// SPDX-License-Identifier: GPL-2.0 /* * vgic_irq.c - Test userspace injection of IRQs * * This test validates the injection of IRQs from userspace using various * methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the * host to inject a specific intid via a GUEST_SYNC call, and then checks that * it received it. */ #include <asm/kvm.h> #include <asm/kvm_para.h> #include <sys/eventfd.h> #include <linux/sizes.h> #include "processor.h" #include "test_util.h" #include "kvm_util.h" #include "gic.h" #include "gic_v3.h" #include "vgic.h" #define GICD_BASE_GPA 0x08000000ULL #define GICR_BASE_GPA 0x080A0000ULL /* * Stores the user specified args; it's passed to the guest and to every test * function. */ struct test_args { uint32_t nr_irqs; /* number of KVM supported IRQs. */ bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */ bool level_sensitive; /* 1 is level, 0 is edge */ int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */ bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */ }; /* * KVM implements 32 priority levels: * 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8 * * Note that these macros will still be correct in the case that KVM implements * more priority levels. Also note that 32 is the minimum for GICv3 and GICv2. */ #define KVM_NUM_PRIOS 32 #define KVM_PRIO_SHIFT 3 /* steps of 8 = 1 << 3 */ #define KVM_PRIO_STEPS (1 << KVM_PRIO_SHIFT) /* 8 */ #define LOWEST_PRIO (KVM_NUM_PRIOS - 1) #define CPU_PRIO_MASK (LOWEST_PRIO << KVM_PRIO_SHIFT) /* 0xf8 */ #define IRQ_DEFAULT_PRIO (LOWEST_PRIO - 1) #define IRQ_DEFAULT_PRIO_REG (IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */ static void *dist = (void *)GICD_BASE_GPA; static void *redist = (void *)GICR_BASE_GPA; /* * The kvm_inject_* utilities are used by the guest to ask the host to inject * interrupts (e.g., using the KVM_IRQ_LINE ioctl). */ typedef enum { KVM_INJECT_EDGE_IRQ_LINE = 1, KVM_SET_IRQ_LINE, KVM_SET_IRQ_LINE_HIGH, KVM_SET_LEVEL_INFO_HIGH, KVM_INJECT_IRQFD, KVM_WRITE_ISPENDR, KVM_WRITE_ISACTIVER, } kvm_inject_cmd; struct kvm_inject_args { kvm_inject_cmd cmd; uint32_t first_intid; uint32_t num; int level; bool expect_failure; }; /* Used on the guest side to perform the hypercall. */ static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, uint32_t num, int level, bool expect_failure); /* Used on the host side to get the hypercall info. */ static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, struct kvm_inject_args *args); #define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure) \ kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure) #define KVM_INJECT_MULTI(cmd, intid, num) \ _KVM_INJECT_MULTI(cmd, intid, num, false) #define _KVM_INJECT(cmd, intid, expect_failure) \ _KVM_INJECT_MULTI(cmd, intid, 1, expect_failure) #define KVM_INJECT(cmd, intid) \ _KVM_INJECT_MULTI(cmd, intid, 1, false) #define KVM_ACTIVATE(cmd, intid) \ kvm_inject_call(cmd, intid, 1, 1, false); struct kvm_inject_desc { kvm_inject_cmd cmd; /* can inject PPIs, PPIs, and/or SPIs. */ bool sgi, ppi, spi; }; static struct kvm_inject_desc inject_edge_fns[] = { /* sgi ppi spi */ { KVM_INJECT_EDGE_IRQ_LINE, false, false, true }, { KVM_INJECT_IRQFD, false, false, true }, { KVM_WRITE_ISPENDR, true, false, true }, { 0, }, }; static struct kvm_inject_desc inject_level_fns[] = { /* sgi ppi spi */ { KVM_SET_IRQ_LINE_HIGH, false, true, true }, { KVM_SET_LEVEL_INFO_HIGH, false, true, true }, { KVM_INJECT_IRQFD, false, false, true }, { KVM_WRITE_ISPENDR, false, true, true }, { 0, }, }; static struct kvm_inject_desc set_active_fns[] = { /* sgi ppi spi */ { KVM_WRITE_ISACTIVER, true, true, true }, { 0, }, }; #define for_each_inject_fn(t, f) \ for ((f) = (t); (f)->cmd; (f)++) #define for_each_supported_inject_fn(args, t, f) \ for_each_inject_fn(t, f) \ if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD) #define for_each_supported_activate_fn(args, t, f) \ for_each_supported_inject_fn((args), (t), (f)) /* Shared between the guest main thread and the IRQ handlers. */ volatile uint64_t irq_handled; volatile uint32_t irqnr_received[MAX_SPI + 1]; static void reset_stats(void) { int i; irq_handled = 0; for (i = 0; i <= MAX_SPI; i++) irqnr_received[i] = 0; } static uint64_t gic_read_ap1r0(void) { uint64_t reg = read_sysreg_s(SYS_ICV_AP1R0_EL1); dsb(sy); return