_EX(%a0) |account for difference between | ;denorm/norm bias movel %a0,%a1 |a1 has the operand input movel EXC_EA(%a6),%a0 |a0 has the destination pointer bsrl dest_sgl |store the result oril #unfinx_mask,USER_FPSR(%a6) bra mvout_end dp_catas: | Temp fix for z bit set in unf_sub movel USER_FPSR(%a6),-(%a7) movel #2,%d0 |set round precision to dbl bsrl unf_sub |a0 points to result movel (%a7)+,USER_FPSR(%a6) movel #1,%d0 subw %d0,LOCAL_EX(%a0) |account for difference between | ;denorm/norm bias movel %a0,%a1 |a1 has the operand input movel EXC_EA(%a6),%a0 |a0 has the destination pointer bsrl dest_dbl |store the result oril #unfinx_mask,USER_FPSR(%a6) bra mvout_end | | Handle catastrophic overflow cases here | sp_over: | Temp fix for z bit set in unf_sub movel USER_FPSR(%a6),-(%a7) movel #1,%d0 leal FP_SCR1(%a6),%a0 |use FP_SCR1 for creating result movel ETEMP_EX(%a6),(%a0) movel ETEMP_HI(%a6),4(%a0) movel ETEMP_LO(%a6),8(%a0) bsrl ovf_res movel (%a7)+,USER_FPSR(%a6) movel %a0,%a1 movel EXC_EA(%a6),%a0 bsrl dest_sgl orl #ovfinx_mask,USER_FPSR(%a6) bra mvout_end dp_over: | Temp fix for z bit set in ovf_res movel USER_FPSR(%a6),-(%a7) movel #2,%d0 leal FP_SCR1(%a6),%a0 |use FP_SCR1 for creating result movel ETEMP_EX(%a6),(%a0) movel ETEMP_HI(%a6),4(%a0) movel ETEMP_LO(%a6),8(%a0) bsrl ovf_res movel (%a7)+,USER_FPSR(%a6) movel %a0,%a1 movel EXC_EA(%a6),%a0 bsrl dest_dbl orl #ovfinx_mask,USER_FPSR(%a6) bra mvout_end | | DPSPDNRM | | This subroutine takes an extended normalized number and denormalizes | it to the given round precision. This subroutine also decrements | the input operand's exponent by 1 to account for the fact that | dest_sgl or dest_dbl expects a normalized number's bias. | | Input: a0 points to a normalized number in internal extended format | d0 is the round precision (=1 for sgl; =2 for dbl) | d1 is the single precision or double precision | denorm threshold | | Output: (In the format for dest_sgl or dest_dbl) | a0 points to the destination | a1 points to the operand | | Exceptions: Reports inexact 2 exception by setting USER_FPSR bits | dpspdnrm: movel %d0,-(%a7) |save round precision clrl %d0 |clear initial g,r,s bsrl dnrm_lp |careful with d0, it's needed by round bfextu FPCR_MODE(%a6){#2:#2},%d1 |get rounding mode swap %d1 movew 2(%a7),%d1 |set rounding precision swap %d1 |at this point d1 has PREC/MODE info bsrl round |round result, sets the inex bit in | ;USER_FPSR if needed movew #1,%d0 subw %d0,LOCAL_EX(%a0) |account for difference in denorm | ;vs norm bias movel %a0,%a1 |a1 has the operand input movel EXC_EA(%a6),%a0 |a0 has the destination pointer addw #4,%a7 |pop stack rts | | SET_XOP initialized WBTEMP with the value pointed to by a0 | input: a0 points to input operand in the internal extended format | set_xop: movel LOCAL_EX(%a0),WBTEMP_EX(%a6) movel LOCAL_HI(%a0),WBTEMP_HI(%a6) movel LOCAL_LO(%a0),WBTEMP_LO(%a6) bfclr WBTEMP_SGN(%a6){#0:#8} beqs sxop bsetb #sign_bit,WBTEMP_EX(%a6) sxop: bfclr STAG(%a6){#5:#4} |clear wbtm66,wbtm1,wbtm0,sbit rts | | P_MOVE | p_movet: .long p_move .long p_movez .long p_movei .long p_moven .long p_move p_regd: .long p_dyd0 .long p_dyd1 .long p_dyd2 .long p_dyd3 .long p_dyd4 .long p_dyd5 .long p_dyd6 .long p_dyd7 pack_out: leal p_movet,%a0 |load jmp table address movew STAG(%a6),%d0 |get source tag bfextu %d0{#16:#3},%d0 |isolate source bits movel (%a0,%d0.w*4),%a0 |load a0 with routine label for tag jmp (%a0) |go to the routine p_write: movel #0x0c,%d0 |get byte count movel EXC_EA(%a6),%a1 |get the destination address bsr mem_write |write the user's destination moveb #0,CU_SAVEPC(%a6) |set the cu save pc to all 0's | | Also note that the dtag must be set to norm here - this is because | the 040 uses the dtag to execute the correct microcode. | bfclr DTAG(%a6){#0:#3} |set dtag to norm rts | Notes on handling of special case (zero, inf, and nan) inputs: | 1. Operr is not signalled if the k-factor is greater than 18. | 2. Per the manual, status bits are not set. | p_move: movew CMDREG1B(%a6),%d0 btstl #kfact_bit,%d0 |test for dynamic k-factor beqs statick |if clear, k-factor is static dynamick: bfextu %d0{#25:#3},%d0 |isolate register for dynamic k-factor lea p_regd,%a0 movel %a0@(%d0:l:4),%a0 jmp (%a0) statick: andiw #0x007f,%d0 |get k-factor bfexts %d0{#25:#7},%d0 |sign extend d0 for bindec leal ETEMP(%a6),%a0 |a0 will point to the packed decimal bsrl bindec |perform the convert; data at a6 leal FP_SCR1(%a6),%a0 |load a0 with result address bral p_write p_movez: leal ETEMP(%a6),%a0 |a0 will point to the packed decimal clrw 2(%a0) |clear lower word of exp clrl 4(%a0) |load second lword of ZERO clrl 8(%a0) |load third lword of ZERO bra p_write |go write results p_movei: fmovel #0,%FPSR |clear aiop leal ETEMP(%a6),%a0 |a0 will point to the packed decimal clrw 2(%a0) |clear lower word of exp bra p_write |go write the result p_moven: leal ETEMP(%a6),%a0 |a0 will point to the packed decimal clrw 2(%a0) |clear lower word of exp bra p_write |go write the result | | Routines to read the dynamic k-factor from Dn. | p_dyd0: movel USER_D0(%a6),%d0 bras statick p_dyd1: movel USER_D1(%a6),%d0 bras statick p_dyd2: movel %d2,%d0 bras statick p_dyd3: movel %d3,%d0 bras statick p_dyd4: movel %d4,%d0 bras statick p_dyd5: movel %d5,%d0 bras statick p_dyd6: movel %d6,%d0 bra statick p_dyd7: movel %d7,%d0 bra statick |end