// SPDX-License-Identifier: GPL-2.0-only /* * TLB support routines. * * Copyright (C) 1998-2001, 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * 08/02/00 A. Mallick <asit.k.mallick@intel.com> * Modified RID allocation for SMP * Goutham Rao <goutham.rao@intel.com> * IPI based ptc implementation and A-step IPI implementation. * Rohit Seth <rohit.seth@intel.com> * Ken Chen <kenneth.w.chen@intel.com> * Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation * Copyright (C) 2007 Intel Corp * Fenghua Yu <fenghua.yu@intel.com> * Add multiple ptc.g/ptc.ga instruction support in global tlb purge. */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/smp.h> #include <linux/mm.h> #include <linux/memblock.h> #include <linux/slab.h> #include <asm/delay.h> #include <asm/mmu_context.h> #include <asm/pal.h> #include <asm/tlbflush.h> #include <asm/dma.h> #include <asm/processor.h> #include <asm/sal.h> #include <asm/tlb.h> static struct { u64 mask; /* mask of supported purge page-sizes */ unsigned long max_bits; /* log2 of largest supported purge page-size */ } purge; struct ia64_ctx ia64_ctx = { .lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock), .next = 1, .max_ctx = ~0U }; DEFINE_PER_CPU(u8, ia64_need_tlb_flush); DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/ DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/ struct ia64_tr_entry *ia64_idtrs[NR_CPUS]; /* * Initializes the ia64_ctx.bitmap array based on max_ctx+1. * Called after cpu_init() has setup ia64_ctx.max_ctx based on * maximum RID that is supported by boot CPU. */ void __init mmu_context_init (void) { ia64_ctx.bitmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, SMP_CACHE_BYTES); if (!ia64_ctx.bitmap) panic("%s: Failed to allocate %u bytes\n", __func__, (ia64_ctx.max_ctx + 1) >> 3); ia64_ctx.flushmap = memblock_alloc((ia64_ctx.max_ctx + 1) >> 3, SMP_CACHE_BYTES); if (!ia64_ctx.flushmap) panic("%s: Failed to allocate %u bytes\n", __func__, (ia64_ctx.max_ctx + 1) >> 3); } /* * Acquire the ia64_ctx.lock before calling this function! */ void wrap_mmu_context (struct mm_struct *mm) { int i, cpu; unsigned long flush_bit; for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) { flush_bit = xchg(&ia64_ctx.flushmap[i], 0); ia64_ctx.bitmap[i] ^= flush_bit; } /* use offset at 300 to skip daemons */ ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap, ia64_ctx.max_ctx, 300); ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap, ia64_ctx.max_ctx, ia64_ctx.next); /* * can't call flush_tlb_all() here because of race condition * with O(1) scheduler [EF] */ cpu = get_cpu(); /* prevent preemption/migration */ for_each_online_cpu(i) if (i != cpu) per_cpu(ia64_need_tlb_flush, i) = 1; put_cpu(); local_flush_tlb_all(); } /* * Implement "spinaphores" ... like counting semaphores, but they * spin instead of sleeping. If there are ever any other users for * this primitive it can be moved up to a spinaphore.h header. */ struct spinaphore { unsigned long ticket; unsigned long serve; }; static inline void spinaphore_init(struct spinaphore *ss, int val) { ss->ticket = 0; ss->serve = val; } static inline void down_spin(struct spinaphore *ss) { unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve; if (time_before(t, ss->serve)) return; ia64_invala(); for (;;) { asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory"); if (time_before(t, serve)) return; cpu_relax(); } } static inline void up_spin(struct spinaphore *ss) { ia64_fetchadd(1, &ss->serve, rel); } static struct spinaphore ptcg_sem; static u16 nptcg = 1; static int need_ptcg_sem = 1; static int toolatetochangeptcgsem = 0; /* * Kernel parameter "nptcg=" overrides max number of concurrent global TLB * purges which is reported from either PAL or SAL PALO. * * We don't have sanity checking for nptcg value. It's the user's responsibility * for valid nptcg value on the platform. Otherwise, kernel may hang in some * cases. */ static int __init set_nptcg(char *str) { int value = 0; get_option(&str, &value); setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER); return 1; } __setup("nptcg=", set_nptcg); /* * Maximum number of simultaneous ptc.g purges in the system can * be defined by PAL_VM_SUMMARY (in which case we should take * the smallest value for any cpu in the system) or by the PAL * override table (in which case we should ignore the value from * PAL_VM_SUMMARY). * * Kernel parameter "nptcg=" overrides maximum number of simultaneous ptc.g * purges defined in either PAL_VM_SUMMARY or PAL override