// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2017 NXP * Copyright 2011,2016 Freescale Semiconductor, Inc. * Copyright 2011 Linaro Ltd. */ #include <linux/clk.h> #include <linux/hrtimer.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/perf_event.h> #include <linux/slab.h> #include "common.h" #define MMDC_MAPSR 0x404 #define BP_MMDC_MAPSR_PSD 0 #define BP_MMDC_MAPSR_PSS 4 #define MMDC_MDMISC 0x18 #define BM_MMDC_MDMISC_DDR_TYPE 0x18 #define BP_MMDC_MDMISC_DDR_TYPE 0x3 #define TOTAL_CYCLES 0x0 #define BUSY_CYCLES 0x1 #define READ_ACCESSES 0x2 #define WRITE_ACCESSES 0x3 #define READ_BYTES 0x4 #define WRITE_BYTES 0x5 /* Enables, resets, freezes, overflow profiling*/ #define DBG_DIS 0x0 #define DBG_EN 0x1 #define DBG_RST 0x2 #define PRF_FRZ 0x4 #define CYC_OVF 0x8 #define PROFILE_SEL 0x10 #define MMDC_MADPCR0 0x410 #define MMDC_MADPCR1 0x414 #define MMDC_MADPSR0 0x418 #define MMDC_MADPSR1 0x41C #define MMDC_MADPSR2 0x420 #define MMDC_MADPSR3 0x424 #define MMDC_MADPSR4 0x428 #define MMDC_MADPSR5 0x42C #define MMDC_NUM_COUNTERS 6 #define MMDC_FLAG_PROFILE_SEL 0x1 #define MMDC_PRF_AXI_ID_CLEAR 0x0 #define to_mmdc_pmu(p) container_of(p, struct mmdc_pmu, pmu) static int ddr_type; struct fsl_mmdc_devtype_data { unsigned int flags; }; static const struct fsl_mmdc_devtype_data imx6q_data = { }; static const struct fsl_mmdc_devtype_data imx6qp_data = { .flags = MMDC_FLAG_PROFILE_SEL, }; static const struct of_device_id imx_mmdc_dt_ids[] = { { .compatible = "fsl,imx6q-mmdc", .data = (void *)&imx6q_data}, { .compatible = "fsl,imx6qp-mmdc", .data = (void *)&imx6qp_data}, { /* sentinel */ } }; #ifdef CONFIG_PERF_EVENTS static enum cpuhp_state cpuhp_mmdc_state; static DEFINE_IDA(mmdc_ida); PMU_EVENT_ATTR_STRING(total-cycles, mmdc_pmu_total_cycles, "event=0x00") PMU_EVENT_ATTR_STRING(busy-cycles, mmdc_pmu_busy_cycles, "event=0x01") PMU_EVENT_ATTR_STRING(read-accesses, mmdc_pmu_read_accesses, "event=0x02") PMU_EVENT_ATTR_STRING(write-accesses, mmdc_pmu_write_accesses, "event=0x03") PMU_EVENT_ATTR_STRING(read-bytes, mmdc_pmu_read_bytes, "event=0x04") PMU_EVENT_ATTR_STRING(read-bytes.unit, mmdc_pmu_read_bytes_unit, "MB"); PMU_EVENT_ATTR_STRING(read-bytes.scale, mmdc_pmu_read_bytes_scale, "0.000001"); PMU_EVENT_ATTR_STRING(write-bytes, mmdc_pmu_write_bytes, "event=0x05") PMU_EVENT_ATTR_STRING(write-bytes.unit, mmdc_pmu_write_bytes_unit, "MB"); PMU_EVENT_ATTR_STRING(write-bytes.scale, mmdc_pmu_write_bytes_scale, "0.000001"); struct mmdc_pmu { struct pmu pmu; void __iomem *mmdc_base; cpumask_t cpu; struct hrtimer hrtimer; unsigned int active_events; int id; struct device *dev; struct perf_event *mmdc_events[MMDC_NUM_COUNTERS]; struct hlist_node node; struct fsl_mmdc_devtype_data *devtype_data; struct clk *mmdc_ipg_clk; }; /* * Polling period is set to one second, overflow of total-cycles (the fastest * increasing counter) takes ten seconds so one second is safe */ static unsigned int mmdc_pmu_poll_period_us = 1000000; module_param_named(pmu_pmu_poll_period_us, mmdc_pmu_poll_period_us, uint, S_IRUGO | S_IWUSR); static ktime_t mmdc_pmu_timer_period(void) { return ns_to_ktime((u64)mmdc_pmu_poll_period_us * 1000); } static ssize_t mmdc_pmu_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mmdc_pmu *pmu_mmdc = dev_get_drvdata(dev); return cpumap_print_to_pagebuf(true, buf, &pmu_mmdc->cpu); } static struct device_attribute mmdc_pmu_cpumask_attr = __ATTR(cpumask, S_IRUGO, mmdc_pmu_cpumask_show, NULL); static struct attribute *mmdc_pmu_cpumask_attrs[] = { &mmdc_pmu_cpumask_attr.attr, NULL, }; static struct attribute_group mmdc_pmu_cpumask_attr_group = { .attrs = mmdc_pmu_cpumask_attrs, }; static struct attribute *mmdc_pmu_events_attrs[] = { &mmdc_pmu_total_cycles.attr.attr, &mmdc_pmu_busy_cycles.attr.attr, &mmdc_pmu_read_accesses.attr.attr, &mmdc_pmu_write_accesses.attr.attr, &mmdc_pmu_read_bytes.attr.attr, &mmdc_pmu_read_bytes_unit.attr.attr, &mmdc_pmu_read_bytes_scale.attr.attr, &mmdc_pmu_write_bytes.attr.attr, &mmdc_pmu_write_bytes_unit.attr.attr, &mmdc_pmu_write_bytes_scale.attr.attr, NULL, }; static struct attribute_group mmdc_pmu_events_attr_group = { .name = "events", .attrs = mmdc_pmu_events_attrs, }; PMU_FORMAT_ATTR(event, "config:0-63"); PMU_FORMAT_ATTR(axi_id, "config1:0-63"); static struct attribute *mmdc_pmu_format_attrs[] = { &format_attr_event.attr, &format_attr_axi_id.attr, NULL, }; static struct attribute_group mmdc_pmu_format_attr_group = { .name = "format", .attrs = mmdc_pmu_format_attrs, }; static const struct attribute_group *attr_groups[] = { &mmdc_pmu_events_attr_group, &mmdc_pmu_format_attr_group, &mmdc_pmu_cpumask_attr_group, NULL, }; static u32 mmdc_pmu_read_counter(struct mmdc_pmu *pmu_mmdc, int cfg) { void __iomem *mmdc_base, *reg; mmdc_base = pmu_mmdc->mmdc_base; switch (cfg) { case TOTAL_CYCLES: reg = mmdc_base + MMDC_MADPSR0; break; case BUSY_CYCLES: reg = mmdc_base + MMDC_MADPSR1; break; case READ_ACCESSES: reg = mmdc_base + MMDC_MADPSR2; break; case WRITE_ACCESSES: reg = mmdc_base + MMDC_MADPSR3; break; case READ_BYTES: reg = mmdc_base + MMDC_MADPSR4; break; case WRITE_BYTES: reg = mmdc_base + MMDC_MADPSR5; break; default: return WARN_ONCE(1, "invalid configuration %d for mmdc counter", cfg); } return readl(reg); } static int mmdc_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node) { struct mmdc_pmu *pmu_mmdc = hlist_entry_safe(node, struct mmdc_pmu, node); int target; if (!cpumask_test_and_clear_cpu(cpu, &pmu_mmdc->cpu)) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(&pmu_mmdc->pmu, cpu, target); cpumask_set_cpu(target, &pmu_mmdc->cpu); return 0; } static bool mmdc_pmu_group_event_is_valid(struct perf_event *event, struct pmu *pmu, unsigned long *used_counters) { int cfg = event->attr.config; if (is_software_event(event)) return true; if (event->pmu != pmu) return false; return !test_and_set_bit(cfg, used_counters); } /* * Each event has a single fixed-purpose counter, so we can only have a * single active event for each at any point in time. Here we just check * for duplicates, and rely on mmdc_pmu_event_init to verify that the HW * event numbers are valid. */ static bool mmdc_pmu_group_is_valid(struct perf_event *event) { struct pmu *pmu = event->pmu; struct perf_event *leader = event->group_leader; struct perf_event *sibling; unsigned long counter_mask = 0; set_bit(leader->attr.config, &counter_mask); if (event != leader) { if (!mmdc_pmu_group_event_is_valid(event, pmu, &counter_mask)) return false; } for_each_sibling_event(sibling, leader) { if (!mmdc_pmu_group_event_is_valid(sibling, pmu, &counter_mask)) return false; } return true; } static int mmdc_pmu_event_init(struct perf_event *event) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); int cfg = event->attr.config; if (event->attr.type != event->pmu->type) return -ENOENT; if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EOPNOTSUPP; if (event->cpu < 0) { dev_warn(pmu_mmdc->dev, "Can't provide per-task data!