reg; } static void gic_write_ap1r0(uint64_t val) { write_sysreg_s(val, SYS_ICV_AP1R0_EL1); isb(); } static void guest_set_irq_line(uint32_t intid, uint32_t level); static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive) { uint32_t intid = gic_get_and_ack_irq(); if (intid == IAR_SPURIOUS) return; GUEST_ASSERT(gic_irq_get_active(intid)); if (!level_sensitive) GUEST_ASSERT(!gic_irq_get_pending(intid)); if (level_sensitive) guest_set_irq_line(intid, 0); GUEST_ASSERT(intid < MAX_SPI); irqnr_received[intid] += 1; irq_handled += 1; gic_set_eoi(intid); GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); if (eoi_split) gic_set_dir(intid); GUEST_ASSERT(!gic_irq_get_active(intid)); GUEST_ASSERT(!gic_irq_get_pending(intid)); } static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, uint32_t num, int level, bool expect_failure) { struct kvm_inject_args args = { .cmd = cmd, .first_intid = first_intid, .num = num, .level = level, .expect_failure = expect_failure, }; GUEST_SYNC(&args); } #define GUEST_ASSERT_IAR_EMPTY() \ do { \ uint32_t _intid; \ _intid = gic_get_and_ack_irq(); \ GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS); \ } while (0) #define CAT_HELPER(a, b) a ## b #define CAT(a, b) CAT_HELPER(a, b) #define PREFIX guest_irq_handler_ #define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev)) #define GENERATE_GUEST_IRQ_HANDLER(split, lev) \ static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs) \ { \ guest_irq_generic_handler(split, lev); \ } GENERATE_GUEST_IRQ_HANDLER(0, 0); GENERATE_GUEST_IRQ_HANDLER(0, 1); GENERATE_GUEST_IRQ_HANDLER(1, 0); GENERATE_GUEST_IRQ_HANDLER(1, 1); static void (*guest_irq_handlers[2][2])(struct ex_regs *) = { {GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),}, {GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),}, }; static void reset_priorities(struct test_args *args) { int i; for (i = 0; i < args->nr_irqs; i++) gic_set_priority(i, IRQ_DEFAULT_PRIO_REG); } static void guest_set_irq_line(uint32_t intid, uint32_t level) { kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false); } static void test_inject_fail(struct test_args *args, uint32_t intid, kvm_inject_cmd cmd) { reset_stats(); _KVM_INJECT(cmd, intid, true); /* no IRQ to handle on entry */ GUEST_ASSERT_EQ(irq_handled, 0); GUEST_ASSERT_IAR_EMPTY(); } static void guest_inject(struct test_args *args, uint32_t first_intid, uint32_t num, kvm_inject_cmd cmd) { uint32_t i; reset_stats(); /* Cycle over all priorities to make things more interesting. */ for (i = first_intid; i < num + first_intid; i++) gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3); asm volatile("msr daifset, #2" : : : "memory"); KVM_INJECT_MULTI(cmd, first_intid, num); while (irq_handled < num) { asm volatile("wfi\n" "msr daifclr, #2\n" /* handle IRQ */ "msr daifset, #2\n" : : : "memory"); } asm volatile("msr daifclr, #2" : : : "memory"); GUEST_ASSERT_EQ(irq_handled, num); for (i = first_intid; i < num + first_intid; i++) GUEST_ASSERT_EQ(irqnr_received[i], 1); GUEST_ASSERT_IAR_EMPTY(); reset_priorities(args); } /* * Restore the active state of multiple concurrent IRQs (given by * concurrent_irqs). This does what a live-migration would do on the * destination side assuming there are some active IRQs that were not * deactivated yet. */ static void guest_restore_active(struct test_args *args, uint32_t first_intid, uint32_t num, kvm_inject_cmd cmd) { uint32_t prio, intid, ap1r; int i; /* * Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs * in descending order, so intid+1 can preempt intid. */ for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) { GUEST_ASSERT(prio >= 0); intid = i + first_intid; gic_set_priority(intid, prio); } /* * In a real migration, KVM would restore all GIC state before running * guest code. */ for (i = 0; i < num; i++) { intid = i + first_intid; KVM_ACTIVATE(cmd, intid); ap1r = gic_read_ap1r0(); ap1r |= 1U << i; gic_write_ap1r0(ap1r); } /* This is where the "migration" would occur. */ /* finish handling the IRQs starting with the highest priority one. */ for (i = 0; i < num; i++) { intid = num - i - 1 + first_intid; gic_set_eoi(intid); if (args->eoi_split) gic_set_dir(intid); } for (i = 0; i < num; i++) GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); GUEST_ASSERT_IAR_EMPTY(); } /* * Polls