table. In this case, * we should ignore the value from either PAL_VM_SUMMARY or PAL override table. * * Complicating the logic here is the fact that num_possible_cpus() * isn't fully setup until we start bringing cpus online. */ void setup_ptcg_sem(int max_purges, int nptcg_from) { static int kp_override; static int palo_override; static int firstcpu = 1; if (toolatetochangeptcgsem) { if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0) BUG_ON(1 < nptcg); else BUG_ON(max_purges < nptcg); return; } if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) { kp_override = 1; nptcg = max_purges; goto resetsema; } if (kp_override) { need_ptcg_sem = num_possible_cpus() > nptcg; return; } if (nptcg_from == NPTCG_FROM_PALO) { palo_override = 1; /* In PALO max_purges == 0 really means it! */ if (max_purges == 0) panic("Whoa! Platform does not support global TLB purges.\n"); nptcg = max_purges; if (nptcg == PALO_MAX_TLB_PURGES) { need_ptcg_sem = 0; return; } goto resetsema; } if (palo_override) { if (nptcg != PALO_MAX_TLB_PURGES) need_ptcg_sem = (num_possible_cpus() > nptcg); return; } /* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */ if (max_purges == 0) max_purges = 1; if (firstcpu) { nptcg = max_purges; firstcpu = 0; } if (max_purges < nptcg) nptcg = max_purges; if (nptcg == PAL_MAX_PURGES) { need_ptcg_sem = 0; return; } else need_ptcg_sem = (num_possible_cpus() > nptcg); resetsema: spinaphore_init(&ptcg_sem, max_purges); } #ifdef CONFIG_SMP static void ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start, unsigned long end, unsigned long nbits) { struct mm_struct *active_mm = current->active_mm; toolatetochangeptcgsem = 1; if (mm != active_mm) { /* Restore region IDs for mm */ if (mm && active_mm) { activate_context(mm); } else { flush_tlb_all(); return; } } if (need_ptcg_sem) down_spin(&ptcg_sem); do { /* * Flush ALAT entries also. */ ia64_ptcga(start, (nbits << 2)); ia64_srlz_i(); start += (1UL << nbits); } while (start < end); if (need_ptcg_sem) up_spin(&ptcg_sem); if (mm != active_mm) { activate_context(active_mm); } } #endif /* CONFIG_SMP */ void local_flush_tlb_all (void) { unsigned long i, j, flags, count0, count1, stride0, stride1, addr; addr = local_cpu_data->ptce_base; count0 = local_cpu_data->ptce_count[0]; count1 = local_cpu_data->ptce_count[1]; stride0 = local_cpu_data->ptce_stride[0]; stride1 = local_cpu_data->ptce_stride[1]; local_irq_save(flags); for (i = 0; i < count0; ++i) { for (j = 0; j < count1; ++j) { ia64_ptce(addr); addr += stride1; } addr += stride0; } local_irq_restore(flags); ia64_srlz_i(); /* srlz.i implies srlz.d */ } static void __flush_tlb_range (struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; unsigned long size = end - start; unsigned long nbits; #ifndef CONFIG_SMP if (mm != current->active_mm) { mm->context = 0; return; } #endif nbits = ia64_fls(size + 0xfff); while (unlikely (((1UL << nbits) & purge.mask) == 0) && (nbits < purge.max_bits)) ++nbits; if (nbits > purge.max_bits) nbits = purge.max_bits; start &= ~((1UL << nbits) - 1); preempt_disable(); #ifdef CONFIG_SMP if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) { ia64_global_tlb_purge(mm, start, end, nbits); preempt_enable(); return; } #endif do { ia64_ptcl(start, (nbits<<2)); start += (1UL << nbits); } while (start < end); preempt_enable(); ia64_srlz_i(); /* srlz.i implies srlz.d */ } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { if (unlikely(end - start >= 1024*1024*1024*1024UL || REGION_NUMBER(start) != REGION_NUMBER(end - 1))) { /* * If we flush more than a tera-byte or across regions, we're * probably better off just flushing the entire TLB(s). This * should be very rare and is not worth optimizing for. */ flush_tlb_all(); } else { /* flush the address range from the tlb */ __flush_tlb_range(vma, start, end); /* flush the virt. page-table area mapping the addr range */ __flush_tlb_range(vma, ia64_thash(start), ia64_thash(end)); } } EXPORT_SYMBOL(flush_tlb_range); void ia64_tlb_init(void) { ia64_ptce_info_t ptce_info; u64 tr_pgbits; long status; pal_vm_info_1_u_t vm_info_1; pal_vm_info_2_u_t vm_info_2; int cpu = smp_processor_id(); if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) { printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; " "defaulting to architected purge page-sizes.