// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/alpha/kernel/core_t2.c * * Written by Jay A Estabrook (jestabro@amt.tay1.dec.com). * December 1996. * * based on CIA code by David A Rusling (david.rusling@reo.mts.dec.com) * * Code common to all T2 core logic chips. */ #define __EXTERN_INLINE #include <asm/io.h> #include <asm/core_t2.h> #undef __EXTERN_INLINE #include <linux/types.h> #include <linux/pci.h> #include <linux/sched.h> #include <linux/init.h> #include <asm/ptrace.h> #include <asm/delay.h> #include <asm/mce.h> #include "proto.h" #include "pci_impl.h" /* For dumping initial DMA window settings. */ #define DEBUG_PRINT_INITIAL_SETTINGS 0 /* For dumping final DMA window settings. */ #define DEBUG_PRINT_FINAL_SETTINGS 0 /* * By default, we direct-map starting at 2GB, in order to allow the * maximum size direct-map window (2GB) to match the maximum amount of * memory (2GB) that can be present on SABLEs. But that limits the * floppy to DMA only via the scatter/gather window set up for 8MB * ISA DMA, since the maximum ISA DMA address is 2GB-1. * * For now, this seems a reasonable trade-off: even though most SABLEs * have less than 1GB of memory, floppy usage/performance will not * really be affected by forcing it to go via scatter/gather... */ #define T2_DIRECTMAP_2G 1 #if T2_DIRECTMAP_2G # define T2_DIRECTMAP_START 0x80000000UL # define T2_DIRECTMAP_LENGTH 0x80000000UL #else # define T2_DIRECTMAP_START 0x40000000UL # define T2_DIRECTMAP_LENGTH 0x40000000UL #endif /* The ISA scatter/gather window settings. */ #define T2_ISA_SG_START 0x00800000UL #define T2_ISA_SG_LENGTH 0x00800000UL /* * NOTE: Herein lie back-to-back mb instructions. They are magic. * One plausible explanation is that the i/o controller does not properly * handle the system transaction. Another involves timing. Ho hum. */ /* * BIOS32-style PCI interface: */ #define DEBUG_CONFIG 0 #if DEBUG_CONFIG # define DBG(args) printk args #else # define DBG(args) #endif static volatile unsigned int t2_mcheck_any_expected; static volatile unsigned int t2_mcheck_last_taken; /* Place to save the DMA Window registers as set up by SRM for restoration during shutdown. */ static struct { struct { unsigned long wbase; unsigned long wmask; unsigned long tbase; } window[2]; unsigned long hae_1; unsigned long hae_2; unsigned long hae_3; unsigned long hae_4; unsigned long hbase; } t2_saved_config __attribute((common)); /* * Given a bus, device, and function number, compute resulting * configuration space address and setup the T2_HAXR2 register * accordingly. It is therefore not safe to have concurrent * invocations to configuration space access routines, but there * really shouldn't be any need for this. * * Type 0: * * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | |D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|0| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * 31:11 Device select bit. * 10:8 Function number * 7:2 Register number * * Type 1: * * 3 3|3 3 2 2|2 2 2 2|2 2 2 2|1 1 1 1|1 1 1 1|1 1 * 3 2|1 0 9 8|7 6 5 4|3 2 1 0|9 8 7 6|5 4 3 2|1 0 9 8|7 6 5 4|3 2 1 0 