the IAR until it's not a spurious interrupt. * * This function should only be used in test_inject_preemption (with IRQs * masked). */ static uint32_t wait_for_and_activate_irq(void) { uint32_t intid; do { asm volatile("wfi" : : : "memory"); intid = gic_get_and_ack_irq(); } while (intid == IAR_SPURIOUS); return intid; } /* * Inject multiple concurrent IRQs (num IRQs starting at first_intid) and * handle them without handling the actual exceptions. This is done by masking * interrupts for the whole test. */ static void test_inject_preemption(struct test_args *args, uint32_t first_intid, int num, kvm_inject_cmd cmd) { uint32_t intid, prio, step = KVM_PRIO_STEPS; int i; /* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs * in descending order, so intid+1 can preempt intid. */ for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) { GUEST_ASSERT(prio >= 0); intid = i + first_intid; gic_set_priority(intid, prio); } local_irq_disable(); for (i = 0; i < num; i++) { uint32_t tmp; intid = i + first_intid; KVM_INJECT(cmd, intid); /* Each successive IRQ will preempt the previous one. */ tmp = wait_for_and_activate_irq(); GUEST_ASSERT_EQ(tmp, intid); if (args->level_sensitive) guest_set_irq_line(intid, 0); } /* finish handling the IRQs starting with the highest priority one. */ for (i = 0; i < num; i++) { intid = num - i - 1 + first_intid; gic_set_eoi(intid); if (args->eoi_split) gic_set_dir(intid); } local_irq_enable(); for (i = 0; i < num; i++) GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); GUEST_ASSERT_IAR_EMPTY(); reset_priorities(args); } static void test_injection(struct test_args *args, struct kvm_inject_desc *f) { uint32_t nr_irqs = args->nr_irqs; if (f->sgi) { guest_inject(args, MIN_SGI, 1, f->cmd); guest_inject(args, 0, 16, f->cmd); } if (f->ppi) guest_inject(args, MIN_PPI, 1, f->cmd); if (f->spi) { guest_inject(args, MIN_SPI, 1, f->cmd); guest_inject(args, nr_irqs - 1, 1, f->cmd); guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd); } } static void test_injection_failure(struct test_args *args, struct kvm_inject_desc *f) { uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, }; int i; for (i = 0; i < ARRAY_SIZE(bad_intid); i++) test_inject_fail(args, bad_intid[i], f->cmd); } static void test_preemption(struct test_args *args, struct kvm_inject_desc *f) { /* * Test up to 4 levels of preemption. The reason is that KVM doesn't * currently implement the ability to have more than the number-of-LRs * number of concurrently active IRQs. The number of LRs implemented is * IMPLEMENTATION DEFINED, however, it seems that most implement 4. */ if (f->sgi) test_inject_preemption(args, MIN_SGI, 4, f->cmd); if (f->ppi) test_inject_preemption(args, MIN_PPI, 4, f->cmd); if (f->spi) test_inject_preemption(args, MIN_SPI, 4, f->cmd); } static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f) { /* Test up to 4 active IRQs. Same reason as in test_preemption. */ if (f->sgi) guest_restore_active(args, MIN_SGI, 4, f->cmd); if (f->ppi) guest_restore_active(args, MIN_PPI, 4, f->cmd); if (f->spi) guest_restore_active(args, MIN_SPI, 4, f->cmd); } static void guest_code(struct test_args *args) { uint32_t i, nr_irqs = args->nr_irqs; bool level_sensitive = args->level_sensitive; struct kvm_inject_desc *f, *inject_fns; gic_init(GIC_V3, 1, dist, redist); for (i = 0; i < nr_irqs; i++) gic_irq_enable(i); for (i = MIN_SPI; i < nr_irqs; i++) gic_irq_set_config(i, !level_sensitive); gic_set_eoi_split(args->eoi_split); reset_priorities(args); gic_set_priority_mask(CPU_PRIO_MASK); inject_fns = level_sensitive ? inject_level_fns : inject_edge_fns; local_irq_enable(); /* Start the tests. */ for_each_supported_inject_fn(args, inject_fns, f) { test_injection(args, f); test_preemption(args, f); test_injection_failure(args, f); } /* * Restore the active state of IRQs. This would happen when live * migrating IRQs in the middle of being handled. */ for_each_supported_activate_fn(args, set_active_fns, f) test_restore_active(args, f); GUEST_DONE(); } static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level, struct test_args *test_args, bool expect_failure) { int ret; if (!expect_failure) { kvm_arm_irq_line(vm, intid, level); } else { /* The interface doesn't