\n", status); purge.mask = 0x115557000UL; } purge.max_bits = ia64_fls(purge.mask); ia64_get_ptce(&ptce_info); local_cpu_data->ptce_base = ptce_info.base; local_cpu_data->ptce_count[0] = ptce_info.count[0]; local_cpu_data->ptce_count[1] = ptce_info.count[1]; local_cpu_data->ptce_stride[0] = ptce_info.stride[0]; local_cpu_data->ptce_stride[1] = ptce_info.stride[1]; local_flush_tlb_all(); /* nuke left overs from bootstrapping... */ status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2); if (status) { printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); per_cpu(ia64_tr_num, cpu) = 8; return; } per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; if (per_cpu(ia64_tr_num, cpu) > (vm_info_1.pal_vm_info_1_s.max_dtr_entry+1)) per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) { static int justonce = 1; per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX; if (justonce) { justonce = 0; printk(KERN_DEBUG "TR register number exceeds " "IA64_TR_ALLOC_MAX!\n"); } } } /* * is_tr_overlap * * Check overlap with inserted TRs. */ static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size) { u64 tr_log_size; u64 tr_end; u64 va_rr = ia64_get_rr(va); u64 va_rid = RR_TO_RID(va_rr); u64 va_end = va + (1<<log_size) - 1; if (va_rid != RR_TO_RID(p->rr)) return 0; tr_log_size = (p->itir & 0xff) >> 2; tr_end = p->ifa + (1<<tr_log_size) - 1; if (va > tr_end || p->ifa > va_end) return 0; return 1; } /* * ia64_insert_tr in virtual mode. Allocate a TR slot * * target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr * * va : virtual address. * pte : pte entries inserted. * log_size: range to be covered. * * Return value: <0 : error No. * * >=0 : slot number allocated for TR. * Must be called with preemption disabled. */ int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size) { int i, r; unsigned long psr; struct ia64_tr_entry *p; int cpu = smp_processor_id(); if (!ia64_idtrs[cpu]) { ia64_idtrs[cpu] = kmalloc_array(2 * IA64_TR_ALLOC_MAX, sizeof(struct ia64_tr_entry), GFP_KERNEL); if (!ia64_idtrs[cpu]) return -ENOMEM; } r = -EINVAL; /*Check overlap with existing TR entries*/ if (target_mask & 0x1) { p = ia64_idtrs[cpu]; for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); i++, p++) { if (p->pte & 0x1) if (is_tr_overlap(p, va, log_size)) { printk(KERN_DEBUG "Overlapped Entry" "Inserted for TR Register!!\n"); goto out; } } } if (target_mask & 0x2) { p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX; for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu); i++, p++) { if (p->pte & 0x1) if (is_tr_overlap(p, va, log_size)) { printk(KERN_DEBUG "Overlapped Entry" "Inserted for TR Register!!\n"); goto out; } } } for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) { switch (target_mask & 0x3) { case 1: if (!((ia64_idtrs[cpu] + i)->pte & 0x1)) goto found; continue; case 2: if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) goto found; continue; case 3: if (!((ia64_idtrs[cpu] + i)->pte & 0x1) && !((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) goto found; continue; default: r = -EINVAL; goto out; } } found: if (i >= per_cpu(ia64_tr_num, cpu)) return -EBUSY; /*Record tr info for mca handler use!*/ if (i > per_cpu(ia64_tr_used, cpu)) per_cpu(ia64_tr_used, cpu) = i; psr = ia64_clear_ic(); if (target_mask & 0x1) { ia64_itr(0x1, i, va, pte, log_size); ia64_srlz_i(); p = ia64_idtrs[cpu] + i; p->ifa = va; p->pte = pte; p->itir = log_size << 2; p->rr = ia64_get_rr(va); } if (target_mask & 0x2) { ia64_itr(0x2, i, va, pte, log_size); ia64_srlz_i(); p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i; p->ifa = va; p->pte = pte; p->itir = log_size << 2; p->rr = ia64_get_rr(va); } ia64_set_psr(psr); r = i; out: return r; } EXPORT_SYMBOL_GPL(ia64_itr_entry); /* * ia64_purge_tr * * target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr. * slot: slot number to be freed. * * Must be called with preemption disabled. */ void ia64_ptr_entry(u64 target_mask, int slot) { int cpu = smp_processor_id(); int i; struct ia64_tr_entry *p; if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu)) return; if (target_mask & 0x1) { p = ia64_idtrs[cpu] + slot; if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { p->pte = 0; ia64_ptr(0x1, p->ifa, p->itir>>2); ia64_srlz_i(); } } if (target_mask & 0x2) { p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot; if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) { p->pte = 0; ia64_ptr(0x2, p->ifa, p->itir>>2); ia64_srlz_i(); } } for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) { if (((ia64_idtrs[cpu] + i)->pte & 0x1) || ((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1)) break; } per_cpu(ia64_tr_used, cpu) = i; } EXPORT_SYMBOL_GPL(ia64_ptr_entry);