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * | | | | | | | | | | |B|B|B|B|B|B|B|B|D|D|D|D|D|F|F|F|R|R|R|R|R|R|0|1| * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ * * 31:24 reserved * 23:16 bus number (8 bits = 128 possible buses) * 15:11 Device number (5 bits) * 10:8 function number * 7:2 register number * * Notes: * The function number selects which function of a multi-function device * (e.g., SCSI and Ethernet). * * The register selects a DWORD (32 bit) register offset. Hence it * doesn't get shifted by 2 bits as we want to "drop" the bottom two * bits. */ static int mk_conf_addr(struct pci_bus *pbus, unsigned int device_fn, int where, unsigned long *pci_addr, unsigned char *type1) { unsigned long addr; u8 bus = pbus->number; DBG(("mk_conf_addr(bus=%d, dfn=0x%x, where=0x%x," " addr=0x%lx, type1=0x%x)\n", bus, device_fn, where, pci_addr, type1)); if (bus == 0) { int device = device_fn >> 3; /* Type 0 configuration cycle. */ if (device > 8) { DBG(("mk_conf_addr: device (%d)>20, returning -1\n", device)); return -1; } *type1 = 0; addr = (0x0800L << device) | ((device_fn & 7) << 8) | (where); } else { /* Type 1 configuration cycle. */ *type1 = 1; addr = (bus << 16) | (device_fn << 8) | (where); } *pci_addr = addr; DBG(("mk_conf_addr: returning pci_addr 0x%lx\n", addr)); return 0; } /* * NOTE: both conf_read() and conf_write() may set HAE_3 when needing * to do type1 access. This is protected by the use of spinlock IRQ * primitives in the wrapper functions pci_{read,write}_config_*() * defined in drivers/pci/pci.c. */ static unsigned int conf_read(unsigned long addr, unsigned char type1) { unsigned int value, cpu, taken; unsigned long t2_cfg = 0; cpu = smp_processor_id(); DBG(("conf_read(addr=0x%lx, type1=%d)\n", addr, type1)); /* If Type1 access, must set T2 CFG. */ if (type1) { t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; *(vulp)T2_HAE_3 = 0x40000000UL | t2_cfg; mb(); } mb(); draina(); mcheck_expected(cpu) = 1; mcheck_taken(cpu) = 0; t2_mcheck_any_expected |= (1 << cpu); mb(); /* Access configuration space. */ value = *(vuip)addr; mb(); mb(); /* magic */ /* Wait for possible mcheck. Also, this lets other CPUs clear their mchecks as well, as they can reliably tell when another CPU is in the midst of handling a real mcheck via the "taken" function. */ udelay(100); if ((taken = mcheck_taken(cpu))) { mcheck_taken(cpu) = 0; t2_mcheck_last_taken |= (1 << cpu); value = 0xffffffffU; mb(); } mcheck_expected(cpu) = 0; t2_mcheck_any_expected = 0; mb(); /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ if (type1) { *(vulp)T2_HAE_3 = t2_cfg; mb(); } return value; } static void conf_write(unsigned long addr, unsigned int value, unsigned char type1) { unsigned int cpu, taken; unsigned long t2_cfg = 0; cpu = smp_processor_id(); /* If Type1 access, must set T2 CFG. */ if (type1) { t2_cfg = *(vulp)T2_HAE_3 & ~0xc0000000UL; *(vulp)T2_HAE_3 = t2_cfg | 0x40000000UL; mb(); } mb(); draina(); mcheck_expected(cpu) = 1; mcheck_taken(cpu) = 0; t2_mcheck_any_expected |= (1 << cpu); mb(); /* Access configuration space. */ *(vuip)addr = value; mb(); mb(); /* magic */ /* Wait for possible mcheck. Also, this lets other CPUs clear their mchecks as well, as they can reliably tell when this CPU is in the midst of handling a real mcheck via the "taken" function. */ udelay(100); if ((taken = mcheck_taken(cpu))) { mcheck_taken(cpu) = 0; t2_mcheck_last_taken |= (1 << cpu); mb(); } mcheck_expected(cpu) = 0; t2_mcheck_any_expected = 0; mb(); /* If Type1 access, must reset T2 CFG so normal IO space ops work. */ if (type1) { *(vulp)T2_HAE_3 = t2_cfg; mb(); } } static int t2_read_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value) { unsigned long addr, pci_addr; unsigned char type1; int shift; long mask; if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) return PCIBIOS_DEVICE_NOT_FOUND; mask = (size - 1) * 8; shift = (where & 3) * 8; addr = (pci_addr << 5) + mask + T2_CONF; *value = conf_read(addr, type1) >> (shift); return PCIBIOS_SUCCESSFUL; } static int t2_write_config(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value) { unsigned long addr, pci_addr; unsigned char type1; long mask; if (mk_conf_addr(bus, devfn, where, &pci_addr, &type1)) return PCIBIOS_DEVICE_NOT_FOUND; mask = (size - 1) * 8; addr = (pci_addr << 5) + mask + T2_CONF; conf_write(addr, value << ((where & 3) * 8), type1); return PCIBIOS_SUCCESSFUL; } struct pci_ops t2_pci_ops = { .read = t2_read_config, .write = t2_write_config, }; static void __init t2_direct_map_window1(unsigned long base, unsigned long length) { unsigned long temp; __direct_map_base = base; __direct_map_size = length; temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); *(vulp)T2_WBASE1 = temp | 0x80000UL; /* OR in ENABLE bit */ temp = (length - 1) & 0xfff00000UL; *(vulp)T2_WMASK1 = temp; *(vulp)T2_TBASE1 = 0; #if DEBUG_PRINT_FINAL_SETTINGS printk("%s: setting WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); #endif } static void __init t2_sg_map_window2(struct pci_controller *hose, unsigned long base, unsigned long length) { unsigned long temp; /* Note we can only do 1 SG window, as the other is for direct, so do an ISA SG area, especially for the floppy. */ hose->sg_isa = iommu_arena_new(hose, base, length, SMP_CACHE_BYTES); hose->sg_pci = NULL; temp = (base & 0xfff00000UL) | ((base + length - 1) >> 20); *(vulp)T2_WBASE2 = temp | 0xc0000UL; /* OR in ENABLE/SG bits */ temp = (length - 1) & 0xfff00000UL; *(vulp)T2_WMASK2 = temp; *(vulp)T2_TBASE2 = virt_to_phys(hose->sg_isa->ptes) >> 1; mb(); t2_pci_tbi(hose, 0, -1); /* flush TLB all */ #if DEBUG_PRINT_FINAL_SETTINGS printk("%s: setting WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); #endif } static void __init t2_save_configuration(void) { #if DEBUG_PRINT_INITIAL_SETTINGS printk("%s: HAE_1 was 0x%lx\n", __func__, srm_hae); /* HW is 0 */ printk("%s: HAE_2 was 0x%lx\n", __func__, *(vulp)T2_HAE_2); printk("%s: HAE_3 was 0x%lx\n", __func__, *(vulp)T2_HAE_3); printk("%s: HAE_4 was 0x%lx\n", __func__, *(vulp)T2_HAE_4); printk("%s: HBASE was 0x%lx\n", __func__, *(vulp)T2_HBASE); printk("%s: WBASE1=0x%lx WMASK1=0x%lx TBASE1=0x%lx\n", __func__, *(vulp)T2_WBASE1, *(vulp)T2_WMASK1, *(vulp)T2_TBASE1); printk("%s: WBASE2=0x%lx WMASK2=0x%lx TBASE2=0x%lx\n", __func__, *(vulp)T2_WBASE2, *(vulp)T2_WMASK2, *(vulp)T2_TBASE2); #endif /* * Save the DMA Window registers. */ t2_saved_config.window[0].wbase = *(vulp)T2_WBASE1; t2_saved_config.window[0].wmask = *(vulp)T2_WMASK1; t2_saved_config.window[0].tbase = *(vulp)T2_TBASE1; t2_saved_config.window[1].wbase = *(vulp)T2_WBASE2; t2_saved_config.window[1].wmask = *(vulp)T2_WMASK2; t2_saved_config.window[1].tbase = *(vulp)T2_TBASE2; t2_saved_config.hae_1 = srm_hae; /* HW is already set to 0 */ t2_saved_config.hae_2 = *(vulp)T2_HAE_2; t2_saved_config.hae_3 = *(vulp)T2_HAE_3; t2_saved_config.hae_4 = *(vulp)T2_HAE_4; t2_saved_config.hbase = *(vulp)T2_HBASE; } void __init t2_init_arch(void) { struct pci_controller *hose; struct resource *hae_mem; unsigned long temp; unsigned int i; for (i = 0; i < NR_CPUS; i++) { mcheck_expected(i) = 0; mcheck_taken(i) = 0; } t2_mcheck_any_expected = 0; t2_mcheck_last_taken = 0; /* Enable scatter/gather TLB use. */ temp = *(vulp)T2_IOCSR; if (!(temp & (0x1UL << 26))) { printk("t2_init_arch: enabling SG TLB, IOCSR was 0x%lx\n", temp); *(vulp)T2_IOCSR = temp | (0x1UL << 26); mb(); *(vulp)T2_IOCSR; /* read it back to make sure */ } t2_save_configuration(); /* * Create our single hose. */ pci_isa_hose = hose = alloc_pci_controller(); hose->io_space = &ioport_resource; hae_mem = alloc_resource(); hae_mem->start = 0; hae_mem->end = T2_MEM_R1_MASK; hae_mem->name = pci_hae0_name; if (request_resource(&iomem_resource, hae_mem) < 0) printk(KERN_ERR "Failed to request HAE_MEM\n"); hose->mem_space = hae_mem; hose->index = 0; hose->sparse_mem_base = T2_SPARSE_MEM - IDENT_ADDR; hose->dense_mem_base = T2_DENSE_MEM - IDENT_ADDR; hose->sparse_io_base = T2_IO - IDENT_ADDR; hose->dense_io_base = 0; /* * Set up the PCI->physical memory translation windows. * * Window 1 is direct mapped. * Window 2 is scatter/gather (for ISA). */ t2_direct_map_window1(T2_DIRECTMAP_START, T2_DIRECTMAP_LENGTH); /* Always make an ISA DMA window. */ t2_sg_map_window2(hose, T2_ISA_SG_START, T2_ISA_SG_LENGTH); *(vulp)T2_HBASE = 0x0; /* Disable HOLES. */ /* Zero HAE. */ *(vulp)T2_HAE_1 = 0; mb(); /* Sparse MEM HAE */ *(vulp)T2_HAE_2 = 0; mb(); /* Sparse I/O HAE */ *(vulp)T2_HAE_3 = 0; mb(); /* Config Space HAE */ /* * We also now zero out HAE_4, the dense memory HAE, so that * we need not account for its "offset" when accessing dense * memory resources which we allocated in our normal way. This * HAE would need to stay untouched were we to keep the SRM * resource settings. * * Thus we can now run standard X servers on SABLE/LYNX. :-) */ *(vulp)T2_HAE_4 = 0; mb(); } void t2_kill_arch(int mode) { /* * Restore the DMA Window registers. */ *(vulp)T2_WBASE1 = t2_saved_config.window[0].wbase; *(vulp)T2_WMASK1 = t2_saved_config.window[0].wmask; *(vulp)T2_TBASE1 = t2_saved_config.window[0].tbase; *(vulp)T2_WBASE2 = t2_saved_config.window[1].wbase; *(vulp)T2_WMASK2 = t2_saved_config.window[1].wmask; *(vulp)T2_TBASE2 = t2_saved_config.window[1].tbase; mb(); *(vulp)T2_HAE_1 = srm_hae; *(vulp)T2_HAE_2 = t2_saved_config.hae_2; *(vulp)T2_HAE_3 = t2_saved_config.hae_3; *(vulp)T2_HAE_4 = t2_saved_config.hae_4; *(vulp)T2_HBASE = t2_saved_config.hbase; mb(); *(vulp)T2_HBASE; /* READ it back to ensure WRITE occurred. */ } void t2_pci_tbi(struct pci_controller *hose, dma_addr_t start, dma_addr_t end) { unsigned long t2_iocsr; t2_iocsr = *(vulp)T2_IOCSR; /* set the TLB Clear bit */ *(vulp)T2_IOCSR = t2_iocsr | (0x1UL << 28); mb(); *(vulp)T2_IOCSR; /* read it back to make sure */ /* clear the TLB Clear bit */ *(vulp)T2_IOCSR = t2_iocsr & ~(0x1UL << 28); mb(); *(vulp)T2_IOCSR; /* read it back to make sure */ } #define SIC_SEIC (1UL << 33) /* System Event Clear */ static void t2_clear_errors(int cpu) { struct sable_cpu_csr *cpu_regs; cpu_regs = (struct sable_cpu_csr *)T2_CPUn_BASE(cpu); cpu_regs->sic &= ~SIC_SEIC; /* Clear CPU errors. */ cpu_regs->bcce |= cpu_regs->bcce; cpu_regs->cbe |= cpu_regs->cbe; cpu_regs->bcue |= cpu_regs->bcue; cpu_regs->dter |= cpu_regs->dter; *(vulp)T2_CERR1 |= *(vulp)T2_CERR1; *(vulp)T2_PERR1 |= *(vulp)T2_PERR1; mb(); mb(); /* magic */ } /* * SABLE seems to have a "broadcast" style machine check, in that all * CPUs receive it. And, the issuing CPU, in the case of PCI Config * space read/write faults, will also receive a second mcheck, upon * lowering IPL during completion processing in pci_read_config_byte() * et al. * * Hence all the taken/expected/any_expected/last_taken stuff... */ void t2_machine_check(unsigned long vector, unsigned long la_ptr) { int cpu = smp_processor_id(); #ifdef CONFIG_VERBOSE_MCHECK struct el_common *mchk_header = (struct el_common *)la_ptr; #endif /* Clear the error before any reporting. */ mb(); mb(); /* magic */ draina(); t2_clear_errors(cpu); /* This should not actually be done until the logout frame is examined, but, since we don't do that, go on and do this... */ wrmces(0x7); mb(); /* Now, do testing for the anomalous conditions. */ if (!mcheck_expected(cpu) && t2_mcheck_any_expected) { /* * FUNKY: Received mcheck on a CPU and not * expecting it, but another CPU is expecting one. * * Just dismiss it for now on this CPU... */ #ifdef CONFIG_VERBOSE_MCHECK if (alpha_verbose_mcheck > 1) { printk("t2_machine_check(cpu%d): any_expected 0x%x -" " (assumed) spurious -" " code 0x%x\n", cpu, t2_mcheck_any_expected, (unsigned int)mchk_header->code); } #endif return; } if (!mcheck_expected(cpu) && !t2_mcheck_any_expected) { if (t2_mcheck_last_taken & (1 << cpu)) { #ifdef CONFIG_VERBOSE_MCHECK if (alpha_verbose_mcheck > 1) { printk("t2_machine_check(cpu%d): last_taken 0x%x - " "unexpected mcheck - code 0x%x\n", cpu, t2_mcheck_last_taken, (unsigned int)mchk_header->code); } #endif t2_mcheck_last_taken = 0; mb(); return; } else { t2_mcheck_last_taken = 0; mb(); } } #ifdef CONFIG_VERBOSE_MCHECK if (alpha_verbose_mcheck > 1) { printk("%s t2_mcheck(cpu%d): last_taken 0x%x - " "any_expected 0x%x - code 0x%x\n", (mcheck_expected(cpu) ? "EX" : "UN"), cpu, t2_mcheck_last_taken, t2_mcheck_any_expected, (unsigned int)mchk_header->code); } #endif process_mcheck_info(vector, la_ptr, "T2", mcheck_expected(cpu)); }