\n"); return -EOPNOTSUPP; } if (event->attr.sample_period) return -EINVAL; if (cfg < 0 || cfg >= MMDC_NUM_COUNTERS) return -EINVAL; if (!mmdc_pmu_group_is_valid(event)) return -EINVAL; event->cpu = cpumask_first(&pmu_mmdc->cpu); return 0; } static void mmdc_pmu_event_update(struct perf_event *event) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; u64 delta, prev_raw_count, new_raw_count; do { prev_raw_count = local64_read(&hwc->prev_count); new_raw_count = mmdc_pmu_read_counter(pmu_mmdc, event->attr.config); } while (local64_cmpxchg(&hwc->prev_count, prev_raw_count, new_raw_count) != prev_raw_count); delta = (new_raw_count - prev_raw_count) & 0xFFFFFFFF; local64_add(delta, &event->count); } static void mmdc_pmu_event_start(struct perf_event *event, int flags) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; void __iomem *mmdc_base, *reg; u32 val; mmdc_base = pmu_mmdc->mmdc_base; reg = mmdc_base + MMDC_MADPCR0; /* * hrtimer is required because mmdc does not provide an interrupt so * polling is necessary */ hrtimer_start(&pmu_mmdc->hrtimer, mmdc_pmu_timer_period(), HRTIMER_MODE_REL_PINNED); local64_set(&hwc->prev_count, 0); writel(DBG_RST, reg); /* * Write the AXI id parameter to MADPCR1. */ val = event->attr.config1; reg = mmdc_base + MMDC_MADPCR1; writel(val, reg); reg = mmdc_base + MMDC_MADPCR0; val = DBG_EN; if (pmu_mmdc->devtype_data->flags & MMDC_FLAG_PROFILE_SEL) val |= PROFILE_SEL; writel(val, reg); } static int mmdc_pmu_event_add(struct perf_event *event, int flags) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); struct hw_perf_event *hwc = &event->hw; int cfg = event->attr.config; if (flags & PERF_EF_START) mmdc_pmu_event_start(event, flags); if (pmu_mmdc->mmdc_events[cfg] != NULL) return -EAGAIN; pmu_mmdc->mmdc_events[cfg] = event; pmu_mmdc->active_events++; local64_set(&hwc->prev_count, mmdc_pmu_read_counter(pmu_mmdc, cfg)); return 0; } static void mmdc_pmu_event_stop(struct perf_event *event, int flags) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); void __iomem *mmdc_base, *reg; mmdc_base = pmu_mmdc->mmdc_base; reg = mmdc_base + MMDC_MADPCR0; writel(PRF_FRZ, reg); reg = mmdc_base + MMDC_MADPCR1; writel(MMDC_PRF_AXI_ID_CLEAR, reg); mmdc_pmu_event_update(event); } static void mmdc_pmu_event_del(struct perf_event *event, int flags) { struct mmdc_pmu *pmu_mmdc = to_mmdc_pmu(event->pmu); int cfg = event->attr.config; pmu_mmdc->mmdc_events[cfg] = NULL; pmu_mmdc->active_events--; if (pmu_mmdc->active_events == 0) hrtimer_cancel(&pmu_mmdc->hrtimer); mmdc_pmu_event_stop(event, PERF_EF_UPDATE); } static void mmdc_pmu_overflow_handler(struct mmdc_pmu *pmu_mmdc) { int i; for (i = 0; i < MMDC_NUM_COUNTERS; i++) { struct perf_event *event = pmu_mmdc->mmdc_events[i]; if (event) mmdc_pmu_event_update(event); } } static enum hrtimer_restart mmdc_pmu_timer_handler(struct hrtimer *hrtimer) { struct mmdc_pmu *pmu_mmdc = container_of(hrtimer, struct mmdc_pmu, hrtimer); mmdc_pmu_overflow_handler(pmu_mmdc); hrtimer_forward_now(hrtimer, mmdc_pmu_timer_period()); return HRTIMER_RESTART; } static int mmdc_pmu_init(struct mmdc_pmu *pmu_mmdc, void __iomem *mmdc_base, struct device *dev) { *pmu_mmdc = (struct mmdc_pmu) { .pmu = (struct pmu) { .task_ctx_nr = perf_invalid_context, .attr_groups = attr_groups, .event_init = mmdc_pmu_event_init, .add = mmdc_pmu_event_add, .del = mmdc_pmu_event_del, .start = mmdc_pmu_event_start, .stop = mmdc_pmu_event_stop, .read = mmdc_pmu_event_update, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, }, .mmdc_base = mmdc_base, .dev = dev, .active_events = 0, }; pmu_mmdc->id = ida_simple_get(&mmdc_ida, 0, 0, GFP_KERNEL); return pmu_mmdc->id; } static void imx_mmdc_remove(struct platform_device *pdev) { struct mmdc_pmu *pmu_mmdc = platform_get_drvdata(pdev); ida_simple_remove(&mmdc_ida, pmu_mmdc->id); cpuhp_state_remove_instance_nocalls(cpuhp_mmdc_state, &pmu_mmdc->node); perf_pmu_unregister(&pmu_mmdc->pmu); iounmap(pmu_mmdc->mmdc_base); clk_disable_unprepare(pmu_mmdc->mmdc_ipg_clk); kfree(pmu_mmdc); } static int imx_mmdc_perf_init(struct platform_device *pdev, void __iomem *mmdc_base, struct clk *mmdc_ipg_clk) { struct mmdc_pmu *pmu_mmdc; char *name; int ret; const struct of_device_id *of_id = of_match_device(imx_mmdc_dt_ids, &pdev->dev); pmu_mmdc = kzalloc(sizeof(*pmu_mmdc), GFP_KERNEL); if (!pmu_mmdc) { pr_err("failed to allocate PMU device!\n"); return -ENOMEM; } /* The first instance registers the hotplug state */ if (!cpuhp_mmdc_state) { ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "perf/arm/mmdc:online", NULL, mmdc_pmu_offline_cpu); if (ret < 0) { pr_err("cpuhp_setup_state_multi failed\n"); goto pmu_free; } cpuhp_mmdc_state = ret; } ret = mmdc_pmu_init(pmu_mmdc, mmdc_base, &pdev->dev); if (ret < 0) goto pmu_free; name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "mmdc%d", ret); pmu_mmdc->mmdc_ipg_clk = mmdc_ipg_clk; pmu_mmdc->devtype_data = (struct fsl_mmdc_devtype_data *)of_id->data; hrtimer_init(&pmu_mmdc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); pmu_mmdc->hrtimer.function = mmdc_pmu_timer_handler; cpumask_set_cpu(raw_smp_processor_id(), &pmu_mmdc->cpu); /* Register the pmu instance for cpu hotplug */ cpuhp_state_add_instance_nocalls(cpuhp_mmdc_state, &pmu_mmdc->node); ret = perf_pmu_register(&(pmu_mmdc->pmu), name, -1); if (ret) goto pmu_register_err; platform_set_drvdata(pdev, pmu_mmdc); return 0; pmu_register_err: pr_warn("MMDC Perf PMU failed (%d), disabled\n", ret); ida_simple_remove(&mmdc_ida, pmu_mmdc->id); cpuhp_state_remove_instance_nocalls(cpuhp_mmdc_state, &pmu_mmdc->node); hrtimer_cancel(&pmu_mmdc->hrtimer); pmu_free: kfree(pmu_mmdc); return ret; } #else #define imx_mmdc_remove NULL #define imx_mmdc_perf_init(pdev, mmdc_base, mmdc_ipg_clk) 0 #endif static int imx_mmdc_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; void __iomem *mmdc_base, *reg; struct clk *mmdc_ipg_clk; u32 val; int err; /* the ipg clock is optional */ mmdc_ipg_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(mmdc_ipg_clk)) mmdc_ipg_clk = NULL; err = clk_prepare_enable(mmdc_ipg_clk); if (err) { dev_err(&pdev->dev, "Unable to enable mmdc ipg clock.\n"); return err; } mmdc_base = of_iomap(np, 0); WARN_ON(!mmdc_base); reg = mmdc_base + MMDC_MDMISC; /* Get ddr type */ val = readl_relaxed(reg); ddr_type = (val & BM_MMDC_MDMISC_DDR_TYPE) >> BP_MMDC_MDMISC_DDR_TYPE; reg = mmdc_base + MMDC_MAPSR; /* Enable automatic power saving */ val = readl_relaxed(reg); val &= ~(1 << BP_MMDC_MAPSR_PSD); writel_relaxed(val, reg); err = imx_mmdc_perf_init(pdev, mmdc_base, mmdc_ipg_clk); if (err) { iounmap(mmdc_base); clk_disable_unprepare(mmdc_ipg_clk); } return err; } int imx_mmdc_get_ddr_type(void) { return ddr_type; } static struct platform_driver imx_mmdc_driver = { .driver = { .name = "imx-mmdc", .of_match_table = imx_mmdc_dt_ids, }, .probe = imx_mmdc_probe, .remove_new = imx_mmdc_remove, }; static int __init imx_mmdc_init(void) { return platform_driver_register(&imx_mmdc_driver); } postcore_initcall(imx_mmdc_init);