/* SPDX-License-Identifier: GPL-2.0-only */ /* * Copyright (C) 2012 Regents of the University of California */ #ifndef _ASM_RISCV_BITOPS_H #define _ASM_RISCV_BITOPS_H #ifndef _LINUX_BITOPS_H #error "Only <linux/bitops.h> can be included directly" #endif /* _LINUX_BITOPS_H */ #include <linux/compiler.h> #include <linux/irqflags.h> #include <asm/barrier.h> #include <asm/bitsperlong.h> #include <asm-generic/bitops/__ffs.h> #include <asm-generic/bitops/ffz.h> #include <asm-generic/bitops/fls.h> #include <asm-generic/bitops/__fls.h> #include <asm-generic/bitops/fls64.h> #include <asm-generic/bitops/sched.h> #include <asm-generic/bitops/ffs.h> #include <asm-generic/bitops/hweight.h> #if (BITS_PER_LONG == 64) #define __AMO(op) "amo" #op ".d" #elif (BITS_PER_LONG == 32) #define __AMO(op) "amo" #op ".w" #else #error "Unexpected BITS_PER_LONG" #endif #define __test_and_op_bit_ord(op, mod, nr, addr, ord) \ ({ \ unsigned long __res, __mask; \ __mask = BIT_MASK(nr); \ __asm__ __volatile__ ( \ __AMO(op) #ord " %0, %2, %1" \ : "=r" (__res), "+A" (addr[BIT_WORD(nr)]) \ : "r" (mod(__mask)) \ : "memory"); \ ((__res & __mask) != 0); \ }) #define __op_bit_ord(op, mod, nr, addr, ord) \ __asm__ __volatile__ ( \ __AMO(op) #ord " zero, %1, %0" \ : "+A" (addr[BIT_WORD(nr)]) \ : "r" (mod(BIT_MASK(nr))) \ : "memory"); #define __test_and_op_bit(op, mod, nr, addr) \ __test_and_op_bit_ord(op, mod, nr, addr, .aqrl) #define __op_bit(op, mod, nr, addr) \ __op_bit_ord(op, mod, nr, addr, ) /* Bitmask modifiers */ #define __NOP(x) (x) #define __NOT(x) (~(x)) /** * test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation may be reordered on other architectures than x86. */ static inline int test_and_set_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(or, __NOP, nr, addr); } /** * test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation can be reordered on other architectures other than x86. */ static inline int test_and_clear_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(and, __NOT, nr, addr); } /** * test_and_change_bit - Change a bit and return its old value * @nr: Bit to change * @addr: Address to count from * * This operation is atomic and cannot be reordered. * It also implies a memory barrier. */ static inline int test_and_change_bit(int nr, volatile unsigned long *addr) { return __test_and_op_bit(xor, __NOP, nr, addr); } /** * set_bit - Atomically set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Note: there are no guarantees that this function will not be reordered * on non x86 architectures, so if you are writing portable code, * make sure not to rely on its reordering guarantees. * * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void set_bit(int nr, volatile unsigned long *addr) { __op_bit(or, __NOP, nr, addr); } /** * clear_bit - Clears a bit in memory * @nr: Bit to clear * @addr: Address to start counting from * * Note: there are no guarantees that this function will not be reordered * on non x86 architectures, so if you are writing portable code, * make sure not to rely on its reordering guarantees. */ static inline void clear_bit(int nr, volatile unsigned long *addr) { __op_bit(and, __NOT, nr, addr); } /** * change_bit - Toggle a bit in memory * @nr: Bit to change * @addr: Address to start counting from * * change_bit() may be reordered on other architectures than x86. * Note that @nr may be almost arbitrarily large; this function is not * restricted to acting on a single-word quantity. */ static inline void change_bit(int nr, volatile unsigned long *addr) { __op_bit(xor, __NOP, nr, addr); } /** * test_and_set_bit_lock - Set a bit and return its old value, for lock * @nr: Bit to set * @addr: Address to count from * * This operation is atomic and provides acquire barrier semantics. * It can be used to implement bit locks. */ static inline int test_and_set_bit_lock( unsigned long nr, volatile unsigned long *addr) { return __test_and_op_bit_ord(or, __NOP, nr, addr, .aq); } /** * clear_bit_unlock - Clear a bit in memory, for unlock * @nr: the bit to set * @addr: the address to start counting from * * This operation is atomic and provides release barrier semantics. */ static inline void clear_bit_unlock( unsigned long nr, volatile unsigned long *addr) { __op_bit_ord(and, __NOT, nr, addr, .rl); } /** * __clear_bit_unlock - Clear a bit in memory, for unlock * @nr: the bit to set * @addr: the address to start counting from * * This operation is like clear_bit_unlock, however it is not atomic. * It does provide release barrier semantics so it can be used to unlock * a bit lock, however it would only be used if no other CPU can modify * any bits in the memory until the lock is released (a good example is * if the bit lock itself protects access to the other bits in the word). * * On RISC-V systems there seems to be no benefit to taking advantage of the * non-atomic property here: it's a lot more instructions and we still have to * provide release semantics anyway. */ static inline void __clear_bit_unlock( unsigned long nr, volatile unsigned long *addr) { clear_bit_unlock(nr, addr); } #undef __test_and_op_bit #undef __op_bit #undef __NOP #undef __NOT #undef __AMO #include <asm-generic/bitops/non-atomic.h> #include <asm-generic/bitops/le.h> #include <asm-generic/bitops/ext2-atomic.h> #endif /* _ASM_RISCV_BITOPS_H */