allow larger intid's. */ if (intid > KVM_ARM_IRQ_NUM_MASK) return; ret = _kvm_arm_irq_line(vm, intid, level); TEST_ASSERT(ret != 0 && errno == EINVAL, "Bad intid %i did not cause KVM_IRQ_LINE " "error: rc: %i errno: %i", intid, ret, errno); } } void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level, bool expect_failure) { if (!expect_failure) { kvm_irq_set_level_info(gic_fd, intid, level); } else { int ret = _kvm_irq_set_level_info(gic_fd, intid, level); /* * The kernel silently fails for invalid SPIs and SGIs (which * are not level-sensitive). It only checks for intid to not * spill over 1U << 10 (the max reserved SPI). Also, callers * are supposed to mask the intid with 0x3ff (1023). */ if (intid > VGIC_MAX_RESERVED) TEST_ASSERT(ret != 0 && errno == EINVAL, "Bad intid %i did not cause VGIC_GRP_LEVEL_INFO " "error: rc: %i errno: %i", intid, ret, errno); else TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO " "for intid %i failed, rc: %i errno: %i", intid, ret, errno); } } static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm, uint32_t intid, uint32_t num, uint32_t kvm_max_routes, bool expect_failure) { struct kvm_irq_routing *routing; int ret; uint64_t i; assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES); routing = kvm_gsi_routing_create(); for (i = intid; i < (uint64_t)intid + num; i++) kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI); if (!expect_failure) { kvm_gsi_routing_write(vm, routing); } else { ret = _kvm_gsi_routing_write(vm, routing); /* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */ if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS) TEST_ASSERT(ret != 0 && errno == EINVAL, "Bad intid %u did not cause KVM_SET_GSI_ROUTING " "error: rc: %i errno: %i", intid, ret, errno); else TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING " "for intid %i failed, rc: %i errno: %i", intid, ret, errno); } } static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid, struct kvm_vcpu *vcpu, bool expect_failure) { /* * Ignore this when expecting failure as invalid intids will lead to * either trying to inject SGIs when we configured the test to be * level_sensitive (or the reverse), or inject large intids which * will lead to writing above the ISPENDR register space (and we * don't want to do that either). */ if (!expect_failure) kvm_irq_write_ispendr(gic_fd, intid, vcpu); } static void kvm_routing_and_irqfd_check(struct kvm_vm *vm, uint32_t intid, uint32_t num, uint32_t kvm_max_routes, bool expect_failure) { int fd[MAX_SPI]; uint64_t val; int ret, f; uint64_t i; /* * There is no way to try injecting an SGI or PPI as the interface * starts counting from the first SPI (above the private ones), so just * exit. */ if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid)) return; kvm_set_gsi_routing_irqchip_check(vm, intid, num, kvm_max_routes, expect_failure); /* * If expect_failure, then just to inject anyway. These * will silently fail. And in any case, the guest will check * that no actual interrupt was injected for those cases. */ for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { fd[f] = eventfd(0, 0); TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f])); } for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { struct kvm_irqfd irqfd = { .fd = fd[f], .gsi = i - MIN_SPI, }; assert(i <= (uint64_t)UINT_MAX); vm_ioctl(vm, KVM_IRQFD, &irqfd); } for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { val = 1; ret = write(fd[f], &val, sizeof(uint64_t)); TEST_ASSERT(ret == sizeof(uint64_t), __KVM_SYSCALL_ERROR("write()", ret)); } for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) close(fd[f]); } /* handles the valid case: intid=0xffffffff num=1 */ #define for_each_intid(first, num, tmp, i) \ for ((tmp) = (i) = (first); \ (tmp) < (uint64_t)(first) + (uint64_t)(num); \ (tmp)++, (i)++) static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd, struct kvm_inject_args *inject_args, struct test_args *test_args) { kvm_inject_cmd cmd = inject_args->cmd; uint32_t intid = inject_args->first_intid; uint32_t num = inject_args->num; int level = inject_args->level; bool expect_failure = inject_args->expect_failure; struct kvm_vm *vm = vcpu->vm; uint64_t tmp; uint32_t i; /* handles the valid case: intid=0xffffffff num=1 */ assert(intid < UINT_MAX - num || num == 1); switch (cmd) { case KVM_INJECT_EDGE_IRQ_LINE: for_each_intid(intid, num, tmp, i) kvm_irq_line_check(vm, i, 1, test_args, expect_failure); for_each_intid(intid, num, tmp, i) kvm_irq_line_check(vm, i, 0, test_args, expect_failure); break; case KVM_SET_IRQ_LINE: for_each_intid(intid, num, tmp, i) kvm_irq_line_check(vm, i, level, test_args, expect_failure); break; case KVM_SET_IRQ_LINE_HIGH: for_each_intid(intid, num, tmp, i) kvm_irq_line_check(vm, i, 1, test_args, expect_failure); break; case KVM_SET_LEVEL_INFO_HIGH: for_each_intid(intid, num, tmp, i) kvm_irq_set_level_info_check(gic_fd, i, 1, expect_failure); break; case KVM_INJECT_IRQFD: kvm_routing_and_irqfd_check(vm, intid, num, test_args->kvm_max_routes, expect_failure); break; case KVM_WRITE_ISPENDR: for (i = intid; i < intid + num; i++) kvm_irq_write_ispendr_check(gic_fd, i, vcpu, expect_failure); break; case KVM_WRITE_ISACTIVER: for (i = intid; i < intid + num; i++) kvm_irq_write_isactiver(gic_fd, i, vcpu); break; default: break; } } static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, struct kvm_inject_args *args) { struct kvm_inject_args *kvm_args_hva; vm_vaddr_t kvm_args_gva; kvm_args_gva = uc->args[1]; kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva); memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args)); } static void print_args(struct test_args *args) { printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n", args->nr_irqs, args->level_sensitive, args->eoi_split); } static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split) { struct ucall uc; int gic_fd; struct kvm_vcpu *vcpu; struct kvm_vm *vm; struct kvm_inject_args inject_args; vm_vaddr_t args_gva; struct test_args args = { .nr_irqs = nr_irqs, .level_sensitive = level_sensitive, .eoi_split = eoi_split, .kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING), .kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD), }; print_args(&args); vm = vm_create_with_one_vcpu(&vcpu, guest_code); vm_init_descriptor_tables(vm); vcpu_init_descriptor_tables(vcpu); /* Setup the guest args page (so it gets the args). */ args_gva = vm_vaddr_alloc_page(vm); memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args)); vcpu_args_set(vcpu, 1, args_gva); gic_fd = vgic_v3_setup(vm, 1, nr_irqs, GICD_BASE_GPA, GICR_BASE_GPA); __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3, skipping"); vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, guest_irq_handlers[args.eoi_split][args.level_sensitive]); while (1) { vcpu_run(vcpu); switch (get_ucall(vcpu, &uc)) { case UCALL_SYNC: kvm_inject_get_call(vm, &uc, &inject_args); run_guest_cmd(vcpu, gic_fd, &inject_args, &args); break; case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); break; case UCALL_DONE: goto done; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } } done: close(gic_fd); kvm_vm_free(vm); } static void help(const char *name) { printf( "\n" "usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name); printf(" -n: specify number of IRQs to setup the vgic with. " "It has to be a multiple of 32 and between 64 and 1024.\n"); printf(" -e: if 1 then EOI is split into a write to DIR on top " "of writing EOI.\n"); printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0)."); puts(""); exit(1); } int main(int argc, char **argv) { uint32_t nr_irqs = 64; bool default_args = true; bool level_sensitive = false; int opt; bool eoi_split = false; while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) { switch (opt) { case 'n': nr_irqs = atoi_non_negative("Number of IRQs", optarg); if (nr_irqs > 1024 || nr_irqs % 32) help(argv[0]); break; case 'e': eoi_split = (bool)atoi_paranoid(optarg); default_args = false; break; case 'l': level_sensitive = (bool)atoi_paranoid(optarg); default_args = false; break; case 'h': default: help(argv[0]); break; } } /* * If the user just specified nr_irqs and/or gic_version, then run all * combinations. */ if (default_args) { test_vgic(nr_irqs, false /* level */, false /* eoi_split */); test_vgic(nr_irqs, false /* level */, true /* eoi_split */); test_vgic(nr_irqs, true /* level */, false /* eoi_split */); test_vgic(nr_irqs, true /* level */, true /* eoi_split */); } else { test_vgic(nr_irqs, level_sensitive, eoi_split); } return 0; }